PRINCIPAL RESIDUATED ALMOST DISTRIBUTIVE LATTICES

G. C. Rao and S. S. Raju

Abstract

In this paper, we introduce the concept of a simple element in a residuated ADL and the concept of Principal residuated Almost Distributive Lattice (P-ADL). We prove important results in a P-ADL.

1. Introduction

Swamy, U.M. and Rao, G.C. [6] introduced the concept of an Almost Distributive Lattice as a common abstraction of almost all the existing ring theoretic generalizations of a Boolean algebra (like regular rings, p-rings, biregular rings, associate rings, P_{1}-rings etc.) on one hand and distributive lattices on the other.

In [1], Dilworth, R.P., has introduced the concept of a residuation in lattices and in $[\mathbf{7}, \mathbf{8}]$, Ward, M. and Dilworth, R.P., have studied residuated lattices. In [9], Ward, M. has introduced the concept of a principal residuated lattice (or simply a P-Lattice) and studied its properties. We introduced the concepts of a residuation and a multiplication in an ADL and the concept of a residuated ADL in our earlier paper [3]. We have proved some important properties of residuation': and multiplication '. ' in a residuated ADL L in [4]. In [5], we introduced the concept of principal element in a residuated ADL.

In this paper, we introduce the concept of a simple element in a Residuated ADL and the concept of Principal residuated Almost Distributive Lattice. We prove important results in a P-ADL. In Section 2, we recall the definition of an Almost Distributive Lattice (ADL) and certain elementary properties of an ADL from Swamy, U.M. and Rao, G.C. [6], Rao, G.C. [2] and some important results on a residuated almost distributive lattice from our earlier paper [3]. In section 3,

[^0]we introduce the concept of a simple element in a residuated ADL and the concept of Principal residuated Almost Distributive Lattice (P-ADL). We give an example of a P-ADL. We prove that a simple element of a residuated ADL is prime and every multiplicatively irreducible element of a $\mathrm{P}-\mathrm{ADL}$ is prime. We also prove that any power of a prime element of a P-ADL is a primary element and every primary element of a P-ADL L is a power of a prime element of L .

2. Preliminaries

In this section we collect a few important definitions and results which are already known and which will be used more frequently in the paper.

We begin with the definition of an ADL :
Definition 2.1. ([2]). An Almost Distributive Lattice (ADL) is an algebra (L, \vee, \wedge) of type $(2,2)$ satisfying
(1) $(a \vee b) \wedge c=(a \wedge c) \vee(b \wedge c)$
(2) $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$
(3) $(a \vee b) \wedge b=b$
(4) $(a \vee b) \wedge a=a$
(5) $a \vee(a \wedge b)=a$, for all $a, b, c \in L$.

It can be seen directly that every distributive lattice is an ADL. If there is an element $0 \in L$ such that $0 \wedge a=0$ for all $a \in L$, then $(L, \vee, \wedge, 0)$ is called an ADL with 0 .

Example 2.1. ([2]). Let X be a non-empty set. Fix $x_{0} \in X$. For any $x, y \in L$, define

$$
x \wedge y=\left\{\begin{array}{ll}
x_{0}, & \text { if } x=x_{0} \\
y, & \text { if } x \neq x_{0}
\end{array} \quad x \vee y= \begin{cases}y, & \text { if } x=x_{0} \\
x, & \text { if } x \neq x_{0} .\end{cases}\right.
$$

Then $\left(X, \vee, \wedge, x_{0}\right)$ is an ADL, with x_{0} as its zero element. This ADL is called a discrete ADL.

For any $a, b \in L$, we say that a is less than or equals to b and write $a \leqslant b$, if $a \wedge b=a$. Then " \leqslant " is a partial ordering on L.

Theorem 2.1 ([2]). Let $(L, \vee, \wedge, 0)$ be an $A D L$ with ' 0 '. Then, for any $a, b \in L$, we have
(1) $a \wedge 0=0$ and $0 \vee a=a$
(2) $a \wedge a=a=a \vee a$
(3) $(a \wedge b) \vee b=b, a \vee(b \wedge a)=a$ and $a \wedge(a \vee b)=a$
(4) $a \wedge b=a \Longleftrightarrow a \vee b=b$ and $a \wedge b=b \Longleftrightarrow a \vee b=a$
(5) $a \wedge b=b \wedge a$ and $a \vee b=b \vee a$ whenever $a \leqslant b$
(6) $a \wedge b \leqslant b$ and $a \leqslant a \vee b$
(7) \wedge is associative in L
(8) $a \wedge b \wedge c=b \wedge a \wedge c$
(9) $(a \vee b) \wedge c=(b \vee a) \wedge c$
(10) $a \wedge b=0 \Longleftrightarrow b \wedge a=0$
(11) $a \vee(b \vee a)=a \vee b$.

It can be observed that an ADL L satisfies almost all the properties of a distributive lattice except, possible the right distributivity of \vee over \wedge, the commutativity of \vee, the commutativity of \wedge and the absorption law $(a \wedge b) \vee a=a$. Any one of these properties convert L into a distributive lattice.

Theorem $2.2([\mathbf{2}])$. Let $(L, \vee, \wedge, 0)$ be an ADL with 0 . Then the following are equivalent:
(1) $(L, \vee, \wedge, 0)$ is a distributive lattice
(2) $a \vee b=b \vee a$, for all $a, b \in L$
(3) $a \wedge b=b \wedge a$, for all $a, b \in L$
(4) $(a \wedge b) \vee c=(a \vee c) \wedge(b \vee c)$, for all $a, b, c \in L$.

