BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 9(2019), 231-244 DOI: 10.7251/BIMVI1902231P

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

$\mathcal{I}_{w\hat{q}}$ -NORMAL AND $\mathcal{I}_{w\hat{q}}$ -REGULAR SPACES

Prabakaran Thiruvalagu, Sangeethasubha Vanangamudi, Seenivasagan Narayanasamy, and Ravi Ochadevar

ABSTRACT. $\mathcal{I}_{w\hat{g}}$ -normal and $\mathcal{I}_{w\hat{g}}$ -regular spaces are introduced and various characterizations and properties are given. Characterizations of normal, mildly normal, $w\hat{g}$ -normal and regular spaces are also given.

1. Introduction and Preliminaries

Throughout this paper, by a space X, we always mean a topological space (X, τ) with no separation properties assumed. Let H be a subset of X. We denote the interior, the closure and the complement of a set H by int(H), cl(H) and X\H or H^c, respectively.

An ideal \mathcal{I} on a space X is a non-empty collection of subsets of X which satisfies (i) $P \in \mathcal{I}$ and $Q \subset P \Rightarrow Q \in \mathcal{I}$ and

(ii) $P \in \mathcal{I}$ and $Q \in \mathcal{I} \Rightarrow P \cup Q \in \mathcal{I}$.

Given a space X with an ideal \mathcal{I} on X and if $\wp(X)$ is the set of all subsets of X, a set operator $(.)^*$: $\wp(X) \rightarrow \wp(X)$, called a local function [8] of H with respect to τ and \mathcal{I} is defined as follows: for $H \subseteq X$,

 $H^*(\mathcal{I},\tau) = \{ x \in X \mid U \cap H \notin \mathcal{I} \text{ for every} U \in \tau(x) \}$

where $\tau(\mathbf{x}) = \{\mathbf{U} \in \tau | \mathbf{x} \in \mathbf{U}\}$. We will make use of the basic facts about the local functions [[7], Theorem 2.3] without mentioning it explicitly. A Kuratowski closure operator cl^{*}(.) for a topology $\tau^*(\mathcal{I}, \tau)$, called the \star -topology, finer than τ is defined by cl^{*}(H)=H\cupH^*(\mathcal{I}, \tau) [**30**]. When there is no chance for confusion, we will simply write H^{*} for H^{*}(\mathcal{I}, τ) and τ^* for $\tau^*(\mathcal{I}, \tau)$. If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal space. \mathcal{N} is the ideal of all nowhere dense subsets in (X, τ) . A subset H

²⁰¹⁰ Mathematics Subject Classification. 54D10, 54D15.

Key words and phrases. $\mathcal{I}_{w\hat{g}}$ -closed set, $\mathcal{I}_{w\hat{g}}$ -open set, completely codense ideal, $w\hat{g}$ -closed set, $w\hat{g}$ -open set, $w\hat{g}$ -normal space, mildly normal space, regular space.

of an ideal space (X, τ, \mathcal{I}) is called *-closed [7] (resp. *-dense in itself [6]) if $H^* \subseteq H$ (resp. $H \subseteq H^*$). A subset H of an ideal space (X, τ, \mathcal{I}) is called \mathcal{I}_g -closed [4] if $H^* \subseteq U$ whenever $H \subseteq U$ and U is open.

int^{*}(H) will denote the interior of H in (X, τ^*) . A subset A of a space (X, τ) is said to be regular open [29] if A=int(cl(A)) and A is said to be regular closed [29] if A=cl(int(A)). A subset H of a space X is called an α -open [19] (resp. semi-open [9], preopen [14]) set if H⊆int(cl(int(H))) (resp. H⊆cl(int(H)), H⊆int(cl(H))). The complement of a semi-open set is called semi-closed. The family of all α -open sets in (X,τ) , denoted by τ^{α} , is a topology on X finer than τ . The complement of an α -open set is called α -closed. The interior of a subset H in (X,τ^{α}) is denoted by $\operatorname{int}_{\alpha}(H)$. The closure of a subset H in (X,τ^{α}) is denoted by $\operatorname{cl}_{\alpha}(H)$. A subset H of a space X is said to be g-closed [10] if $\operatorname{cl}(H)\subseteq U$ whenever H⊆U and U is open. H is said to be g-open if X−H is g-closed. The family of all semi-open sets of X is denoted by SO(X).

An ideal \mathcal{I} is said to be codense [5] or τ -boundary [18] if $\tau \cap \mathcal{I} = \{\emptyset\}$. \mathcal{I} is said to be completely codense [5] if $PO(X) \cap \mathcal{I} = \{\emptyset\}$, where PO(X) is the family of all preopen sets in (X,τ) . Every completely codense ideal is codense but not converse by [5]. The following Lemmas will be useful in the sequel.

LEMMA 1.1. Let (X,τ,\mathcal{I}) be an ideal space and $H\subseteq X$. If $H\subseteq H^*$, then $H^* = cl(H^*) = cl(H) = cl^*(H)$ ([24], Theorem 5).

LEMMA 1.2. Let (X, τ, \mathcal{I}) be an ideal space. Then \mathcal{I} is codense if and only if $G \subseteq G^*$ for every semi-open set G in X ([24], Theorem 3).

LEMMA 1.3. Let (X, τ, \mathcal{I}) be an ideal space. If \mathcal{I} is completely codense, then $\tau^* \subseteq \tau^{\alpha}$ ([24], Theorem 6).

Recall that (X,τ,\mathcal{I}) is a $T_{\mathcal{I}}$ ideal space [4] if every \mathcal{I}_q -closed set is \star -closed.

LEMMA 1.4. If (X, τ, \mathcal{I}) is a $T_{\mathcal{I}}$ ideal space and H is an \mathcal{I}_g -closed set, then H is a \star -closed set ([16], Corollary 2.2).

LEMMA 1.5. Every g-closed set is \mathcal{I}_g -closed but not conversely ([4], Theorem 2.1).

LEMMA 1.6 ([7]). Let (X,τ,\mathcal{I}) be an ideal space and let M and N be two subsets on X. Then

- (1) $M \subseteq N \Rightarrow M^* \subseteq N^*$.
- (2) $M^* = cl(M^*) \subseteq cl(M)$ (M^* is a closed subset of cl(M)).
- (3) $(M^*)^* \subseteq M^*$.
- (4) $(M \cup N)^* = M^* \cup N^*$.
- (5) $M^* N^* = (M N)^* N^* \subseteq (M N)^*$.

Let us say that $w \subseteq P$ is a weak structure (briefly WS) on X iff $\emptyset \in w$. Clearly each generalized topology and each minimal structure is a WS [3].

Each member of w is said to be w-open and the complement of a w-open set is called w-closed.

