ON SOLUTION TO THE SET-THEORETICAL YANG-BAXTER EQUATIONS VIA BL-ALGEBRAS

Tahsin Oner and Tugce Katican

Abstract

In this study, we introduce BL-algebras (here, the letters BL represent Basic Logic) by giving some definitions and notions about BL-algebras. We then present some solutions to the set-theoretical Yang-Baxter equation by using properties of BL- algebras.

1. Introduction

BL-algebras which have been discovered by Petr Hájek were introduced to provide algebraic proof of the completeness theorem of Hájek's Basic Logic (for details, see $[\mathbf{1 9}, \mathbf{1 8}]$) as in the fuzzy logic framework. BL-algebras emerge as Lindenbaum algebras from some logical axioms in the same vein that MV-algebras [3]-[22] (or, Wajsberg algebras which are their implicative versions $[\mathbf{7}, \mathbf{1 2}]$) obtain from the axioms of Lukasiewicz Logic. BL-algebras are also a specific type of resituated lattices [34, 20, 23]. Besides, since MV-algebras (or Wajsberg algebras) are BL-algebras such that the converse is generally not true [13] and BL-algebras constitute a subclass of BCK-algebras, BL-algebras are closely related to the quantum structures and quantum mechanics $[36]-[8]$.

On the other side, the Yang-Baxter equation which can be applied to many different parts of science, tehnology and industry was originally used in theoretical physics [32] and statical mechanics [2]-[38] and has been recently used by many researchers from various scientific areas such as quantum groups, quantum mechanics, quantum computing, knot theory, integrable systems, non-commutative geometry,

[^0]C^{*}-algebras, etc.(see, for instance, $[\mathbf{3 0}]$ and $[\mathbf{2 5}]-[\mathbf{2 8}]$). Particularly, to find (setteoretical) solutions to this equation has attracted the attention of scientists studying in pure mathematics and other mathematical areas such as quantum binomial algebras $[\mathbf{1 4}, \mathbf{1 5}]$, semigroups of I-type and Bieberbach groups $[\mathbf{1 6}, \mathbf{3 3}]$, bijective 1-cocyles [10], semisimple minimal triangular Hopf algebras [9], dynamical systems [35], and geometric crystals [11]. Thus, we wish to examine the Yang-Baxter equation in relation with BL-algebras rather than quantum structures.

The set-theoretical solutions to the Yang-Baxter equation using Wajsbergalgebras were given by [31].

In this work, giving required definitions and notions about BL-algebras we investigate some solutions to the set-teoretical Yang-Baxter equation in BL-algebras.

2. Preliminaries

In this part, we start to give certain definitions and notions about BL-algebras.
Definition 2.1. ([19]) A $B L$-algebra is a structure $(A, \wedge, \vee, \odot, \longrightarrow, 0,1)$ where four binary operations $\wedge, \vee, \odot, \longrightarrow$ and two constants 0,1 such that:
$(B L 1)(A, \wedge, \vee, 0,1)$ is a bounded lattice,
($B L 2$) $(A, \odot, 1)$ is a commutative monoid,
$(B L 3) \odot$ and \longrightarrow form an adjoint pair i.e, $c \leqslant a \longrightarrow b$ if and only if $a \odot c \leqslant b$,
$(B L 4) a \wedge b=a \odot(a \longrightarrow b)$,
$(B L 5)(a \longrightarrow b) \vee(b \longrightarrow a)=1$, for all $a, b, c \in A$.
REmARK 2.1. ([27])
(a) If $a \odot a=a$ for all $a \in A$, then a BL-algebra A is called a Gödel algebra.
(b) If $\neg(\neg a)=a$ or equivalently $(a \longrightarrow b) \longrightarrow b=(b \longrightarrow a) \longrightarrow a$ for all $a, b \in A$, where $\neg a=a \longrightarrow 0$, then a BL-algebra A is called an MV-algebra.
Lemma 2.1 ([21]). In each BL-algebra A, the following relations hold for all $a, b, c \in A$:
$(1) a \longrightarrow(b \longrightarrow c)=b \longrightarrow(a \longrightarrow c)$,
(2) $1 \longrightarrow a=a, a \longrightarrow a=1, a \leqslant b \longrightarrow a, a \longrightarrow 1=1$,
(3) $(a \longrightarrow b) \longrightarrow(a \longrightarrow c)=(a \wedge b) \longrightarrow c$,
(4) $a \leqslant \neg \neg a, \neg 1=0, \neg 0=1$, $\neg \neg \neg a=\neg a, \neg \neg a \leqslant \neg a \longrightarrow a$
(5) $\neg \neg(a \odot b)=\neg \neg a \odot \neg \neg b$
(6) $a \longrightarrow \neg b=b \longrightarrow \neg a=\neg \neg a \longrightarrow \neg b=\neg(a \odot b)$.

3. The solutions to the set-theoretical Yang-Baxter equation in BL-algebras

In this part, we examine solution to the set-theoretical Yang-Baxter equation in BL-algebras.