Proposition $2.1([\mathbf{2}])$. Let (L, \vee, \wedge) be an $A D L$. Then for any $a, b, c \in L$ with $a \leqslant b$, we have
(1) $a \wedge c \leqslant b \wedge c$
(2) $c \wedge a \leqslant c \wedge b$
(3) $c \vee a \leqslant c \vee b$.

Definition 2.2. ([2]) An element $m \in L$ is called maximal if it is maximal as in the partially ordered set (L, \leqslant). That is, for any $a \in L, m \leqslant a$ implies $m=a$.

Theorem 2.3 ([2]). Let L be an $A D L$ and $m \in L$. Then the following are equivalent:
(1) m is maximal with respect to \leqslant
(2) $m \vee a=m$ for all $a \in L$
(3) $m \wedge a=a$ for all $a \in L$.

Lemma 2.1 ([2]). Let L be an ADL with a maximal element m and $x, y \in L$. If $x \wedge y=y$ and $y \wedge x=x$ then x is maximal if and only if y is maximal.Also the following conditions are equivalent:
(i) $x \wedge y=y$ and $y \wedge x=x$
(ii) $x \wedge m=y \wedge m$.

Definition 2.3. ([2]) If $(L, \vee, \wedge, 0, m)$ is an ADL with 0 and with a maximal element m , then the set $I(L)$ of all ideals of L is a complete lattice under set inclusion. In this lattice, for any $I, J \in I(L)$, the l.u.b. and g.l.b. of I, J are given by $I \vee J=\{(x \vee y) \wedge m \mid x \in I, y \in J\}$ and $I \wedge J=I \cap J$.
The set $P I(L)=\{(a] \mid a \in L\}$ of all principal ideals of L forms a sublattice of $I(L)$. (Since $(a] \vee(b]=(a \vee b]$ and $(a] \cap(b]=(a \wedge b])$

In the following, we give the concepts of residuation and multiplication in an almost distributive lattice $(A D L) L$ and the definition of a residuated almost distributive lattice taken from our earlier paper [3].

Definition 2.4 ([3]). Let L be an ADL with a maximal element m. A binary operation : on an ADL L is called a residuation over L if, for $a, b, c \in L$ the following conditions are satisfied.
(R1) $a \wedge b=b$ if and only if $a: b$ is maximal
$(R 2) a \wedge b=b \Longrightarrow($ i $)(a: c) \wedge(b: c)=b: c$ and (ii) $(c: b) \wedge(c: a)=c: a$
(R3) $[(a: b): c] \wedge m=[(a: c): b] \wedge m$
$(R 4)[(a \wedge b): c] \wedge m=(a: c) \wedge(b: c) \wedge m$
$(R 5)[c:(a \vee b)] \wedge m=(c: a) \wedge(c: b) \wedge m$
Definition $2.5([\mathbf{3}])$. Let L be an ADL with a maximal element m. A binary operation. on an ADL L is called a multiplication over L if, for $a, b, c \in L$ the following conditions are satisfied.
$(M 1)(a . b) \wedge m=(b . a) \wedge m$
$(M 2)[(a . b) . c] \wedge m=[a .(b . c)] \wedge m$
(M3) $(a . m) \wedge m=a \wedge m$
$(M 4)[a .(b \vee c)] \wedge m=[(a . b) \vee(a . c)] \wedge m$
Definition 2.6. ([3]) An ADL L with a maximal element m is said to be a residuated almost distributive lattice (residuated ADL), if there exists two binary operations ' : ' and '. ' on L satisfying conditions R1 to R5, M1 to M4 and the following condition (A).
(A) $(x: a) \wedge b=b$ if and only if $x \wedge(a . b)=a . b$, for any $x, a, b \in L$.

We use the following properties frequently later in the results.
Lemma 2.2 ([3]). Let L be an ADL with a maximal element m and. a binary operation on L satisfying the conditions $M 1-M 4$. Then for any $a, b, c, d \in L$,
(i) $a \wedge(a . b)=a . b$ and $b \wedge(a . b)=a . b$
(ii) $a \wedge b=b \Longrightarrow(c . a) \wedge(c . b)=c . b$ and $(a . c) \wedge(b . c)=b . c$
(iii) $d \wedge[(a . b) . c]=(a . b) . c$ if and only if $d \wedge[a .(b . c)]=a(b . c)$
(iv) $(a . c) \wedge(b . c) \wedge[(a \wedge b) . c]=(a \wedge b) . c$
(v) $d \wedge(a . c) \wedge(b . c)=(a . c) \wedge(b . c) \Longrightarrow d \wedge[(a \wedge b) . c]=(a \wedge b) . c$
$(v i) d \wedge[(a . c) \vee(b . c)]=(a . c) \vee(b . c) \Leftrightarrow d \wedge[(a \vee b) . c]=(a \vee b) . c$
The following result is a direct consequence of M1 of Definition 2.15.
Lemma 2.3 ([3]). Let L be an ADL with a maximal element m and. a binary operation on L satisfying the condition $M 1$. For $a, b, x \in L, a \wedge(x . b)=x . b$ if and only if $a \wedge(b . x)=b . x$

In the following, we give some important properties of residuation ': ' and multiplication '. ' in a residuated ADL L. These are taken from our earlier paper [4].