Let w be a weak structure on X and $H \subseteq X$. We define (as in the general case) $i_w(H)$ is the union of all w-open subsets contained in H and $c_w(H)$ is the intersection of all w-closed sets containing H [3].

Let w be a WS on a space X and $H\subseteq X$. Then $H\in\sigma(w)$ [resp. $H\in\alpha(w)$, $H\in\pi(w)$] if $H\subseteq c_w(i_w(H))$ [resp. $H\subseteq i_w(c_w(i_w(H)))$, $H\subseteq i_w(c_w(H))$] [3].

Let w be a WS on a space X. Then $H \subseteq X$ is called a $\hat{g}w$ -closed set if $c_w(H) \subseteq U$ whenever $H \subseteq U \in SO(X)$. The complement of a $\hat{g}w$ -closed set is called $\hat{g}w$ -open [25].

Let w be a WS on a space X. Then $H \subseteq X$ is said to be $w\hat{g}$ -closed [26] if $cl(H) \subseteq U$ whenever $H \subseteq U$ and $U \in \sigma(w)$. A subset H of a space X is said to be $r\alpha g$ -closed [21] if $cl_{\alpha}(H) \subseteq U$ whenever $H \subseteq U$ and U is regular open. H is said to be $w\hat{g}$ -open (resp. $r\alpha g$ -open) if X-H is $w\hat{g}$ -closed (resp. $r\alpha g$ -closed).

Let w be a WS on an ideal space (X, τ, \mathcal{I}) . Then $H \subseteq X$ is called $\mathcal{I}_{w\hat{g}}$ -closed if $H^* \subseteq U$ whenever $H \subseteq U$ and $U \in \sigma(w)$ [26]. In [26], every *-closed and hence every closed set is $\mathcal{I}_{w\hat{g}}$ -closed. A subset H of an ideal space (X, τ, \mathcal{I}) is said to be $\mathcal{I}_{w\hat{g}}$ -open [26] if X-H is $\mathcal{I}_{w\hat{g}}$ -closed. In this paper, we define $\mathcal{I}_{w\hat{g}}$ -normal, $_{w\hat{g}}\mathcal{I}$ -normal and $\mathcal{I}_{w\hat{g}}$ -regular spaces using $\mathcal{I}_{w\hat{g}}$ -open sets and give characterizations and properties of such spaces. Also, characterizations of normal, mildly normal, $w\hat{g}$ -normal and regular spaces are given.

REMARK 1.1. ([1]) If w is a WS on X, then $i_w(\emptyset) = \emptyset$ and $c_w(X) = X$.

THEOREM 1.1 ([3]). If w is a WS on X and $A, B \in w$ then

- (1) $i_w(A) \subseteq A \subseteq c_w(A)$,
- (2) $A \subseteq B \Rightarrow i_w(A) \subseteq i_w(B)$ and $c_w(A) \subseteq c_w(B)$,
- (3) $i_w(i_w(A)) = i_w(A)$ and $c_w(c_w(A)) = c_w(A)$,
- (4) $i_w(X-A) = X c_w(A)$ and $c_w(X-A) = X i_w(A)$.

LEMMA 1.7 ([1]). If w is a WS on X, then

- (1) $x \in i_w(A)$ if and only if there is a w-open set $G \subseteq A$ such that $x \in G$,
- (2) $x \in c_w(A)$ if and only if $G \cap A \neq \emptyset$ whenever $x \in G \in w$,
- (3) If $A \in w$, then $A = i_w(A)$ and if A is w-closed then $A = c_w(A)$.

LEMMA 1.8 ([26], Theorem 2.47). Let (X,τ,\mathcal{I}) be an ideal space where \mathcal{I} is completely codense. Then the following are equivalent.

- (1) X is normal.
- (2) For disjoint closed sets M and N, there exist disjoint $\mathcal{I}_{w\hat{g}}$ -open sets P and Q such that $M \subseteq P$, $N \subseteq Q$.
- (3) For a closed set M and an open set Q containing M, there exists an $\mathcal{I}_{w\hat{g}}$ open set P such that $M \subseteq P \subseteq cl^*(P) \subseteq Q$.

DEFINITION 1.1. ([26]) An ideal space (X, τ, \mathcal{I}) is said to have the property B if $P^c \in \tau$ and $Q^c \in \sigma(w)$ then $X \setminus (P \cap Q) \in \sigma(w)$.

LEMMA 1.9. If (X,τ,\mathcal{I}) is an ideal space and $H\subseteq X$. If $\mathcal{I}=\{\emptyset\}$, then H is $\mathcal{I}_{w\hat{g}}$ closed if and only if H is $w\hat{g}$ -closed ([**26**], Corollary 2.28).

LEMMA 1.10 ([26], Theorem 2.15). If (X, τ, \mathcal{I}) is an ideal space with property B and $H \subseteq X$, then the following are equivalent.

(1) H is $\mathcal{I}_{w\hat{q}}$ -closed.

(2) $cl^*(H) \subseteq U$ whenever $H \subseteq U$ and $U \in \sigma(w)$.

LEMMA 1.11 ([26], Theorem 2.42). Let (X, τ, \mathcal{I}) be an ideal space with property B and $H \subseteq X$. Then H is $\mathcal{I}_{w\hat{g}}$ -open if and only if $F \subseteq int^*(H)$ whenever $F^c \in \sigma(w)$ and $F \subseteq H$.

LEMMA 1.12 ([26], Theorem 2.46). Let (X, τ, \mathcal{I}) be an ideal space. Then every subset of X is $\mathcal{I}_{w\hat{a}}$ -closed if and only if every subset of $\sigma(w)$ is *-closed.

PROPOSITION 1.1 ([26]). If $H \in \tau$ then $H \in \sigma(w)$.

2. $\mathcal{I}_{w\hat{q}}$ -normal spaces

Let w be a WS on an ideal space (X, τ, \mathcal{I}) . Then (X, τ, \mathcal{I}) is said to be an $\mathcal{I}_{w\hat{g}}$ normal space if for every pair of disjoint closed sets M and N, there exist disjoint $\mathcal{I}_{w\hat{g}}$ -open sets P and Q such that $M \subseteq P$ and $N \subseteq Q$. Since every open set is an $\mathcal{I}_{w\hat{g}}$ open set, every normal space is $\mathcal{I}_{w\hat{g}}$ -normal. The following Example 2.1 shows that an $\mathcal{I}_{w\hat{g}}$ -normal space is not necessarily a normal space. Theorem 2.1 below gives characterizations of $\mathcal{I}_{w\hat{g}}$ -normal spaces. Theorem 2.2 below shows that the two concepts coincide for completely codense ideal spaces.