Let k be a field and tensor products will be defined over this field. For a k-space V, we denote by $\tau: V \otimes V \longrightarrow V \otimes V$ the twist map defined by $\tau(v \otimes w)=w \otimes v$ and by $I: V \longrightarrow V$ the identity map over the space V; for a k-linear map R : $V \otimes V \longrightarrow V \otimes V$, let $R^{12}=R \otimes I, R^{23}=I \otimes R$, and $R^{13}=(I \otimes \tau)(R \otimes I)(\tau \otimes I)$.

Definition 3.1. ([30]) A Yang-Baxter operator is k-linear map $R: V \otimes V \longrightarrow$ $V \otimes V$, which is invertible, and it satisfies the braid condition called the Yang-Baxter equation:

$$
\begin{equation*}
R^{12} \circ R^{23} \circ R^{12}=R^{23} \circ R^{12} \circ R^{23} \tag{1}
\end{equation*}
$$

If R satisfies Equation (1), then both $R \circ \tau$ and $\tau \circ R$ satisfy the quantum YangBaxter equation (QYBE):

$$
\begin{equation*}
R^{12} \circ R^{13} \circ R^{23}=R^{23} \circ R^{13} \circ R^{12} \tag{2}
\end{equation*}
$$

Lemma 3.1 ([30]). Equations (1) and (2) are equivalent to each other.
A relation between the set-theoretical Yang-Baxter equation and BL-algebras is constituted by the following definition.

Definition 3.2. ([30]) Let X be a set and $S: X \times X \longrightarrow X \times X, S(u, v)=$ $\left(u^{\prime}, v^{\prime}\right)$ be a map. The map S is a solution of the set-theoretical Yang-Baxter equation if it satisfies the following equation:

$$
\begin{equation*}
S^{12} \circ S^{23} \circ S^{12}=S^{23} \circ S^{12} \circ S^{23} \tag{3}
\end{equation*}
$$

which is also equivalent

$$
\begin{equation*}
S^{12} \circ S^{13} \circ S^{23}=S^{23} \circ S^{13} \circ S^{12} \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
& S^{12}: X \times X \times X \longrightarrow X \times X \times X, S^{12}(u, v, w)=\left(u^{\prime}, v^{\prime}, w\right), \\
& S^{23}: X \times X \times X \longrightarrow X \times X \times X, S^{23}(u, v, w)=\left(u, v^{\prime}, w^{\prime}\right), \\
& S^{13}: X \times X \times X \longrightarrow X \times X \times X, S^{13}(u, v, w)=\left(u^{\prime}, v, w^{\prime}\right) .
\end{aligned}
$$

Now, we build solutions of the set-theoretical Yang-Baxter equation by using the properties of BL-algebras.

Theorem 3.1. Let $(A, \wedge, \vee, \odot, \longrightarrow, 0,1)$ be a BL-algebra. If the $B L$-algebra is a Gödel algebra, then $S(x, y)=(x \odot y, x)$ is a solution of the set-theoretical Yang-Baxter equation.

Proof. S^{12} and S^{23} are defined in the following forms:

$$
S^{12}(x, y, z)=(x \odot y, x, z) \text { and } S^{23}(x, y, z)=(x, y \odot z, y)
$$

We show that the equality $S^{12} \circ S^{23} \circ S^{12}=S^{23} \circ S^{12} \circ S^{23}$ holds for all $(x, y, z) \in$ $A \times A \times A$. By using (BL2) and Remark 1 (a), we obtain

$$
\begin{aligned}
\left(S^{12} \circ S^{23} \circ S^{12}\right)(x, y, z) & =\left(S^{12} \circ S^{23}\right)\left(S^{12}(x, y, z)\right) \\
& =\left(S^{12} \circ S^{23}\right)(x \odot y, x, z) \\
& =S^{12}\left(S^{23}(x \odot y, x, z)\right) \\
& =S^{12}(x \odot y, x \odot z, x) \\
& =((x \odot y) \odot(x \odot z), x \odot y, x) \\
& =((x \odot x) \odot(y \odot z), x \odot y, x) \\
& =(x \odot(y \odot z), x \odot y, x)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(S^{23} \circ S^{12} \circ S^{23}\right)(x, y, z) & =\left(S^{23} \circ S^{12}\right)\left(S^{23}(x, y, z)\right) \\
& =\left(S^{23} \circ S^{12}\right)(x, y \odot z, y) \\
& =S^{23}\left(S^{22}(x, y \odot z, y)\right) \\
& =S^{23}(x \odot(y \odot z), x, y) \\
& =(x \odot(y \odot z), x \odot y, x),
\end{aligned}
$$

that is, $\left(S^{12} \circ S^{23} \circ S^{12}\right)(x, y, z)=\left(S^{23} \circ S^{12} \circ S^{23}\right)(x, y, z)$ for every $(x, y, z) \in$ $A \times A \times A$. Thus, $S(x, y)=(x \odot y, x)$ is a solution of the set-theoretical Yang-Baxter equation in the BL-algebra A whenever the BL-algebra A is a Gödel algebra.