Lemma 2.4 ([4]). Let L be a residuated $A D L$ with a maximal element m. For $a, b, c, d \in L$, the following hold in L.
(1) $(a: b) \wedge a=a$
(2) $[a:(a: b)] \wedge(a \vee b)=a \vee b$
(3) $[(a: b): c] \wedge[a:(b . c)]=a:(b . c)$
(4) $[a:(b . c)] \wedge[(a: b): c]=(a: b): c$
(5) $[(a \wedge b): b] \wedge(a: b)=a: b$
(6) $(a: b) \wedge[(a \wedge b): b]=(a \wedge b): b$
(7) $[a:(a \vee b)] \wedge m=(a: b) \wedge m$
(8) $[c:(a \wedge b)] \wedge[(c: a) \vee(c: b)]=(c: a) \vee(c: b)$
(9) If $a: b=a$ then $a \wedge(b . d)=b . d \Longrightarrow a \wedge d=d$
(10) $\{a:[a:(a: b)]\} \wedge(a: b)=a: b$
(11) $[(a \vee b): c] \wedge[(a: c) \vee(b: c)]=(a: c) \vee(b: c)$
(12) $a \wedge m \geqslant b \wedge m \Longrightarrow(a: c) \wedge m \geqslant(b: c) \wedge m$
(13) $(a: b) \wedge\{a:[a:(a: b)]\}=a:[a:(a: b)]$
(14) $a \wedge b=b \Longrightarrow(a . c) \wedge(b . c)=b . c$
(15) $a \wedge b \wedge(a . b)=a . b$
(16) $[(a . b): a] \wedge b=b$
(17) $(a . b) \wedge[(a \wedge b) .(a \vee b)]=(a \wedge b) .(a \vee b)$
(18) $a \vee b$ is maximal $\Longrightarrow(a . b) \wedge a \wedge b=a \wedge b$

3. Principal Residuated Almost Distributive Lattices

In this section, we introduce the concept of a simple element in a residuated ADL and the concept of Principal residuated Almost Distributive Lattice (P-ADL). We give an example of a P-ADL. We prove important results in a P-ADL.

We recall the following concepts on a residuated ADL L:
Definition 3.1. ([5]) An element p of a residuated ADL L is called
(i) irreducible, if for any $f, g \in L, f \wedge g=p \Longrightarrow$ either $\mathrm{f}=\mathrm{p}$ or $\mathrm{g}=\mathrm{p}$.
(ii) prime, if for any $a, b \in L, p \wedge(a . b)=a . b \Longrightarrow$ either $p \wedge a=a$ or $p \wedge b=b$.
(iii) primary, if for any $a, b \in L, p \wedge(a . b)=a . b$ and $p \wedge a \neq a \Longrightarrow p \wedge b^{s}=b^{s}$, for some $s \in Z^{+}$.

NOTE : Clearly, every prime element of a residuated ADL is primary.
Definition 3.2. ([5]) An ADL L is said to satisfy the ascending chain condition(a.c.c.), if for every increasing sequence $x_{1} \leqslant x_{2} \leqslant x_{3} \leqslant \ldots . . .$. , in L, there exists a positive integer n such that $x_{n}=x_{n+1}=x_{n+2}=$ \qquad
Definition 3.3. ([5]) Let L be a residuated ADL. An element a of L is called principal, if $b \in L$ and $a \wedge b=b$, then $a . c=b$, for some $c \in L$.

Definition 3.4. ([5]) A residuated ADL L is said to be a Noether ADL, if
(N1) the ascending chain condition(a.c.c.) holds in L and
(N2) every irreducible element of L is primary.
Now, we give the following definitions.
Definition 3.5. Let L be an ADL with a maximal element m. An element x of L is called an associate of y if $x \wedge m=y \wedge m$ (or x is equivalent to y$)$. This is an equivalence relation on L.

Definition 3.6. Let L be an ADL and $x, y \in L$.
(i) y is called a divisor of x if $y \wedge x=x$. Observe that every maximal element m is a divisor of x , for any $x \in L$ and every associate of x is a divisor of x .
(ii) A divisor y of x other than maximal elements and associates of x is called a proper divisor of x .

Definition 3.7. Let L be a residuated ADL with a maximal element m and $p \in L$. Then
(i) p is called multiplicatively irreducible if for any $a, b \in L$,

$$
p \wedge m=(a . b) \wedge m \Longrightarrow \text { either } p \wedge m=a \wedge m \text { or } p \wedge m=b \wedge m .
$$

(ii) p is said to be simple if it has no proper divisors.

Let us recall the Fundamental Theorem (Theorem 3.4) from [5].
Theorem 3.1 (([5]). Let L be an ADL with a maximal element m satisfying the following conditions :
(1) L is residuated.
(2) L satisfies a.c.c.
(3) Every element of L is principal.

Then L is a Noether $A D L$.
In view of the above Theorem, we give the following.
Definition 3.8. Let L be a residuated ADL with a.c.c. If every element of L is principal then L is called a Principal Residuated Almost Distributive Lattice (or P-ADL).

Thus we get every P-ADL is a Noether ADL.
The following Lemma was proved in our earlier paper [5] and is used frequently later in the results.

Lemma 3.1 ([5]). Let L be a residuated $A D L$ with a maximal element m. If $a, b \in L$ such that a is principal and $a \wedge b=b$ then $[(b: a) . a] \wedge m=b \wedge m$.