EXAMPLE 2.1. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{b\}, \{a, b\}, \{b, c\}, X\}, w = \{\emptyset, \{c\}\}$ and $\mathcal{I} = \{\emptyset, \{b\}\}$. Then $\emptyset^* = \emptyset, (\{a, b\})^* = \{a\}, (\{b, c\})^* = \{c\}, (\{b\})^* = \emptyset$ and $X^* = \{a, c\}$. Here every subset of $\sigma(w)$ is *-closed and so, by Lemma 1.12, every subset of X is $\mathcal{I}_{w\hat{g}}$ -closed and hence every subset of X is $\mathcal{I}_{w\hat{g}}$ -open. This implies that (X, τ, \mathcal{I}) is $\mathcal{I}_{w\hat{g}}$ -normal. Now $\{a\}$ and $\{c\}$ are disjoint closed subsets of X which are not separated by disjoint open sets and so (X, τ) is not normal.

THEOREM 2.1. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . Then the following are equivalent.

- (1) X is $\mathcal{I}_{w\hat{q}}$ -normal.
- (2) For every pair of disjoint closed sets M and N, there exist disjoint I_{wĝ}open sets P and Q such that M⊆P and N⊆Q.
- (3) For every closed set M and an open set Q containing M, there exists an *I_{wĝ}*-open set P such that M⊆P⊆cl*(P)⊆Q.

PROOF. (1) \Rightarrow (2). The proof follows from the definition of $\mathcal{I}_{w\hat{g}}$ -normal spaces.

(2) \Rightarrow (3). Let M be a closed set and Q be an open set containing M. Since M and X-Q are disjoint closed sets, there exist disjoint $\mathcal{I}_{w\hat{g}}$ -open sets P and R such that $M \subseteq P$ and $X-Q \subseteq R$. Again, $P \cap R = \emptyset$ implies that $P \cap \operatorname{int}^*(R) = \emptyset$. Also $P \subseteq X-R \Rightarrow \operatorname{cl}^*(P) \subseteq \operatorname{cl}^*(X-R) = X-\operatorname{int}^*(R)$. Since $Q \in \sigma(w)$ and R is $\mathcal{I}_{w\hat{g}}$ -open, X-Q $\subseteq R$ implies that $X-Q \subseteq \operatorname{int}^*(R)$ and so $X-\operatorname{int}^*(R) \subseteq Q$. Thus, we have $M \subseteq P \subseteq \operatorname{cl}^*(P) \subseteq \operatorname{cl}^*(R)$ and so $X-\operatorname{int}^*(R) \subseteq Q$.

(3) \Rightarrow (1). Let M and N be two disjoint closed subsets of X. By hypothesis, there exists an $\mathcal{I}_{w\hat{q}}$ -open set P such that $M \subseteq P \subseteq cl^*(P) \subseteq X - N$. If $R = X - cl^*(P)$, then P and R are the required disjoint $\mathcal{I}_{w\hat{g}}$ -open sets containing M and N respectively. So, (X,τ,\mathcal{I}) is $\mathcal{I}_{w\hat{g}}$ -normal.

THEOREM 2.2. Let (X, τ, \mathcal{I}) be an ideal space where \mathcal{I} is completely codense and $w \ a \ WS \ on \ (X, \tau, \mathcal{I})$. If (X, τ, \mathcal{I}) is $\mathcal{I}_{w\hat{q}}$ -normal, then it is a normal space.

PROOF. Suppose that \mathcal{I} is completely codense. By Theorem 2.1, (X,τ,\mathcal{I}) is $\mathcal{I}_{w\hat{g}}$ -normal if and only if for each pair of disjoint closed sets M and N, there exist disjoint $\mathcal{I}_{w\hat{g}}$ -open sets P and Q such that $M \subseteq P$ and $N \subseteq Q$ if and only if X is normal, by Lemma 1.8.

THEOREM 2.3. Let w be a WS on an ideal space (X, τ, \mathcal{I}) which is $\mathcal{I}_{w\hat{g}}$ -normal space. If G is closed and H is a $w\hat{g}$ -closed set such that $H \cap G = \emptyset$, then there exist disjoint $\mathcal{I}_{w\hat{g}}$ -open sets P and Q such that $H \subseteq P$ and $G \subseteq Q$.

PROOF. Since $H \cap G = \emptyset$, $H \subseteq X - G$ where $X - G \in \tau \subseteq \sigma(w)$. Therefore, by hypothesis, $cl(H) \subseteq X - G$. Since $cl(H) \cap G = \emptyset$ and X is $\mathcal{I}_{w\hat{g}}$ -normal, there exist disjoint $\mathcal{I}_{w\hat{g}}$ -open sets P and Q such that $H \subseteq cl(H) \subseteq P$ and $G \subseteq Q$.

DEFINITION 2.1. Let w be a WS on a space X. A subset H of a space X is said to be αgsw -closed if $cl_{\alpha}(H) \subseteq U$ whenever $H \subseteq U$ and $U \in \sigma(w)$. The complement of an αgsw -closed set is called αgsw -open.

PROPOSITION 2.1. For a WS w on a space X, every closed subset is $\alpha gsw-closed$.

PROOF. Let H be a closed set such that $H \subseteq U$ and $U \in \sigma(w)$. Then cl(H) = H and $cl_{\alpha}(H) \subseteq cl(H) = H \subseteq U$. Hence H is αgsw -closed.

EXAMPLE 2.2. Let X={a, b, c}, $\tau = \{\emptyset, \{c\}, X\}$ and $w = \{\emptyset, \{a\}, \{a, b\}\}$. Then the α gsw-closed sets are {a}, {b}, {a, b}, {b, c}, \emptyset , X and the closed sets are \emptyset , X, {a, b}. It is clear that {b} is α gsw-closed set but it is not closed.

The following Corollaries 2.1 and 2.2 give properties of normal spaces. If $\mathcal{I}=\{\emptyset\}$ in Theorem 2.1, then we have the following Corollary 2.8, the proof of which follows from Theorem 2.2 and Lemma 1.9, since $\{\emptyset\}$ is a completely codense ideal. If $\mathcal{I}=\mathcal{N}$ in Theorem 2.3, then we have the Corollary 2.2 below, since $\tau^*(\mathcal{N})=\tau^{\alpha}$ and $\mathcal{I}_{w\hat{g}}$ -open sets coincide with α gsw-open sets.

COROLLARY 2.1. Let (X,τ) be a normal space and w a WS on X. If G is a closed set and H is a $w\hat{g}$ -closed set disjoint from G, then there exist disjoint $w\hat{g}$ -open sets P and Q such that $H \subseteq P$ and $G \subseteq Q$.

COROLLARY 2.2. Let (X, τ, \mathcal{I}) be a normal ideal space where $\mathcal{I}=\mathcal{N}$ and w a WS on (X, τ, \mathcal{I}) . If G is a closed set and H is a wg-closed set disjoint from G, then there exist disjoint α gsw-open sets P and Q such that $H\subseteq P$ and $G\subseteq Q$.