Corollary 3.1. Since the operation \odot is commutative from (BL2), and by Theorem 3.1, $S(x, y)=(y \odot x, x), S(x, y)=(y \odot x, y)$ and $S(x, y)=(x \odot y, y)$ are solutions to the set-theoretical Yang-Baxter equation in BL-algebras.

Lemma 3.2. Let $(A, \wedge, \vee, \odot, \longrightarrow, 0,1)$ be a $B L$-algebra. Then $S(x, y)=(x \odot$ $y, 1)$ is a solution of the set-theoretical Yang-Baxter equation.

Proof. S^{12} and S^{23} are defined in the following forms:

$$
S^{12}(x, y, z)=(x \odot y, 1, z) \text { and } S^{23}(x, y, z)=(x, y \odot z, 1)
$$

We show that the equality $S^{12} \circ S^{23} \circ S^{12}=S^{23} \circ S^{12} \circ S^{23}$ holds for all $(x, y, z) \in$ $A \times A \times A$. By using (BL2), we have

$$
\begin{aligned}
\left(S^{12} \circ S^{23} \circ S^{12}\right)(x, y, z) & =\left(S^{12} \circ S^{23}\right)\left(S^{12}(x, y, z)\right) \\
& =\left(S^{12} \circ S^{23}\right)(x \odot y, 1, z) \\
& =S^{12}\left(S^{23}(x \odot y, 1, z)\right) \\
& =S^{12}(x \odot y, 1 \odot z, 1) \\
& =S^{12}(x \odot y, z, 1) \\
& =((x \odot y) \odot z, 1,1) \\
& =(x \odot(y \odot z), 1,1) \\
& =(x \odot(y \odot z), 1 \odot 1,1) \\
& =S^{23}(x \odot(y \odot z), 1,1) \\
& =S^{23}\left(S^{12}(x, y \odot z, 1)\right) \\
& =\left(S^{23} \circ S^{12}\right)(x, y \odot z, 1) \\
& =\left(S^{23} \circ S^{12}\right)\left(S^{23}(x, y, z)\right) \\
& \left.=\left(S^{23} \circ S^{12} \circ S^{23}\right)(x, y, z)\right),
\end{aligned}
$$

that is, $\left(S^{12} \circ S^{23} \circ S^{12}\right)(x, y, z)=\left(S^{23} \circ S^{12} \circ S^{23}\right)(x, y, z)$ for every $(x, y, z) \in$ $A \times A \times A$. Thus, $S(x, y)=(x \odot y, 1)$ is a solution of the set-theoretical YangBaxter equation in the BL-algebra A.

Moreover, $S(x, y)=(y \odot x, 1)$ is a solution to the set-theoretical Yang-Baxter equation in the BL-algebra A from (BL2).

Lemma 3.3. Let $(A, \wedge, \vee, \odot, \longrightarrow, 0,1)$ be a BL-algebra. Then $S(x, y)=(\neg y, \neg x)$ is a solution of the set-theoretical Yang-Baxter equation.

Proof. S^{12} and S^{23} are defined in the following forms:

$$
S^{12}(x, y, z)=(\neg y, \neg x, z) \text { and } S^{23}(x, y, z)=(x, \neg z, \neg y)
$$

We show that the equality $S^{12} \circ S^{23} \circ S^{12}=S^{23} \circ S^{12} \circ S^{23}$ holds for all $(x, y, z) \in$ $A \times A \times A$. We get

$$
\begin{aligned}
\left(S^{12} \circ S^{23} \circ S^{12}\right)(x, y, z) & =\left(S^{12} \circ S^{23}\right)\left(S^{12}(x, y, z)\right) \\
& =\left(S^{12} \circ S^{23}\right)(\neg y, \neg x, z) \\
& =S^{12}\left(S^{23}(\neg y, \neg x, z)\right) \\
& =S^{12}(\neg y, \neg z, \neg \neg x) \\
& =(\neg \neg z, \neg \neg y, \neg \neg x) \\
& =S^{23}(\neg \neg z, \neg x, \neg y) \\
& =S^{23}\left(S^{12}(x, \neg z, \neg y)\right) \\
& =\left(S^{23} \circ S^{12}\right)(x, \neg z, \neg y) \\
& =\left(\left(S^{23} \circ S^{12}\right)\left(S^{23}(x, y, z)\right)\right. \\
& \left.=\left(S^{23} \circ S^{12} \circ S^{23}\right)(x, y, z)\right),
\end{aligned}
$$

that is, $\left(S^{12} \circ S^{23} \circ S^{12}\right)(x, y, z)=\left(S^{23} \circ S^{12} \circ S^{23}\right)(x, y, z)$ for every $(x, y, z) \in$ $A \times A \times A$. Thus, $S(x, y)=(\neg y, \neg x)$ is a solution of the set-theoretical YangBaxter equation in the BL-algebra A.

Lemma 3.4. Let $(A, \wedge, \vee, \odot, \longrightarrow, 0,1)$ be a BL-algebra. Then $S(x, y)=(\neg x \longrightarrow$ $y, 0)$ is a solution of the set-theoretical Yang-Baxter equation.