Now, we give an example of a residuated ADL and an example of a P-ADL.
Example 3.1. If L is a discrete ADL and $\mathrm{M}=\{0, a, b, 1\}$, where $0 \leqslant b \leqslant a \leqslant 1$, is a P-lattice. Let m be a maximal element of L. Define residuation ' : , and multiplication '. ' on L by $x: y=x$ and $x . y=m$, if $x \wedge y \neq 0$ and $x . y=0$, if $x=0$ or $y=0$. Also define residuation ': ' and multiplication '.' on M by the following tables :

$:$	1	a	b	0
1	1	1	1	1
a	a	1	1	1
b	b	a	1	1
0	0	0	0	1

.	1	a	b	0
1	1	a	b	0
a	a	b	b	0
b	b	b	b	0
0	0	0	0	0

Then $L \times M$ is a P-ADL under pointwise operations ': ' and '. '.
Lemma 3.2. Let L be a residuated ADL with a maximal element m. If for every element x of $L, p: x$ is an associate of p or $p: x$ is maximal then p is prime.

Proof. Let $x, p \in L$. and suppose $p: x$ is an associate of p or $p: x$ is maximal. Let $a, c \in L$ be such that $p \wedge(a . c)=a . c$ and $p \wedge a \neq a$. Now, $p \wedge a \neq a$
$\Longrightarrow p: a$ is not maximal (By condition R1 of definition 2.4)
$\Longrightarrow p: a$ is an associate of p .
$\Longrightarrow(p: a) \wedge m=p \wedge m$
$\Longrightarrow[(p \wedge m): c] \wedge m=\{[(p: a) \wedge m]: c\} \wedge m$
$\Longrightarrow(p: c) \wedge(m: c) \wedge m=[(p: a): c] \wedge(m: c) \wedge m$
$\Longrightarrow(p: c) \wedge m=[(p: a): c] \wedge m$
$\Longrightarrow(p: c) \wedge m=[p:(a . c)] \wedge m$ (By properties (3) and (4) of Lemma 2.4)
$\Longrightarrow(p: c) \wedge m=m$ (Since $p:(a . c)$ is maximal)
$\Longrightarrow p: c$ is maximal
$\Longrightarrow p \wedge c=c$.
Hence p is prime.
Theorem 3.2. In a residuated $A D L$, every simple element is prime.
Proof. Let L be a residuated ADL and p, a simple element of L. Let $x \in L$. Then we have, by Lemma 2.4, $(p: x) \wedge p=p$. Since p is simple, $p: x$ is maximal or $p: x$ is an associate of p . Hence by Lemma $3.2, \mathrm{p}$ is prime.

Lemma 3.3. Let L be a residuated $A D L$ with a maximal element m and $a, b \in L$ such that $a \wedge m=b \wedge m$. Then $(p . a) \wedge m=(p . b) \wedge m$, for any $p \in L$.

Proof. Let $a, b, p \in L$ and suppose $a \wedge m=b \wedge m$. Then $a \vee b=a$ and $b \vee a=b$. Now,
$(p . a) \wedge m=[p .(a \vee b)] \wedge m$
$=[(p . a) \vee(p . b)] \wedge m($ By condition M4 of definition 2.4)
$=[(p . b) \vee(p . a)] \wedge m$
$=[p .(b \vee a)] \wedge m($ By condition M4 of definition 2.4)

$$
=(p . b) \wedge m
$$

Hence $(p . a) \wedge m=(p . b) \wedge m$, for any $p \in L$.
Lemma 3.4. Let L be a $P-A D L$ with a maximal element m. If p is a prime element of L and $p^{k+1} \wedge m \neq p^{k} \wedge m$, for some positive integer k then

$$
\left(p^{k+1}: p^{k}\right) \wedge m=p \wedge m .
$$

Proof. Let $p \in L$ be a prime element of L such that $p^{k+1} \wedge m \neq p^{k} \wedge m$. Suppose $\left(p^{k+1}: p^{k}\right) \wedge m \neq p \wedge m$. Since $p^{k+1} \wedge\left(p^{k} . p\right)=p^{k} . p$, we get $\left(p^{k+1}: p^{k}\right) \wedge p=p$. Hence $p \wedge\left(p^{k+1}: p^{k}\right) \neq p^{k+1}: p^{k}$. We have $\left(p^{k+1}: p^{k}\right)$ is principal and $\left(p^{k+1}: p^{k}\right) \wedge p=p$. Now, by Lemma 3.1, we get

$$
p \wedge m=\left\{\left[p:\left(p^{k+1}: p^{k}\right)\right] \cdot\left(p^{k+1}: p^{k}\right)\right\} \wedge m \longrightarrow(1)
$$

Thus

$$
p \wedge\left\{\left[p:\left(p^{k+1}: p^{k}\right)\right] \cdot\left(p^{k+1}: p^{k}\right)\right\}=\left[p:\left(p^{k+1}: p^{k}\right)\right] \cdot\left(p^{k+1}: p^{k}\right) .
$$

Since p is prime, we get either

$$
p \wedge\left[p:\left(p^{k+1}: p^{k}\right)\right]=p:\left(p^{k+1}: p^{k}\right) \text { or } p \wedge\left(p^{k+1}: p^{k}\right)=p^{k+1}: p^{k} .
$$

But $p \wedge\left(p^{k+1}: p^{k}\right) \neq p^{k+1}: p^{k}$. Thus

$$
p \wedge\left[p:\left(p^{k+1}: p^{k}\right)\right]=p:\left(p^{k+1}: p^{k}\right)
$$