LEMMA 2.1. If w is a WS on an ideal space (X, τ, \mathcal{I}) and $H \subseteq X$, then the following hold. If $\mathcal{I} = \mathcal{N}$, then H is $\mathcal{I}_{w\hat{q}}$ -closed if and only if H is αgsw -closed.

PROOF. It follows from $cl^*(H) = cl_{\alpha}(H)$ for any subset H of X.

THEOREM 2.4. Let w be a WS on an ideal space (X, τ, \mathcal{I}) which is $\mathcal{I}_{w\hat{g}}$ -normal. Then the following hold.

- (1) For every closed set M and every $w\hat{g}$ -open set N containing M, there exists an $\mathcal{I}_{w\hat{g}}$ -open set P such that $M \subseteq int^*(P) \subseteq P \subseteq N$.
- (2) For every $w\hat{g}$ -closed set M and every open set N containing M, there exists an $\mathcal{I}_{w\hat{q}}$ -closed set P such that $M \subseteq P \subseteq cl^*(P) \subseteq N$.

PROOF. (1) Let M be a closed set and N be a $w\hat{g}$ -open set containing M. Then $M \cap (X-N) = \emptyset$, where M is closed and X-N is $w\hat{g}$ -closed. By Theorem 2.3, there exist disjoint $\mathcal{I}_{w\hat{g}}$ -open sets P and Q such that $M \subseteq P$ and $X-N \subseteq Q$. Since $P \cap Q = \emptyset$, we have $P \subseteq X-Q$. By Lemma 1.14, $M \subseteq int^*(P)$. Therefore, $M \subseteq int^*(P) \subseteq P \subseteq X-Q \subseteq N$. This proves (1).

(2) Let M be a $w\hat{g}$ -closed set and N be an open set containing M. Then X–N is a closed set contained in the $w\hat{g}$ -open set X–M. By (1), there exists an $\mathcal{I}_{w\hat{g}}$ -open set Q such that X–N⊆int*(Q)⊆Q⊆X–M. Therefore, M⊆X–Q⊆cl*(X–Q)⊆N. If P=X–Q, then M⊆P⊆cl*(P)⊆N and so P is the required $\mathcal{I}_{w\hat{g}}$ -closed set. \Box

The following Corollaries 2.3 and 2.4 give some properties of normal spaces. If $\mathcal{I}=\{\emptyset\}$ in Theorem 2.3, then we have the following Corollary 2.4. If $\mathcal{I}=\mathcal{N}$ in Theorem 2.4, then we have the Corollary 2.4 below.

COROLLARY 2.3. Let (X,τ) be a normal space and w a WS on X. Then the following hold.

- For every closed set M and every wĝ-open set N containing M, there exists a wĝ-open set P such that M⊆int(P)⊆P⊆N.
- (2) For every wĝ-closed set M and every open set N containing M, there exists a wĝ-closed set P such that M⊆P⊆cl(P)⊆N.

COROLLARY 2.4. Let (X,τ) be a normal space and w a WS on X. Then the following hold.

- (1) For every closed set M and every $w\hat{g}$ -open set N containing M, there exists an αgsw -open set P such that $M \subseteq int_{\alpha}(P) \subseteq P \subseteq N$.
- (2) For every $w\hat{g}$ -closed set M and every open set N containing M, there exists an αgsw -closed set P such that $M \subseteq P \subseteq cl_{\alpha}(P) \subseteq N$.

Let w be a WS on an ideal space (X, τ, \mathcal{I}) . Then (X, τ, \mathcal{I}) is said to be $_{w\hat{g}}\mathcal{I}$ -normal if for each pair of disjoint $\mathcal{I}_{w\hat{g}}$ -closed sets M and N, there exist disjoint open sets P and Q in X such that $M \subseteq P$ and $N \subseteq Q$. Since every closed set is $\mathcal{I}_{w\hat{g}}$ -closed, every $_{w\hat{g}}\mathcal{I}$ -normal space is normal. But a normal space need not be $_{w\hat{g}}\mathcal{I}$ -normal as the following Example 2.3 shows. Theorems 2.5 and 2.6 below give characterizations of $_{w\hat{g}}\mathcal{I}$ -normal spaces.

EXAMPLE 2.3. Let X={a, b, c}, $\tau = \{\emptyset, \{a\}, \{b, c\}, X\}, w = \{\emptyset, \{b, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Every subset of $\sigma(w)$ is *-closed and so every subset of X is $\mathcal{I}_{w\hat{g}}$ -closed. Now A={a, b} and B={c} are disjoint $\mathcal{I}_{w\hat{g}}$ -closed sets, but they are not separated by disjoint open sets. So (X, τ, \mathcal{I}) is not $w_{\hat{g}}\mathcal{I}$ -normal. But (X, τ, \mathcal{I}) is normal. THEOREM 2.5. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . Then the following are equivalent.

- (1) X is $_{w\hat{q}}\mathcal{I}$ -normal.
- (2) For every $\mathcal{I}_{w\hat{g}}$ -closed set M and every $\mathcal{I}_{w\hat{g}}$ -open set N containing M, there exists an open set P of X such that $M \subseteq P \subseteq cl(P) \subseteq N$.

PROOF. (1) \Rightarrow (2). Let M be an $\mathcal{I}_{w\hat{g}}$ -closed set and N be an $\mathcal{I}_{w\hat{g}}$ -open set containing M. Since M and X–N are disjoint $\mathcal{I}_{w\hat{g}}$ -closed sets, there exist disjoint open sets P and Q such that M \subseteq P and X–N \subseteq Q. Now P \cap Q= \emptyset implies that cl(P) \subseteq X–Q. Therefore, M \subseteq P \subseteq cl(P) \subseteq X–Q \subseteq N. This proves (2).

 $(2) \Rightarrow (1)$. Suppose M and N are disjoint $\mathcal{I}_{w\hat{g}}$ -closed sets, then the $\mathcal{I}_{w\hat{g}}$ -closed set M is contained in the $\mathcal{I}_{w\hat{g}}$ -open set X–N. By hypothesis, there exists an open set P of X such that $M \subseteq P \subseteq cl(P) \subseteq X-N$. If Q = X-cl(P), then P and Q are disjoint open sets containing M and N respectively. Therefore, (X, τ, \mathcal{I}) is $_{w\hat{g}}\mathcal{I}$ -normal. \Box

If $\mathcal{I}=\{\emptyset\}$, then $_{w\hat{g}}\mathcal{I}$ -normal spaces coincide with $w\hat{g}$ -normal spaces and so if we take $\mathcal{I}=\{\emptyset\}$, in Theorem 2.5, then we have the following characterization for $w\hat{g}$ -normal spaces.