Proof. S^{12} and S^{23} are defined in the following forms:

$$
S^{12}(x, y, z)=(\neg x \longrightarrow y, 0, z) \quad S^{23}(x, y, z)=(x, y \longrightarrow z, 0)
$$

We show that the equality $S^{12} \circ S^{23} \circ S^{12}=S^{23} \circ S^{12} \circ S^{23}$ holds for all $(x, y, z) \in$ $A \times A \times A$. By using firstly Lemma 2.1 (4) and secondly (2), we have

$$
\begin{aligned}
\left(S^{12} \circ S^{23} \circ S^{12}\right)(x, y, z) & =\left(S^{12} \circ S^{23}\right)\left(S^{12}(x, y, z)\right) \\
& =\left(S^{12} \circ S^{23}\right)(\neg x \longrightarrow y, 0, z) \\
& =S^{12}\left(S^{23}(\neg x \longrightarrow y, 0, z)\right) \\
& =S^{12}(\neg x \longrightarrow y, \neg 0 \longrightarrow z, 0) \\
& =S^{12}(\neg x \longrightarrow y, \longrightarrow z, 0) \\
& =S^{12}(\neg x \longrightarrow y, z, 0) \\
& =(\neg(\neg x \longrightarrow y) \longrightarrow z, 0,0),
\end{aligned}
$$

and by applying Lemma 2.1 (1), (2), (4) and (6) we get

$$
\begin{aligned}
\left(S^{23} \circ S^{12} \circ S^{23}\right)(x, y, z) & =\left(S^{23} \circ S^{12}\right)\left(S^{23}(x, y, z)\right) \\
& =\left(S^{23} \circ S^{12}\right)(x, \neg y \longrightarrow z, 0) \\
& =S^{23}\left(S^{12}(x, \neg y \longrightarrow z, 0)\right) \\
& =S^{23}(\neg x \longrightarrow(\neg y \longrightarrow z), 0,0) \\
& =(\neg x \longrightarrow(\neg y \longrightarrow z), \neg 0 \longrightarrow 0,0) \\
& =(\neg x \longrightarrow(\neg y \longrightarrow z), 1 \longrightarrow 0) \\
& =(\neg x \longrightarrow(\neg y \longrightarrow z), 0,0) \\
& =(\neg y \longrightarrow(\neg x \longrightarrow z), 0,0) \\
& =(\neg y \longrightarrow(\neg z \longrightarrow x), 0,0) \\
& =(\neg z \longrightarrow(\neg y \longrightarrow x), 0,0) \\
& =(\neg(\neg x \longrightarrow y) \longrightarrow z, 0,0) .
\end{aligned}
$$

Then $\left(S^{12} \circ S^{23} \circ S^{12}\right)(x, y, z)=\left(S^{23} \circ S^{12} \circ S^{23}\right)(x, y, z)$ for every $(x, y, z) \in A \times A \times A$. Thus, $S(x, y)=(\neg x \longrightarrow y, 0)$ is a solution of the set-theoretical Yang-Baxter equation in the BL-algebra A.

LEMmA 3.5. Let $(A, \wedge, \vee, \odot, \longrightarrow, 0,1)$ be a BL-algebra. Then $S(x, y)=(\neg \neg x, x)$ is a solution of the set-theoretical Yang-Baxter equation.

Proof. S^{12} and S^{23} are defined in the following forms:

$$
S^{12}(x, y, z)=(\neg \neg x, x, z) \text { and } S^{23}(x, y, z)=(x, \neg \neg y, y) .
$$

We show that the equality $S^{12} \circ S^{23} \circ S^{12}=S^{23} \circ S^{12} \circ S^{23}$ holds for all $(x, y, z) \in$ $A \times A \times A$. By using Lemma 2.1 (4), we have

$$
\begin{aligned}
\left(S^{12} \circ S^{23} \circ S^{12}\right)(x, y, z) & =\left(S^{12} \circ S^{23}\right)\left(S^{12}(x, y, z)\right) \\
& =\left(S^{12} \circ S^{23}\right)(\neg \neg x, x, z) \\
& =S^{12}\left(S^{23}(\neg \neg x, x, z)\right) \\
& =S^{12}(\neg \neg x, \neg \neg x, x) \\
& =(\neg \neg \neg \neg x, \neg \neg x, x) \\
& =(\neg \neg x, \neg \neg x, x) \\
& =S^{23}(\neg \neg x, x, y) \\
& =S^{23}\left(S^{12}(x, \neg \neg y, y)\right) \\
& =\left(S^{23} \circ S^{12}\right)(x, \neg \neg y, y) \\
& =\left(S^{23} \circ S^{12}\right)\left(S^{23}(x, y, z)\right) \\
& =\left(S^{23} \circ S^{12} \circ S^{23}\right)(x, y, z),
\end{aligned}
$$

that is, $\left(S^{12} \circ S^{23} \circ S^{12}\right)(x, y, z)=\left(S^{23} \circ S^{12} \circ S^{23}\right)(x, y, z)$ for every $(x, y, z) \in$ $A \times A \times A$. Thus, $S(x, y)=(\neg \neg x, x)$ is a solution of the set-theoretical YangBaxter equation in the BL-algebra A.