Also we have $\left[p:\left(p^{k+1}: p^{k}\right)\right] \wedge p=p$ (By property (1) of Lemma 2.4). Thus $\left[p:\left(p^{k+1}: p^{k}\right)\right] \wedge m=p \wedge m$. So that, by Lemma 3.4, we get

$$
\left[\left(p^{k+1}: p^{k}\right) \cdot p\right] \wedge m=\left\{\left(p^{k+1}: p^{k}\right) \cdot\left[p:\left(p^{k+1}: p^{k}\right)\right]\right\} \wedge m
$$

Now, by (1), $p \wedge m=\left[\left(p^{k+1}: p^{k}\right) \cdot p\right] \wedge m$. Now,

$$
\begin{aligned}
p^{k} \wedge m & =\left(p \cdot p^{k-1}\right) \wedge m=\left\{\left[\left(p^{k+1}: p^{k}\right) \cdot p\right] \cdot p^{k-1}\right\} \wedge m(\text { By above Lemma } 3.3) \\
& \Longrightarrow p^{k} \wedge m=\left[\left(p^{k+1}: p^{k}\right) \cdot p^{k}\right] \wedge m(\text { By M1, M2 of definition } 2.5) \\
& \Longrightarrow p^{k} \wedge m=p^{k+1} \wedge m\left(\text { By Lemma 3.1, since } p^{k} \wedge p^{k+1}=p^{k+1}\right)
\end{aligned}
$$

This is contradiction to hypothesis that $p^{k} \wedge m \neq p^{k+1} \wedge m$. Hence

$$
\left(p^{k+1}: p^{k}\right) \wedge m=p \wedge m .
$$

Theorem 3.3. Let L be a $P-A D L$ with a maximal element m. If p is a prime element of L and q any proper divisor of p, then $p \wedge m=(p . q) \wedge m$.

Proof. Suppose p is a prime element of L and q is a proper divisor of p in L . Then $q \wedge p=p$ and $q \wedge m \neq p \wedge m$. Since q is principal and $q \wedge p=p$, by Lemma 3.1, we get

$$
p \wedge m=[(p: q) \cdot q] \wedge m \longrightarrow(1)
$$

So that $p \wedge[(p: q) \cdot q]=(p: q) . q$ Since p is prime, we get $p \wedge(p: q)=p: q$ (Since $p \wedge q=q)$ So that $(p \cdot q) \wedge[(p: q) \cdot q]=(p: q) \cdot q$

Also, by Lemma 3.1, we get $p \wedge[(p: q) \cdot q]=(p: q) \cdot q$ Hence $p \wedge[(p: q) \cdot q]=$ $(p . q) \wedge[(p: q) \cdot q]$. Thus $p \wedge[(p: q) \cdot q] \wedge m=(p \cdot q) \wedge[(p: q) \cdot q] \wedge m$. So that $p \wedge m=(p . q) \wedge p \wedge m($ By (1)) Therefore, $p \wedge m=p \wedge(p . q) \wedge m=(p . q) \wedge m$ (By condition (i) of Lemma 2.2).

In the following result, we prove that every multiplicatively irreducible element of a $\mathrm{P}-\mathrm{ADL}$ is a prime element.

THEOREM 3.4. Let L be a $P-A D L$ with a maximal element m. If every element of L is multiplicatively irreducible then it is prime.

Proof. Let $p \in L$ be a multiplicatively irreducible element of L. Let $a \in L$. Then $[p:(a \vee p)] \wedge m=(p: a) \wedge(p: p) \wedge m=(p: a) \wedge m$. By Lemma 3.3, we get

$$
\{[p:(a \vee p)] \cdot(a \vee p)\} \wedge m=[(p: a) \cdot(a \vee p)] \wedge m \longrightarrow(1)
$$

So that $[p:(a \vee p)] \wedge(p: a)=p: a$ Then $\{[p:(a \vee p)] .(a \vee p)\} \wedge[(p: a) .(a \vee p)]=$ $(p: a) .(a \vee p)$ Thus $\{[p:(a \vee p)] .(a \vee p)\} \wedge m \geqslant[(p: a) .(a \vee p)] \wedge m$. Since $a \vee p$ is principal and $(a \vee p) \wedge p=p$, by Lemma 3.1, we get

$$
p \wedge m=\{[p:(a \vee p)] \cdot(a \vee p)\} \wedge m=[(p: a) \cdot(a \vee p)] \wedge m(\text { Ву }(1))
$$

Since p is multiplicatively irreducible, we get $p \wedge m=(p: a) \wedge m$ or $p \wedge m=(a \vee p) \wedge m$. If $p \wedge m=(a \vee p) \wedge m$, then $p \wedge(a \vee p)=a \vee p$ and hence $p:(a \vee p)$ is maximal. Now, $(p: a) \wedge m=[p:(a \vee p)] \wedge m=m$. Hence $p: a$ is maximal. Thus for any $a \in L, p: a$ is an associate of p or $p: a$ is maximal. Hence, by Lemma 3.2, p is prime.

In the following Theorem, we give a sufficient condition for a prime element of a P-ADL L to become a multiplicatively irreducible element of L .

Theorem 3.5. Let L be a $P-A D L$ with a maximal element m and $p \in L$. If p is prime and for every element x of $L, x: p$ is maximal then p is multiplicatively irreducible.

Proof. Suppose $p \in L$ is a prime element of L and for every element x of L , $x: p$ is maximal. Let $a, b \in L$ such that $p \wedge m=(a . b) \wedge m$. Then $p \wedge(a . b)=a . b$. Since p is prime, we get $p \wedge a=a$ or $p \wedge b=b$. Since $x: p$ is maximal, by condition R 1 of definition 2.4, we get $x \wedge p=p$, for any $x \in L$. Hence $p \wedge m=a \wedge m$ or $p \wedge m=b \wedge m$. Thus p is multiplicatively irreducible.