COROLLARY 2.5. Let w be a WS on a space X. Then the following are equivalent.

- (1) X is $w\hat{g}$ -normal.
- (2) For every $w\hat{g}$ -closed set M and every $w\hat{g}$ -open set N containing M, there exists an open set P of X such that $M \subseteq P \subseteq cl(P) \subseteq N$.

THEOREM 2.6. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . Then the following are equivalent.

- (1) X is $_{w\hat{g}}\mathcal{I}$ -normal.
- (2) For each pair of disjoint I_{wĝ}-closed subsets M and N of X, there exists an open set P of X containing M such that cl(P)∩N=Ø.
- (3) For each pair of disjoint I_{wĝ}-closed subsets M and N of X, there exist an open set P containing M and an open set Q containing N such that cl(P)∩cl(Q)=Ø.

PROOF. (1) \Rightarrow (2). Suppose that M and N are disjoint $\mathcal{I}_{w\hat{g}}$ -closed subsets of X. Then the $\mathcal{I}_{w\hat{g}}$ -closed set M is contained in the $\mathcal{I}_{w\hat{g}}$ -open set X–N. By Theorem 2.15, there exists an open set P of X such that $M \subseteq P \subseteq cl(P) \subseteq X-N$. Therefore, P is the required open set containing M such that $cl(P) \cap N = \emptyset$.

 $(2) \Rightarrow (3)$. Let M and N be two disjoint $\mathcal{I}_{w\hat{g}}$ -closed subsets of X. By hypothesis, there exists an open set P of X containing M such that $cl(P) \cap N = \emptyset$. Also, cl(P)and N are disjoint $\mathcal{I}_{w\hat{g}}$ -closed sets of X. By hypothesis, there exists an open set Q of X containing N such that $cl(P) \cap cl(Q) = \emptyset$.

 $(3) \Rightarrow (1)$. The proof is clear.

If $\mathcal{I}=\{\emptyset\}$, in Theorem 2.6, then we have the following characterizations for $w\hat{g}$ -normal spaces.

COROLLARY 2.6. Let (X,τ) be a space and w a WS on X. Then the following are equivalent.

- (1) X is $w\hat{g}$ -normal.
- (2) For each pair of disjoint wĝ-closed subsets M and N of X, there exists an open set P of X containing M such that cl(P)∩N=Ø.
- (3) For each pair of disjoint wĝ-closed subsets M and N of X, there exist an open set P containing M and an open set Q containing N such that cl(P)∩cl(Q)=Ø.

THEOREM 2.7. Let w be a WS on an ideal space (X, τ, \mathcal{I}) which is an $_{w\hat{g}}\mathcal{I}$ normal space. If M and N are disjoint $\mathcal{I}_{w\hat{g}}$ -closed subsets of X, then there exist
disjoint open sets P and Q such that $cl^*(M) \subseteq P$ and $cl^*(N) \subseteq Q$.

PROOF. Suppose that M and N are disjoint $\mathcal{I}_{w\hat{g}}$ -closed sets. By Theorem 2.6(3), there exist an open set P containing M and an open set Q containing N such that $cl(P)\cap cl(Q)=\emptyset$. Since M is $\mathcal{I}_{w\hat{g}}$ -closed, M \subseteq P implies that $cl^*(M)\subseteq P$. Similarly $cl^*(N)\subseteq Q$.

If $\mathcal{I}=\{\emptyset\}$, in Theorem 2.7, then we have the following property of disjoint $w\hat{g}$ -closed sets in $w\hat{g}$ -normal spaces.

COROLLARY 2.7. Let w be a WS on a space X which is a $w\hat{g}$ -normal space. If M and N are disjoint $w\hat{g}$ -closed subsets of X, then there exist disjoint open sets P and N such that $cl(M) \subseteq P$ and $cl(N) \subseteq Q$.

THEOREM 2.8. Let w be a WS on (X,τ,\mathcal{I}) which is an $_{w\hat{g}}\mathcal{I}$ -normal space. If M is an $\mathcal{I}_{w\hat{g}}$ -closed set and N is an $\mathcal{I}_{w\hat{g}}$ -open set containing M, then there exists an open set P such that $M \subseteq cl^*(M) \subseteq P \subseteq int^*(N) \subseteq N$.

PROOF. Suppose M is an $\mathcal{I}_{w\hat{g}}$ -closed set and N is an $\mathcal{I}_{w\hat{g}}$ -open set containing M. Since M and X–N are disjoint $\mathcal{I}_{w\hat{g}}$ -closed sets, by Theorem 2.7, there exist disjoint open sets P and Q such that $cl^*(M)\subseteq P$ and $cl^*(X-N)\subseteq Q$. Now, $X-int^*(N)=cl^*(X-N)\subseteq Q$ implies that $X-Q\subseteq int^*(N)$. Again, $P\cap Q=\emptyset$ implies $P\subseteq X-Q$ and so $M\subseteq cl^*(M)\subseteq P\subseteq X-Q\subseteq int^*(N)\subseteq N$.

If $\mathcal{I} = \{\emptyset\}$, in Theorem 2.7, then we have the following Corollary 2.8.

COROLLARY 2.8. Let w be a WS on a space X which is a $w\hat{g}$ -normal space. If M is a $w\hat{g}$ -closed set and N is a $w\hat{g}$ -open set containing M, then there exists an open set P such that $M \subseteq cl(M) \subseteq P \subseteq int(N) \subseteq N$.

The following Theorem 2.9 gives a characterization of normal spaces in terms of $w\hat{g}$ -open sets which follows from Lemma 1.8 if $\mathcal{I}=\{\emptyset\}$.

THEOREM 2.9. Let (X,τ) be a space and w a WS on X. Then the following are equivalent.

(1) X is normal.

(2) For any disjoint closed sets M and N, there exist disjoint wĝ-open sets P and Q such that M⊆P and N⊆Q. (3) For any closed set M and an open set Q containing M, there exists a $w\hat{g}$ -open set P such that $M \subseteq P \subseteq cl(P) \subseteq Q$.

The rest of the section is devoted to the study of mildly normal spaces in terms of $\mathcal{I}_{w\hat{g}}$ -open sets, \mathcal{I}_g -open sets and \mathcal{I}_{rg} -open sets. A space (X,τ) is said to be a mildly normal space [28] if disjoint regular closed sets are separated by disjoint open sets. A subset H of a space (X,τ) is said to be α g-closed [13] if $cl_{\alpha}(H)\subseteq U$ whenever $H\subseteq U$ and U is open. A subset H of a space (X,τ) is said to rg-closed [22] if $cl(H)\subseteq U$ whenever $H\subseteq U$ and U is regular open in X. The complements of the above closed sets are called their respective open sets.