Lemma 3.6. Let $(A, \wedge, \vee, \odot, \longrightarrow, 0,1)$ be a BL-algebra. Then $S(x, y)=(\neg \neg x, y)$ is a solution of the set-theoretical Yang-Baxter equation.

Proof. S^{12} and S^{23} are defined in the following forms:

$$
S^{12}(x, y, z)=(\neg \neg x, y, z) \text { and } S^{23}(x, y, z)=(x, \neg \neg y, z) .
$$

We show that the equality $S^{12} \circ S^{23} \circ S^{12}=S^{23} \circ S^{12} \circ S^{23}$ holds for all $(x, y, z) \in$ $A \times A \times A$. By using Lemma 2.1 (4), we get

$$
\begin{aligned}
\left(S^{12} \circ S^{23} \circ S^{12}\right)(x, y, z) & =\left(S^{12} \circ S^{23}\right)\left(S^{12}(x, y, z)\right) \\
& =\left(S^{12} \circ S^{23}\right)(\neg \neg x, y, z) \\
& =S^{12}\left(S^{23}(\neg \neg x, y, z)\right) \\
& =S^{12}(\neg \neg x, \neg \neg y, z) \\
& =(\neg \neg \neg \neg x, \neg \neg y, z) \\
& =(\neg \neg x, \neg \neg \neg \neg y, z) \\
& =S^{23}(\neg \neg x, \neg \neg y, z) \\
& =S^{23}\left(S^{12}(x, \neg \neg y, Z)\right) \\
& =\left(S^{23} \circ S^{12}\right)(x, \neg \neg y, Z) \\
& =\left(S^{23} \circ S^{12}\right)\left(S^{23}(x, y, z)\right) \\
& =\left(S^{23} \circ S^{12} \circ S^{23}\right)(x, y, z),
\end{aligned}
$$

that is, $\left(S^{12} \circ S^{23} \circ S^{12}\right)(x, y, z)=\left(S^{23} \circ S^{12} \circ S^{23}\right)(x, y, z)$ for every $(x, y, z) \in$ $A \times A \times A$. Thus, $S(x, y)=(\neg \neg x, y)$ is a solution of the set-theoretical YangBaxter equation in the BL-algebra A.

Lemma 3.7. Let $(A, \wedge, \vee, \odot, \longrightarrow, 0,1)$ be a $B L$-algebra. If the condition

$$
\begin{equation*}
x \longrightarrow(y \longrightarrow z)=(x \wedge y) \longrightarrow z \tag{5}
\end{equation*}
$$

holds for all $x, y, z \in A$, then $S(x, y)=(x \longrightarrow y, x)$ is a solution of the settheoretical Yang-Baxter equation.

Proof. S^{12} and S^{23} are defined in the following forms:

$$
S^{12}(x, y, z)=(x \longrightarrow y, x, z) \quad \text { and } \quad S^{23}(x, y, z)=(x, y \longrightarrow z, y)
$$

We show that the equality

$$
S^{12} \circ S^{23} \circ S^{12}=S^{23} \circ S^{12} \circ S^{23}
$$

holds for all $(x, y, z) \in A \times A \times A$. By using firstly Lemma 2.1 (3), and secondly the above condition (5), we obtain

$$
\begin{aligned}
\left(S^{12} \circ S^{23} \circ S^{12}\right)(x, y, z) & =\left(S^{12} \circ S^{23}\right)\left(S^{12}(x, y, z)\right) \\
& =\left(S^{12} \circ S^{23}\right)(x \longrightarrow y, x, z) \\
& =S^{12}\left(S^{23}(x \longrightarrow y, x, z)\right) \\
& =S^{12}(x \longrightarrow y, x \longrightarrow z, x) \\
& =S^{12}((x \longrightarrow y) \longrightarrow(x \longrightarrow z), x \longrightarrow y, x) \\
& =((x \wedge y) \longrightarrow z, x \longrightarrow y, x) \\
& =(x \longrightarrow(y \longrightarrow z), x \longrightarrow y, x) \\
& =S^{23}(x \longrightarrow(y \longrightarrow z), x, y) \\
& =S^{23}\left(S^{12}(x, y \longrightarrow z, y)\right) \\
& =\left(S^{23} \circ S^{12}\right)(x, y \longrightarrow z, y) \\
& =\left(S^{23} \circ S^{12}\right)\left(S^{23}(x, y, z)\right) \\
& =\left(S^{23} \circ S^{12} \circ S^{23}\right)(x, y, z),
\end{aligned}
$$

that is, $\left(S^{12} \circ S^{23} \circ S^{12}\right)(x, y, z)=\left(S^{23} \circ S^{12} \circ S^{23}\right)(x, y, z)$ for every $(x, y, z) \in$ $A \times A \times A$. Thus, $S(x, y)=(\neg \neg x, y)$ is a solution of the set-theoretical YangBaxter equation in the BL-algebra A under the above condition (5).