Let L be a residuated ADL with a maximal element m and with a.c.c. and $a \in L$. We define a^{n} by induction as follows :

$$
a^{1}=a \text { and } a^{n+1}=a^{n} . a, \text { for all } n \in Z^{+} .
$$

By convention, we take $a^{0}=m$.
Definition 3.9. Let L be a residuated ADL with a.c.c. and q a primary element of L. A prime element p of L is called the prime corresponding to q if

$$
p \wedge q=q, q \wedge p^{k}=p^{k} \text { and } q \wedge p^{k-1} \neq p^{k-1}, \text { for some } k \in Z^{+}
$$

Theorem 3.6. Let L be a residuated ADL with a maximal element m which satisfies the a.c.c. If q is a primary element of L and a is any element of L such that $q \wedge a \neq a$ then $q: a$ is primary and corresponds to the same prime as q.

Proof. Suppose q is a primary element of L and $a \in L$ such that $q \wedge a \neq a$. Let $b, c \in L$ such that $(q: a) \wedge(b . c)=b . c$ and $(q: a) \wedge b \neq b$. Now, $(q: a) \wedge(b . c)=b . c$

$$
\begin{aligned}
& \Longrightarrow q \wedge[a(b . c)]=a .(b . c) \quad(\text { By condition (A) of definition 2.6) } \\
& \Longrightarrow q \wedge[(a . b) . c]=(a . b) . c(\text { By condition (iii) of Lemma 2.2 }) \\
& \Longrightarrow q \wedge(a . b)=a . b \text { or } q \wedge c^{k}=c^{k}, \text { for some } k \in Z^{+} \text {(Since } q \text { is primary) }
\end{aligned}
$$

If $q \wedge(a . b)=a . b$ then $(q: a) \wedge b=b$. Which is not true. Therefore, $q \wedge c^{k}=c^{k}$, for some $k \in Z^{+}$. So that $(q: a) \wedge\left(c^{k}: a\right)=c^{k}: a$ and hence

$$
(q: a) \wedge c^{k}=(q: a) \wedge\left(c^{k}: a\right) \wedge c^{k}=\left(c^{k}: a\right) \wedge c^{k}=c^{k}
$$

Hence $q: a$ is primary.
Now, we prove that $q: a$ corresponds to the same prime p as q . We have $(q: a) \wedge(q: a)=q: a$. So that $q \wedge[a .(q: a)]=a .(q: a)$. Since q is primary and $q \wedge a \neq a$, we get that $q \wedge(q: a)^{s}=(q: a)^{s}$, forsome $s \in Z^{+}$. Now, $p \wedge(q: a)^{s}=p \wedge\left[q \wedge(q: a)^{s}\right]=q \wedge(q: a)^{s}($ Since $p \wedge q=q)$

$$
\Longrightarrow p \wedge(q: a)^{s}=(q: a)^{s}, \text { forsome } s \in Z^{+} .
$$

Since p is prime, we get that $p \wedge(q: a)=q: a$. Since p is the prime corresponding to q , we get that $p \wedge q=q, q \wedge p^{k}=p^{k}$ and $q \wedge p^{k-1} \neq p^{k-1}$, for some $k \in Z^{+}$. So that
$(q: a) \wedge p^{k}=(q: a) \wedge\left(p^{k}: a\right) \wedge p^{k}=\left(p^{k}: a\right) \wedge p^{k}=p^{k}$.

$$
\Longrightarrow(q: a) \wedge p^{k}=p^{k}, \text { for some } k \in Z^{+} .
$$

Choose least positive integer l such that $(q: a) \wedge p^{l}=p^{l}$, where $l \leqslant k$. Therefore, $(q: a) \wedge p^{l-1} \neq p^{l-1}$, for some $l \in Z^{+}$. Thus $q: a$ corresponds to the same prime p as q.

Lemma 3.5. Let L be a residuated $A D L$ with a maximal element m and L satisfies the a.c.c. If q is a primary element of L and p is the prime corresponding to q. Then, for any $a \in L,(q: a) \wedge m=q \wedge m$ if and only if $p \wedge a \neq a$.

Proof. Suppose q is a primary element of L and p is the prime corresponding to q. Then $p \wedge q=q, q \wedge p^{k}=p^{k}$ and $q \wedge p^{k-1} \neq p^{k-1}$, for some $k \in Z^{+}$. Suppose $a \in L$ and $(q: a) \wedge m=q \wedge m$. If $p \wedge a=a$, then $q: p=(q: a) \wedge(q: p)=(q:$ $a) \wedge m \wedge(q: p)=q \wedge m \wedge(q: p)=q \wedge(q: p)$.