A subset H of an ideal space (X, τ, \mathcal{I}) is said to be a regular generalized closed set with respect to an ideal \mathcal{I} (\mathcal{I}_{rg} -closed) [17] if $H^* \subseteq U$ whenever $H \subseteq U$ and U is regular open. H is called \mathcal{I}_g -open (resp. \mathcal{I}_{rg} -open) if X-H is \mathcal{I}_g -closed (resp. \mathcal{I}_{rg} -closed). Clearly, every $\mathcal{I}_{w\hat{g}}$ -closed set is \mathcal{I}_g -closed and every \mathcal{I}_g -closed set is \mathcal{I}_{rg} -closed but the separate converses are not true. Theorem 2.10 below gives characterizations of mildly normal spaces. Corollary 2.9 below gives characterizations of mildly normal spaces in terms of α gsw-open, α g-open and $r\alpha$ g-open sets. Corollary 2.10 below gives characterizations of mildly normal spaces in terms of $w\hat{g}$ -open, g-open and rg-open sets. The following Lemma 2.2 is essential to prove Theorem 2.10.

LEMMA 2.2 ([17]). Let (X,τ,\mathcal{I}) be an ideal space. A subset $H\subseteq X$ is \mathcal{I}_{rg} -open if and only if $F\subseteq int^*(H)$ whenever F is regular closed and $F\subseteq H$.

THEOREM 2.10. Let (X,τ,\mathcal{I}) be an ideal space where \mathcal{I} is completely codense and $w \ a \ WS$ on (X,τ,\mathcal{I}) . Then the following are equivalent.

- (1) X is mildly normal.
- (2) For disjoint regular closed sets M and N, there exist disjoint $\mathcal{I}_{w\hat{g}}$ -open sets P and Q such that $M \subseteq P$ and $N \subseteq Q$.
- (3) For disjoint regular closed sets M and N, there exist disjoint I_g-open sets P and Q such that M⊆P and N⊆Q.
- (4) For disjoint regular closed sets M and N, there exist disjoint *I_{rg}*-open sets P and Q such that M⊆P and N⊆Q.
- (5) For a regular closed set M and a regular open set N containing M, there exists an \mathcal{I}_{rg} -open set P of X such that $M \subseteq P \subseteq cl^*(P) \subseteq N$.
- (6) For a regular closed set M and a regular open set N containing M, there exists an *-open set S of X such that $M \subseteq S \subseteq cl^*(S) \subseteq N$.
- (7) For disjoint regular closed sets M and N, there exist disjoint *-open sets P and Q such that $M \subseteq P$ and $N \subseteq Q$.

PROOF. (1) \Rightarrow (2). Suppose that M and N are disjoint regular closed sets. Since X is mildly normal, there exist disjoint open sets P and Q such that $M \subseteq P$ and $N \subseteq Q$. But every open set is an $\mathcal{I}_{w\hat{g}}$ -open set. This proves (2).

(2) \Rightarrow (3). The proof follows from the fact that every $\mathcal{I}_{w\hat{g}}$ -open set is an \mathcal{I}_{g} -open set.

(3) \Rightarrow (4). The proof follows from the fact that every \mathcal{I}_g -open set is an \mathcal{I}_{rg} -open set.

(4) \Rightarrow (5). Suppose M is a regular closed and N is a regular open set containing M. Then M and X–N are disjoint regular closed sets. By hypothesis, there exist disjoint \mathcal{I}_{rg} -open sets P and Q such that M \subseteq P and X–N \subseteq Q. Since X–N is regular closed and Q is \mathcal{I}_{rg} -open, by Lemma 2.2, X–N \subseteq int*(Q) and so X–int*(Q) \subseteq N. Again, P \cap Q= \emptyset implies that P \cap int*(Q)= \emptyset and so cl*(P) \subseteq X–int*(Q) \subseteq N. Hence P is the required \mathcal{I}_{rg} -open set such that M \subseteq P \subseteq cl*(P) \subseteq N.

 $(5) \Rightarrow (6)$. Let M be a regular closed set and N be a regular open set containing M. Then there exists an \mathcal{I}_{rg} -open set P of X such that $M \subseteq P \subseteq cl^*(P) \subseteq N$. By Lemma 2.2, $M \subseteq int^*(P)$. If $S=int^*(P)$, then S is an *-open set and $M \subseteq S \subseteq cl^*(S) \subseteq cl^*(P) \subseteq N$. Therefore, $M \subseteq S \subseteq cl^*(S) \subseteq N$.

 $(6) \Rightarrow (7)$. Let M and N be disjoint regular closed subsets of X. Then X–N is a regular open set containing M. By hypothesis, there exists an *-open set P of X such that M \subseteq P \subseteq cl*(P) \subseteq X–N. If Q=X–cl*(P), then P and Q are disjoint *-open sets of X such that M \subseteq P and N \subseteq Q.

 $(7) \Rightarrow (1)$. Let M and N be disjoint regular closed sets of X. Then there exist disjoint *-open sets P and Q such that M \subseteq P and N \subseteq Q. Since \mathcal{I} is completely codense, by Lemma 1.3, $\tau^* \subseteq \tau^{\alpha}$ and so P, Q $\in \tau^{\alpha}$. Hence M \subseteq P \subseteq int(cl(int(P)))=S and N \subseteq Q \subseteq int(cl(int(Q)))=T. S and T are the required disjoint open sets containing M and N respectively. This proves (1).

If $\mathcal{I}=\mathcal{N}$, in the above Theorem 2.10, then \mathcal{I}_{rg} -closed sets coincide with ragclosed sets and so we have the following Corollary 2.9.

COROLLARY 2.9. Let w be a WS on a space X. Then the following are equivalent.

- (1) X is mildly normal.
- (2) For disjoint regular closed sets M and N, there exist disjoint αgsw -open sets P and Q such that $M \subseteq P$ and $N \subseteq Q$.
- (3) For disjoint regular closed sets M and N, there exist disjoint αg-open sets P and Q such that M⊆P and N⊆Q.
- (4) For disjoint regular closed sets M and N, there exist disjoint rαg-open sets P and Q such that M⊆P and N⊆Q.
- (5) For a regular closed set M and a regular open set N containing M, there exists an $r\alpha g$ -open set P of X such that $M \subseteq P \subseteq cl_{\alpha}(P) \subseteq N$.
- (6) For a regular closed set M and a regular open set N containing M, there exists an α -open set S of X such that $M \subseteq S \subseteq cl_{\alpha}(S) \subseteq N$.
- (7) For disjoint regular closed sets M and N, there exist disjoint α -open sets P and Q such that $M \subseteq P$ and $N \subseteq Q$.

If $\mathcal{I} = \{\emptyset\}$ in the above Theorem 2.10, we get the following Corollary 2.10.

COROLLARY 2.10. Let w be a WS on a space X. Then the following are equivalent.