Lemma 3.8. Let $(A, \wedge, \vee, \odot, \longrightarrow, 0,1)$ be a $B L$-algebra. If the $B L$-algebra is a Gödel algebra, then $S(x, y)=(\neg \neg(x \odot y), x)$ is a solution of the set-theoretical Yang-Baxter equation.

Proof. S^{12} and S^{23} are defined in the following forms:

$$
S^{12}(x, y, z)=(\neg \neg(x \odot y), x, z) \quad \text { and } \quad S^{23}(x, y, z)=(x, \neg \neg(y \odot z), y)
$$

We show that the equality

$$
S^{12} \circ S^{23} \circ S^{12}=S^{23} \circ S^{12} \circ S^{23}
$$

holds for all $(x, y, z) \in A \times A \times A$. By using Lemma 2.1 (4)-(5), (BL2), and Remark 1 (a), we have

$$
\begin{aligned}
\left(S^{12} \circ S^{23} \circ S^{12}\right)(x, y, z) & =\left(S^{12} \circ S^{23}\right)\left(S^{12}(x, y, z)\right) \\
& =\left(S^{12} \circ S^{23}\right)(\neg \neg(x \odot y), x, z) \\
& =S^{12}\left(S^{23}(\neg \neg(x \odot y), x, z)\right) \\
& =S^{12}(\neg \neg(x \odot y), \neg \neg(x \odot z), x) \\
& =(\neg \neg(\neg \neg(x \odot y) \odot \neg \neg(x \odot z)), \neg \neg(x \odot y), x) \\
& =(\neg \neg \neg \neg(x \odot y) \odot \neg \neg \neg \neg(x \odot z), \neg \neg(x \odot y), x) \\
& =(\neg \neg(x \odot y) \odot \neg \neg(x \odot z), \neg \neg(x \odot y), x) \\
& =((\neg \neg x \odot \neg \neg y) \odot(\neg \neg x \odot \neg \neg z), \neg \neg(x \odot y), x) \\
& =((\neg \neg x \odot \neg \neg x) \odot(\neg \neg y \odot \neg \neg z), \neg \neg(x \odot y), x) \\
& =(\neg \neg x \odot(\neg \neg y \odot \neg \neg z), \neg \neg(x \odot y), x),
\end{aligned}
$$

and by applying only Lemma 2.1 (4)-(5) we obtain

$$
\begin{aligned}
\left(S^{23} \circ S^{12} \circ S^{23}\right)(x, y, z) & =\left(S^{23} \circ S^{12}\right)\left(S^{23}(x, y, z)\right) \\
& =\left(S^{23} \circ S^{12}\right)(x, \neg \neg(y \odot z), y) \\
& =S^{23}\left(S^{12}(x, \neg \neg(y \odot z), y)\right) \\
& =S^{23}(\neg \neg(x \odot \neg \neg(y \odot z)), x, y) \\
& =(\neg \neg(x \odot \neg \neg(y \odot z)), \neg \neg(x \odot y), x) \\
& =(\neg \neg x \odot \neg \neg \neg \neg(y \odot z), \neg \neg(x \odot y), x) \\
& =(\neg \neg x \odot \neg \neg(y \odot z), \neg \neg(x \odot y), x) \\
& =(\neg \neg x \odot(\neg \neg y \odot \neg z), \neg \neg(x \odot y), x) .
\end{aligned}
$$

Then

$$
\left(S^{12} \circ S^{23} \circ S^{12}\right)(x, y, z)=\left(S^{23} \circ S^{12} \circ S^{23}\right)(x, y, z)
$$

for every $(x, y, z) \in A \times A \times A$. Thus, $S(x, y)=(\neg \neg(x \odot y), x)$ is a solution of the set-theoretical Yang-Baxter equation in the BL-algebra A whenever the BL-algebra A is a Gödel algebra.

Proposition 3.1 ([34]). BL-algebras are distributive lattices.
Theorem 3.2. Let $(A, \wedge, \vee, \odot, \longrightarrow, 0,1)$ be a BL-algebra. Then $S(x, y)=(x \wedge$ $y, x \vee y)$ is a solution of the set-theoretical Yang-Baxter equation.

Proof. S^{12} and S^{23} are defined in the following forms:

$$
S^{12}(x, y, z)=(x \wedge y, x \vee y, z) \text { and } S^{23}(x, y, z)=(x, y \wedge z, y \vee z)
$$