Also we have, $(q: p) \wedge q=q$. Hence $(q: p) \wedge m=q \wedge m$. Now, $q \wedge p^{k}=p^{k} \Longrightarrow q \wedge\left(p . p^{k-1}\right)=p . p^{k-1}$

$$
\begin{aligned}
& \Longrightarrow(q: p) \wedge p^{k-1}=p^{k-1}(\text { By condition }(\mathrm{A}) \text { of definition } 2.6) \\
& \Longrightarrow(q: p) \wedge m \wedge p^{k-1}=p^{k-1} \\
& \Longrightarrow q \wedge m \wedge p^{k-1}=p^{k-1}(\text { Since }(q: p) \wedge m=q \wedge m .) \\
& \Longrightarrow q \wedge p^{k-1}=p^{k-1}
\end{aligned}
$$

This is a contradiction to $q \wedge p^{k-1} \neq p^{k-1}$, for some $k \in Z^{+}$. Therefore, $p \wedge a \neq a$. Now, suppose that $p \wedge a \neq a$. Then $(q: a) \wedge(q: a)=q: a$
$\Longrightarrow q \wedge[a .(q: a)]=a .(q: a)$ (By condition (A) of definition 2.6) $\Longrightarrow q \wedge(q: a)=q: a$ or $q \wedge a^{s}=a^{s}$, for some $s \in Z^{+}$(Since q is primary) If $q \wedge a^{s}=a^{s}$, for some $s \in Z^{+}$, then $a^{s}=q \wedge a^{s}=p \wedge q \wedge a^{s}=p \wedge a^{s}$ and hence $p \wedge a=a$ (Since p is prime). This is contradiction to $p \wedge a \neq a$. Therefore, $q \wedge(q: a)=q: a$ By Lemma 2.4, we have $(q: a) \wedge q=q$ Hence $(q: a) \wedge m=q \wedge m$.

Lemma 3.6. Let L be a residuated $A D L$ and $a, b \in L$ such that $a \wedge b=b$. Then $a^{n} \wedge b^{n}=b^{n}$, for any $n \in Z^{+}$.

Proof. Let $a, b \in L$ be such that $a \wedge b=b$. This result is proved by induction on n . Clearly, the result is true for $n=1$. Assume that $a^{k} \wedge b^{k}=b^{k}$, for some $k \in Z^{+}$. Then

$$
\left(a^{k} . b\right) \wedge b^{k+1}=b^{k+1} \longrightarrow(1)
$$

Now,

$$
\begin{aligned}
a^{k+1} \wedge b^{k+1} & =\left(a^{k} \cdot a\right) \wedge b^{k+1}=\left[a^{k} \cdot(a \vee b)\right] \wedge b^{k+1}(\text { Since } a=a \vee b) \\
& =\left[a^{k+1} \vee\left(a^{k} . b\right)\right] \wedge b^{k+1}=\left(a^{k+1} \wedge b^{k+1}\right) \vee\left[\left(a^{k} . b\right) \wedge b^{k+1}\right] \\
& =\left(a^{k+1} \wedge b^{k+1}\right) \vee b^{k+1}(\text { By }(1))=b^{k+1} .
\end{aligned}
$$

In the following result, we prove that power of a prime element of a $\mathrm{P}-\mathrm{ADL}$ is primary.

Theorem 3.7. Let L be a $P-A D L$ with a maximal element m. If p is a prime element of L, then p^{n} is a primary element of L, for any $n \in Z^{+}$.

Proof. Let p be a prime element of L and $n \in Z^{+}$. We prove that p^{n} is primary using induction on n. Since every prime element is primary, result is true for $n=1$. Assume that p^{k} is primary. If $p^{k} \wedge m=p^{k+1} \wedge m$, then p^{k+1} is primary. Suppose $p^{k} \wedge m \neq p^{k+1} \wedge m$. Suppose $a, b \in L$ such that $p^{k+1} \wedge(a . b)=a . b$, $p^{k+1} \wedge a \neq a$. Now, $p^{k} \wedge(a . b)=p^{k} \wedge p^{k+1} \wedge(a . b)=p^{k+1} \wedge(a . b)=a . b$. Since p^{k} is primary, $p^{k} \wedge a=a$ or $p^{k} \wedge b^{s}=b^{s}$, for some $s \in Z^{+}$. If $p^{k} \wedge b^{s}=b^{s}$, then $p \wedge b^{s}=p \wedge p^{k} \wedge b^{s}=p^{k} \wedge b^{s}=b^{s}$. Since p is prime, we get $p \wedge b=b$. Now, suppose $p^{k} \wedge a=a$. Since p^{k} is principal, there exists $q \in L$ such that $p^{k} . q=a$. If $p \wedge q=q$, then $\left(p^{k} . p\right) \wedge\left(p^{k} . q\right)=p^{k} . q \Longrightarrow p^{k+1} \wedge a=a$ This is a contradiction. Thus $p \wedge q \neq q$. Now,

$$
\begin{aligned}
\left(p^{k+1}: a\right) \wedge m & =\left[p^{k+1}:\left(p^{k} \cdot q\right)\right] \wedge m \\
& =\left[\left(p^{k+1}: p^{k}\right): q\right] \wedge m=\left[\left(p^{k+1}: p^{k}\right): q\right] \wedge(m: q) \wedge m \\
& =\left\{\left[\left(p^{k+1}: p^{k}\right) \wedge m\right]: q\right\} \wedge m=[(p \wedge m): q] \wedge m(\text { By Lemma 3.4 }) \\
& =(p: q) \wedge(m: q) \wedge m=(p: q) \wedge m \\
& =p \wedge m(\text { By Lemma 3.5, since } p \wedge q \neq q)
\end{aligned}
$$

Since $p^{k+1} \wedge(a . b)=a . b$, then by condition (A) of definition 2.6, we get $b=\left(p^{k+1}\right.$: $a) \wedge b=p \wedge b$. Thus in both cases, we have $p \wedge b=b$. So that $p^{k+1} \wedge b^{k+1}=b^{k+1}$ (By Lemma 3.6). Hence p^{k+1} is primary.