(1) X is mildly normal.

- (2) For disjoint regular closed sets M and N, there exist disjoint wĝ-open sets P and Q such that M⊆P and N⊆Q.
- (3) For disjoint regular closed sets M and N, there exist disjoint g-open sets P and Q such that $M \subseteq P$ and $N \subseteq Q$.
- (4) For disjoint regular closed sets M and N, there exist disjoint rg-open sets P and Q such that M⊆P and N⊆Q.
- (5) For a regular closed set M and a regular open set N containing M, there exists an rg-open set P of X such that $M \subseteq P \subseteq cl(P) \subseteq N$.
- (6) For a regular closed set M and a regular open set N containing M, there exists an open set S of X such that $M \subseteq S \subseteq cl(S) \subseteq N$.
- (7) For disjoint regular closed sets M and N, there exist disjoint open sets P and Q such that $M \subseteq P$ and $N \subseteq Q$.

3. $\mathcal{I}_{w\hat{q}}$ -regular spaces

Let w be a WS on (X,τ,\mathcal{I}) . Then (X,τ,\mathcal{I}) is said to be an $\mathcal{I}_{w\hat{g}}$ -regular space if for each pair consisting of a point x and a closed set N not containing x, there exist disjoint $\mathcal{I}_{w\hat{g}}$ -open sets P and Q such that $x \in P$ and $N \subseteq Q$. Every regular space is $\mathcal{I}_{w\hat{g}}$ -regular, since every open set is $\mathcal{I}_{w\hat{g}}$ -open. The following Example 3.1 shows that an $\mathcal{I}_{w\hat{g}}$ -regular space need not be regular. Theorem 3.2 gives a characterization of $\mathcal{I}_{w\hat{g}}$ -regular spaces.

EXAMPLE 3.1. Consider the Example 2.1. Then $\emptyset^*=\emptyset$, $(\{b\})^*=\emptyset$, $(\{a, b\})^*=\{a\}$, $(\{b, c\})^*=\{c\}$ and $X^*=\{a, c\}$. Since every subset of $\sigma(w)$ is *-closed, every subset of X is $\mathcal{I}_{w\hat{g}}$ -closed and so every subset of X is $\mathcal{I}_{w\hat{g}}$ -open. This implies that (X,τ,\mathcal{I}) is $\mathcal{I}_{w\hat{g}}$ -regular. Now, $\{c\}$ is a closed set not containing $a\in X$, $\{c\}$ and a are not separated by disjoint open sets. So (X,τ,\mathcal{I}) is not regular.

THEOREM 3.1. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . Then the following are equivalent.

- (1) X is $\mathcal{I}_{w\hat{g}}$ -regular.
- (2) For every closed set N not containing $x \in X$, there exist disjoint $\mathcal{I}_{w\hat{g}}$ -open sets P and Q such that $x \in P$ and $N \subseteq Q$.
- (3) For every open set Q containing $x \in X$, there exists an $\mathcal{I}_{w\hat{g}}$ -open set P of X such that $x \in P \subseteq cl^*(P) \subseteq Q$.

PROOF. (1) and (2) are equivalent by the definition.

 $(2) \Rightarrow (3)$. Let Q be an open subset such that $x \in Q$. Then X-Q is a closed set not containing x. Therefore, there exist disjoint $\mathcal{I}_{w\hat{g}}$ -open sets P and W such that $x \in P$ and $X-Q \subseteq W$. Now, $X-Q \subseteq W$ implies that $X-Q \subseteq int^*(W)$ and so $X-int^*(W) \subseteq Q$. Again, $P \cap W = \emptyset$ implies that $P \cap int^*(W) = \emptyset$ and so $cl^*(P) \subseteq X-int^*(W)$. Therefore, $x \in P \subseteq cl^*(P) \subseteq Q$. This proves (3).

 $(3) \Rightarrow (1)$. Let N be a closed set not containing x. By hypothesis, there exists an $\mathcal{I}_{w\hat{g}}$ -open set P such that $x \in P \subseteq cl^*(P) \subseteq X - N$. If $W = X - cl^*(P)$, then P and W are disjoint $\mathcal{I}_{w\hat{g}}$ -open sets such that $x \in P$ and $N \subseteq W$. This proves (1). \Box 242 T. PRABAKARAN, V. SANGEETHASUBHA, N. SEENIVASAGAN, AND O. RAVI

THEOREM 3.2. Let w be a WS on an ideal space (X,τ,\mathcal{I}) . If (X,τ,\mathcal{I}) is an $\mathcal{I}_{w\hat{a}}$ -regular, T_1 -space where \mathcal{I} is completely codense, then X is regular.

PROOF. Let N be a closed set not containing $x \in X$. By Theorem 3.1, there exists an $\mathcal{I}_{w\hat{g}}$ -open set P of X such that $x \in P \subseteq cl^*(P) \subseteq X-N$. Since X is a T₁-space, $\{x\}$ is closed and $\{x\}^c \in \sigma(w)$ and so $\{x\} \subseteq int^*(P)$, by Lemma 1.11. Since \mathcal{I} is completely codense, $\tau^* \subseteq \tau^{\alpha}$ and so $int^*(P)$ and $X-cl^*(P)$ are α -open sets. Now, $x \in int^*(P) \subseteq int(cl(int(int^*(P))))=G$ and $N \subseteq X-cl^*(P) \subseteq int(cl(int(X-cl^*(P))))=H$. Then G and H are disjoint open sets containing x and N respectively. Therefore, X is regular.

If $\mathcal{I}=\mathcal{N}$ in Theorem 3.1, then we have the following Corollary 3.1 which gives characterizations of regular spaces, the proof of which follows from Theorem 3.2.

COROLLARY 3.1. If w is a WS on a space X which is a T_1 -space, then the following are equivalent.

- (1) X is regular.
- (2) For every closed set N not containing $x \in X$, there exist disjoint αgsw -open sets P and Q such that $x \in P$ and $N \subseteq Q$.
- (3) For every open set Q containing $x \in X$, there exists an αgsw -open set P of X such that $x \in P \subseteq cl_{\alpha}(P) \subseteq Q$.

If $\mathcal{I} = \{\emptyset\}$ in Theorem 3.1, then we have the following Corollary 3.2 which gives characterizations of regular spaces.

COROLLARY 3.2. If w is a WS on a space X which is a T_1 -space, then the following are equivalent.

- (1) X is regular.
- (2) For every closed set N not containing $x \in X$, there exist disjoint $w\hat{g}$ -open sets P and Q such that $x \in P$ and $N \subseteq Q$.
- (3) For every open set Q containing $x \in X$, there exists a $w\hat{g}$ -open set P of X such that $x \in P \subseteq cl(P) \subseteq Q$.