We show that the equality

$$
S^{12} \circ S^{23} \circ S^{12}=S^{23} \circ S^{12} \circ S^{23}
$$

holds for all $(x, y, z) \in A \times A \times A$. By applying (BL1) and Proposition 3.1, we obtain

$$
\begin{aligned}
\left(S^{12} \circ S^{23} \circ S^{12}\right)(x, y, z)= & \left(S^{12} \circ S^{23}\right)\left(S^{12}(x, y, z)\right) \\
= & \left(S^{12} \circ S^{23}\right)(x \wedge y, x \vee y, z) \\
= & S^{12}\left(S^{23}(x \wedge y, x \vee y, z)\right) \\
= & S^{12}(x \wedge y,(x \vee y) \wedge z,(x \vee y) \vee z) \\
= & ((x \wedge y) \wedge((x \vee y) \wedge z),(x \wedge y) \vee((x \vee y) \wedge z), \\
& (x \vee y) \vee z) \\
= & (((x \wedge y) \wedge(x \vee y)) \wedge z,(x \wedge y) \vee((x \vee y) \wedge z), \\
& x \vee(y \vee z)) \\
= & ((x \wedge y) \wedge z,(x \wedge y) \vee((x \vee y) \wedge z), x \vee(y \vee z)) \\
= & ((x \wedge y) \wedge z,(x \wedge y) \vee((x \wedge z) \vee(y \wedge z)), \\
& x \vee(y \vee z)) \\
= & (x \wedge(y \wedge z),((x \wedge y) \vee(x \wedge z)) \vee(y \wedge z), \\
& x \vee(y \vee z)) \\
= & (x \wedge(y \wedge z),(x \wedge(y \vee z)) \vee(y \wedge z), x \vee(y \vee z))
\end{aligned}
$$

and

$$
\begin{aligned}
\left(S^{23} \circ S^{12} \circ S^{23}\right)(x, y, z)= & \left(S^{23} \circ S^{12}\right)\left(S^{23}(x, y, z)\right) \\
= & \left(S^{23} \circ S^{12}\right)(x, y \wedge z, y \vee z) \\
= & S^{23}\left(S^{12}(x, y \wedge z, y \vee z)\right) \\
= & S^{23}(x \wedge(y \wedge z), x \vee(y \wedge z), y \vee z) \\
= & (x \wedge(y \wedge z),(x \vee(y \wedge z)) \wedge(y \vee z), \\
& (x \vee(y \wedge z)) \vee(y \vee z)) \\
= & (x \wedge(y \wedge z),(x \wedge(y \vee z)) \vee((y \wedge z) \wedge(y \vee z)), \\
& (x \vee(y \wedge z)) \vee(y \vee z)) \\
= & (x \wedge(y \wedge z),(x \wedge(y \vee z)) \vee(y \wedge z), \\
& (x \vee(y \wedge z)) \vee(y \vee z)) \\
= & (x \wedge(y \wedge z),(x \wedge(y \vee z)) \vee(y \wedge z), \\
& x \vee((y \wedge z) \vee(y \vee z))) \\
= & (x \wedge(y \wedge z),(x \wedge(y \vee z)) \vee(y \wedge z), x \vee(y \vee z)),
\end{aligned}
$$

that is,

$$
\left(S^{12} \circ S^{23} \circ S^{12}\right)(x, y, z)=\left(S^{23} \circ S^{12} \circ S^{23}\right)(x, y, z)
$$

for every $(x, y, z) \in A \times A \times A$. Thus, $S(x, y)=(x \wedge y, x \vee y)$ is a solution of the set-theoretical Yang-Baxter equation in the BL-algebra A.

Additionally, $S(x, y)=(x \wedge y, x \vee y)$ is mostly not a solution of the set-theoretical Yang-Baxter equation in Wajsberg-algebras (see, for details, [31]) while it is a solution of the set-theoretical Yang-Baxter equation in BL-algebras by Theorem 3.2.