Lemma 3.7. Let L be a residuated ADL with a maximal element m and suppose L satisfies the a.c.c. Suppose q is a primary element of L, p is a prime element of L and $k \in Z^{+}$such that $p \wedge q=q, q \wedge p^{k}=p^{k}, q \wedge p^{k-1} \neq p^{k-1}$. If $q \wedge m=p^{r} \wedge m$, for some $r \in Z^{+}$then $q \wedge m=p^{k} \wedge m$.

Proof. Suppose $q \wedge m=p^{r} \wedge m$, for some $r \in Z^{+}$. Then

$$
r \geqslant k \text { implies } p^{k} \wedge p^{r}=p^{r} \longrightarrow(1)
$$

Now,
$q \wedge p^{k}=p^{k} \Longrightarrow q \wedge m \wedge p^{k} \wedge m=p^{k} \wedge m$
$\Longrightarrow p^{r} \wedge m \wedge p^{k} \wedge m=p^{k} \wedge m$
$\Longrightarrow p^{r} \wedge p^{k} \wedge m=p^{k} \wedge m$
$\Longrightarrow p^{k} \wedge p^{r} \wedge m=p^{k} \wedge m$
$\Longrightarrow p^{r} \wedge m=p^{k} \wedge m($ By above (1))
$\Longrightarrow q \wedge m=p^{k} \wedge m$.
Finally, we prove the converse of Theorem 3.7 in the following.
Theorem 3.8. Let L be a $P-A D L$ with a maximal element m. If q is a primary element of L and p is the prime corresponding to q then $q \wedge m=p^{r} \wedge m$, for some $r \in Z^{+}$.

Proof. Suppose q is a primary element of L and p is the prime corresponding to q. Then $p \wedge q=q, q \wedge p^{k}=p^{k}$ and $q \wedge p^{k-1} \neq p^{k-1}$, for some $k \in Z^{+}$. We prove that $q \wedge m=p^{k} \wedge m$. This result is proved by induction on k .

If $k=1$, then we have $p \wedge q=q$ and $q \wedge p=p$. Hence $q \wedge m=p \wedge m$.

Assume that the result is true for all $s \leqslant k-1$. That is, if \bar{q} is a primary element of L and p is the prime corresponding to \bar{q} such that $\bar{q} \wedge p^{s}=p^{s}$ and $\bar{q} \wedge p^{s-1} \neq p^{s-1}$, for some $s \in Z^{+}$with $1 \leqslant s \leqslant k-1$, then $\bar{q} \wedge m=p^{s} \wedge m$. If $q \wedge p \neq p$, then, by Theorem 3.6, $q: p$ is a primary element of L and p is the prime corresponding to $q: p$. So that $p \wedge(q: p)=q: p$. Also, by condition (A) of definition 2.6 , we get that $q \wedge p^{k}=p^{k} \Longrightarrow(q: p) \wedge p^{k-1}=p^{k-1}$ and $q \wedge p^{k-1} \neq p^{k-1} \Longrightarrow(q: p) \wedge p^{k-2} \neq p^{k-2}$. Then by induction hypothesis, we get $(q: p) \wedge m=p^{k-1} \wedge m$. Since $p \wedge q=q$, by Lemma 3.1, we get $q \wedge m=[(q: p) \cdot p] \wedge m=\left(p^{k-1} . p\right) \wedge m($ By Lemma 3.3) Hence $q \wedge m=p^{k} \wedge m$.

References

[1] R. P. Dilworth. Abstract residuation over lattices. Bull. Am. Math. Soc., 44(4)(1938), 262268.
[2] G. C. Rao. Almost Distributive Lattices. Doctoral Thesis, Depttment of Mathematics, Andhra University, Visakhapatnam, 1980.
[3] G. C. Rao and S. S. Raju. Residuated Almost Distributive Lattices - I. International Journal of Mathematical Archive, 8(10)(2017), 143-152.
[4] G. C. Rao and S. S. Raju. Residuated Almost Distributive Lattices - II. International Journal of Mathematical Archive, 8(10)(2017), 190-198.
[5] G. C. Rao and S. S. Raju. Noether Almost Distributive Lattices. Bull. Int. Math. Virtual Inst., 9(1)(2019), 39-46.
[6] U. M. Swamy and G. C. Rao. Almost Distributive Lattices. J. Aust. Math. Soc. (Series A), 31 (1981), 77-91.
[7] M. Ward and R. P. Dilworth. Residuated lattices. Proceedings of the National Academy of Sciences, 24 (1938), 162-164.
[8] M. Ward and R. P. Dilworth. Residuated lattices. Trans. Amer. Math. Soc., 45(3)(1939), 335-354.
[9] M. Ward. Residuated distributive lattices. Duke Math. J., 6(3)(1940), 641-651.

$$
\text { Received by editors } 15.07 .2017 \text {; Revised version } 27.11 .2018 \text {; Available online } 03.12 .2018
$$

G. C. Rao: Department of Mathematics, Andhra University, Visakhpatanam - 530003, Andhra Pradesh, India.

E-mail address: gcraomaths@yahoo.co.in
S. S. Raju: Department of Mathematics, Andhra University, Visakhpatanam - 530003, Andhra Pradesh, India.

E-mail address: ssrajumaths@gmail.com

[^0]: 2010 Mathematics Subject Classification. 06D99, 06D15.
 Key words and phrases. Almost Distributive Lattice(ADL), Residuation, Multiplication, Residuated ADL, Noether ADL, Simple element and P-ADL.