THEOREM 3.3. Let w be a WS on an ideal space (X,τ,\mathcal{I}) . If every subset of $\sigma(w)$ is *-closed, then (X,τ,\mathcal{I}) is $\mathcal{I}_{w\hat{q}}$ -regular.

PROOF. Suppose every subset of $\sigma(w)$ is *-closed. Then by Lemma 1.12, every subset of X is $\mathcal{I}_{w\hat{g}}$ -closed and hence every subset of X is $\mathcal{I}_{w\hat{g}}$ -open. If N is a closed set not containing x, then $\{x\}$ and N are the required disjoint $\mathcal{I}_{w\hat{g}}$ -open sets containing x and N respectively. Therefore, (X, τ, \mathcal{I}) is $\mathcal{I}_{w\hat{g}}$ -regular.

The following Example 3.2 shows that the reverse direction of the above Theorem 3.2 is not true.

EXAMPLE 3.2. Consider the real line \mathcal{R} with the usual topology. Let $\mathcal{I}=\{\emptyset\}$. Then \mathcal{R} is regular and hence $\mathcal{I}_{w\hat{g}}$ -regular. Let $\mathrm{H}=(0,1)$ be an open set and hence $\mathrm{H}\in\sigma(\mathrm{w})$. Then $\mathrm{cl}^*(\mathrm{H})=\mathrm{cl}(\mathrm{H})=[0,1]\neq\mathrm{H}$ and consequently H is not \star -closed. Thus the subset H of $\sigma(w)$ is not \star -closed.

References

- A. Al-Omari and T. Noiri. A unified theory of generalized closed sets in weak structures. Acta Math. Hungar., 135(1-2)(2012), 174–183.
- [2] J. Antony Rex Rodrigo, O. Ravi and A. Naliniramalatha. ĝ-closed sets in ideal topological spaces. Methods of Functional analysis and Topology, 17(3)(2011), 274–280.
- [3] Á. Császár. Weak Structures. Acta Math. Hungar., 131(1-2)(2011), 193–195.
- [4] J. Dontchev, M. Ganster and T. Noiri. Unified operation approach of generalized closed sets via topological ideals. *Math. Japonica.*, 49(1999), 395–401.
- [5] J. Dontchev, M. Ganster and D. Rose. Ideal resolvability. *Topology and its Applications*, 93(1999), 1–16.
- [6] E. Hayashi. Topologies defined by local properties. Math. Ann., 156(1964), 205-215.
- [7] D. Janković and T. R. Hamlett. New topologies from old via ideals. Amer. Math. Monthly, 97(4)(1990), 295–310.
- [8] K. Kuratowski. Topology, Vol. I, New York: Academic Press, 1966.
- [9] N. Levine. Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly, 70(1963), 36–41.
- [10] N. Levine. Generalized closed sets in topology. Rend. Circ. Mat. Palermo, (2), 19(1970), 89–96.
- [11] S. N. Maheshwari and R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles, 89(1975), 395-402.
- [12] H. Maki, R. Devi and K. Balachandran. Generalized α-closed sets in topology. Bull. Fukuoka Univ. Ed. III, 42(1993), 13–21.
- [13] H. Maki, R. Devi and K. Balachandran. Associated topologies of generalized α-closed sets and α-generalized closed sets. Mem. Fac. Sci. Kochi Univ. Math., 15(1994), 51–63.
- [14] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb. On precontinuous and weak precontinuous mappings. Proc. Math. Phys. Soc. Egypt, 53(1982), 47–53.
- [15] B. M. Munshi. Separation Axioms. Acta Ciencia Indica, 12(1986), 140–144.
- [16] M. Navaneethakrishnan and J. Paulraj Joseph. g-closed sets in ideal topological spaces. Acta Math. Hungar., 119(4)(2008), 365–371.
- [17] M. Navaneethakrishnan, J. Paulraj Joseph and D. Sivaraj. \mathcal{I}_g -normal and \mathcal{I}_g -regular spaces. Acta Math Hungar., **125**(4)(2009), 327–340.
- [18] R. L. Newcomb. Topologies which are compact modulo an ideal, Ph.D. Dissertation, University of California, Santa Barbara, California, 1967.
- [19] O. Njåstad. On some classes of nearly open sets. Pacific J. Math., 15(3)(1965), 961–970.
- [20] T. Noiri and V. Popa. On g-regular spaces and some functions. Mem. Fac. Sci. Kochi Univ. Math., 20(1999), 67–74.
- [21] T. Noiri. Almost α g-closed functions and separation axioms. Acta Math. Hungar., **82**(3)(1999), 193–205.
- [22] N. Palaniappan and K. Chandrasekra Rao. Regular generalized closed sets. Kyungpook Math. J., 33(2)(1993), 211–219.
- [23] O. Ravi, S. Ganesan and S. Chandrasekar. Almost αgs-closed functions and separation axioms. Bull. Math. Anal. App., 3(1)(2011), 165–177.
- [24] V. Renuka Devi, D. Sivaraj and T. Tamizh Chelvam. Codense and completely codense ideals. Acta Math. Hungar., 108(3)(2005), 197–205.
- [25] N. Seenivasagan, O. Ravi, T. Prabakaran, and V. Sangeethasubha. ĝw-closed sets in weak structures. International Journal of Mathematics Trends and Technology, 58(3)(2018), 164– 175.
- [26] N. Seenivasagan, O. Ravi, V. Sangeethasubha and T. Prabakaran. $w\hat{g}$ -closed sets in ideal topological spaces, communicated.
- [27] M. Sheik John. A study on generalizations of closed sets and continuous maps in topological and bitopological spaces. Ph. D Thesis, Bharathiar University, Coimbatore, 2002.
- [28] M. K. Singal and A. R. Singal. Mildly normal spaces. Kyungpook Math. J., 13(1973), 27-31.

[29] R. Staum. The algebra of bounded continuous functions into a nonarchimedean field. Pacific J. Math., 50(1974), 169–185.

[30] R. Vaidyanathaswamy. Set topology. Chelsea Publishing Company, New York, 1946.

Received by editors 09.05.2018; Revised version 28.11.2018; Available online 10.12.2018.

Latha Mathavan Engineering College, Department of Mathematics, Madurai, Tamil Nadu, India

 $E\text{-}mail\ address:\ \texttt{prabhakaran2611@gmail.com}$

Research Scholar, Department of Mathematics, Bharathidasan University, Trichy, Tamil Nadu, India

E-mail address: sangeethasubha11@gmail.com

Assistant Professor, Department of Mathematics, Govt Arts College for Women, Nilakottai, Tamil Nadu, India

 $E\text{-}mail\ address: \texttt{vasagan2000@yahoo.co.in}$

Controller of Examinations, Madurai Kamaraj University, Madurai, Tamil Nadu, India

E-mail address: siingam@yahoo.com