References

[1] R. J. Baxter. Partition function of the Eight-Vertex lattice model. Annals of Physics, 70(1)(1972), 193-228.
[2] R. J. Baxter. Exactly Solved Models in Statical Mechanics. Academy Press, London, UK, 1982.
[3] L. P. Belluce. Semisimple algebras of infinite valued logic and bold fuzzy set theory. Can. J. Math. 38(6)(1986), 1356-1379.
[4] L. P. Belluce. Semi-simple and complete MV-algebras. Algebra Universalis, 29(1)(1992), 1-9.
[5] C. C. Chang. Algebraic analysis of many valued logics. Trans. Am. Math. Soc., 88 (1958), 467-490.
[6] C. C. Chang. A New Proof of the completeness of Lukasiewicz axioms. Trans. Am. Math. Soc., 93 (1959), 74-80.
[7] R. L. O. Cignoli, I. M. L. D'ottaviano and D. Mundici. Algebraic Foundation of Many-Valued Reasoning, Kluwer Acad. Publ./Ister Sci., Dordrecht/Bratislava, 2000.
[8] A. Dvurečenskij and S.Pulmanová. New trends in quantum structures. Kluwer Acad. Publ./Ister Sci., Dordrecht/Bratislava, 2000.
[9] P. Etingof and S. Gelaki. A method of construction of finite-dimensional triangular semisimple Hopf algebras. Math. Res. Let., 5(4)(1998), 551-561.
[10] P. Etingof, T. Schedler and A. Soloviev. Set-theoretical solutions to the quantum Yang-Baxter equation. Duke Math. J., 100(2)(1999), 169-209.
[11] P. Etingof. Geometric crystals and set-theoretical solutions to the quantum Yang-Baxter equation. Comm. Algebra, 31(4)(2003), 1961-1973.
[12] J. M. Font, A. J. Rodriguez and A. Torrens. Wajsberg-Algebras. Stochastica, 8(1)(1984), 531.
[13] D. J. Foulis and M. K. Bennett. Effect algebras and unsharp quantum logics. Foundations of Physics, 24(10)(1994), 1325-1346.
[14] T. Gateva-Ivanova. Noetherian properties of skew-polynomial rings with binomial relations. Trans. Am. Math. Soc., 343(1)(1994), 203-219.
[15] T. Gateva-Ivanova. Skew polynomial rings with binomial relations. J. Algebra, 185(3)(1996), 710-753.
[16] T. Gateva-Ivanova and M. Van den Bergh, Semigroups of I-type. J. Algebra, 206(1)(1998), 97-112.
[17] D. Gluschankof. Prime deductive systems and injective objects in the algebras of Lukasiewicz infinite-valued calculi. Algebra Universalis, 29(3)(1992), 354-377.
[18] S. Gottwald. A Treatise on many-valued logic. Research Studies Press, Baldock, 2001.
[19] P. Hájek. Metamathematics of Fuzzy logic. Kluwer Acad. Publ./Ister Sci., Dordrecht/Bratislava, 1998.
[20] P. Hájek. Basic fuzzy logic and BL-algebras. Soft Computing, 2(3)(1998), 124-128.
[21] M. Haveshki, A. B. Saeid and E. Eslami. Some type of filter in BL-algebras. Soft Computing, 10(8)(2006), 657-664.
[22] C. S. Hoo. MV-Algebras, ideals and semisimplicity. Math. Japonica, 34 (1989), 563-583.
[23] U. Höhle. Commutative, residuated l-monoids. in: U. Höhle and E. P. Klement (eds.), Nonclassical Logics and Their Applications to Fuzzy Subsets A Handbook of the Mathematical Foundations of Fuzzy Set Theory (pp. 53-106), Kluwer Acad. Publ./Ister Sci., Dordrecht/Bratislava, 1995.
[24] M. Jimbio. Introduction to the Yang-Baxter Equation. International Journal of Modern Physics, 4(15)(1989), 3759-3777.
[25] M. Jimbio. Yang-Baxter Equation in Integrable Systems, Advanced Series in Mathematical Physics, World Scientific Publishing Incorporated Company, Singapore, Volume 10, 1990.
[26] J.-H. Lu, M. Yan and Y.-C. Zhu. On the set-theoretical Yang-Baxter equation. Duke Math. J., 104(1)(2000), 1-18.
[27] N. Mohtashamnia and A. B. Saeid. A special type of BL-algebra. Annals of the University of Craiova, Mathematics and Computer Science Series, 39(1)(2012), 8-20.
[28] F. F. Nichita. On the set-theoretical Yang-Baxter equation. Acta Universitatis Apulensis Mathematics Informatics 5(2003), 97-100.
[29] F. F. Nichita (ed.). Hopf algebras, quantum groups and Yang-Baxter equations. Axioms (Special Issue). (2014).
[30] F. F. Nichita. Yang-Baxter equations, computational methods and applications. Axioms, 4(4)(2015), 423-435.
[31] T. Oner, T. Katican. On solutions to the set-theoretical Yang-Baxter equation in WajsbergAlgebras. Axioms 7(1)(2018): 6.
[32] J. H. H. Perk and Y. H. Au. Yang-Baxter Equations. in: J.-P. Francoise, G. L. Naber and T. S. Tsun (eds.). Encyclopedia of Mathematical Physics (pp. 465-473), Elseiver, Oxford, 5 2006.
[33] J. Tate and M. Van den Bergh, Homological properties of Sklyanin algebras. Inventiones Mathematicae 124(1-3)(1996), 619-647.
[34] E. Turunen. BL-algebras of basic fuzzy logic. Mathware and Soft Computing, 6 (1999), 49-61.
[35] A. P. Veselov. Yang-Baxter maps and integral dynamics. Physics Letters A, 314(3)(2003), 214-221.
[36] T. Vetterlein. BL-algebras and quantum structures. Mathematica Slovaca, 54(2)(2004), 127141.
[37] T. Vetterlein. BL-algebras and effect algebras. Soft Computing, 9(8)(2005), 557-564.
[38] C. N. Yang, Some exact results for the Many-Body problem in one dimension with repulsive Delta-function interaction. Physical Review Letters, 19(23)(1967), 1312-1315.

Receibed by editors 03.11.2018; Revised version 27.11.2018; Available online 03.12.2018.
Department of Mathematics, Ege University, Izmir, Turkey
E-mail address: tahsin.oner@ege.edu.tr
Department of Mathematics, Ege University, Izmir, Turkey
E-mail address: tugcektcn@gmail.com

[^0]: 2010 Mathematics Subject Classification. 16T25; 03G10; 05C25; 05E40; 06D35; 03G25.
 Key words and phrases. Yang-Baxter equation, BL-algebra, subclass of BCK-algebra, residuated lattice, MV-algebra, Gödel algebra.

