# ON CHARACTERIZATIONS OF LATTICES USING THE GENERALIZED SYMMETRIC BI-DERIVATIONS 

YILMAZ ÇEVEN


#### Abstract

In this paper, we introduced the notion of generalized symmetric bi-derivation on lattices and investigated some related properties. We characterized the distributive and modular lattices by generalized symmetric biderivations.


## 1. Introduction

The lattice algebra plays a significant role in various branches such as information theory, information retrieval, information access controls and cryptanalysis $[4,6,8$, 16]. Recently, the properties of lattices were widely researched. In the theory of rings, the notion of derivation is an important topic to study. After the derivation on a ring was defined by Posner in [15], many researchers studied the derivation theory on various algebraic structures. In [9, 20], authors introduced the notion of derivation on a lattice and discussed some related properties. In [1], Alshehri is introduced the notion of generalized derivation for a lattice and investigated various properties. After the symmetric biderivation on rings was defined in [10, 11] by Maksa, a lot of researchers studied the symmetric biderivation in rings and nearrings $[12,13,17,18,19]$. In $[7]$, Çeven applied the notion of symmetric biderivation to lattices and investigated some related properties. The notion of generalized biderivation on rings was introduced by Argaç in [2].

In this paper, we apply the notion of generalized symmetric biderivation to lattices and investigate some related properties which is discussed in [7] and [14]. Also we characterize the distributive and modular lattices by generalized symmetric biderivations.

[^0]
## 2. Preliminaries

Definition 1. ([5]) Let $L$ be a nonempty set endowed with operations " $\wedge$ " and " $\vee$ ". If $(L, \wedge, \vee)$ satisfies the following conditions for all $x, y, z \in L$, then $L$ is called a lattice.
(a) $x \wedge x=x, x \vee x=x$,
(b) $x \wedge y=y \wedge x, x \vee y=y \vee x$,
(c) $(x \wedge y) \wedge z=x \wedge(y \wedge z),(x \vee y) \vee z=x \vee(y \vee z)$,
(d) $(x \wedge y) \vee x=x,(x \vee y) \wedge x=x$.

Definition 2. ([5]) Let $(L, \wedge, \vee)$ be a lattice. A binary relation $" \leq "$ is defined by $x \leq y$ if and only if $x \wedge y=x$ and $x \vee y=y$.

Definition 3. [5] A lattice $L$ is distributive if the following identities hold:
i) $x \wedge(y \vee z)=(x \wedge z) \vee(x \wedge z)$,
ii) $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$.

In any lattice, the above conditions are equivalent.
Definition 4. ([3]) A lattice $L$ is modular if the following identity holds:
If $x \leq z$, then $x \vee(y \wedge z)=(x \vee y) \wedge z$.
Lemma $1([20])$. Let $(L, \wedge, \vee)$ be a lattice. Define the binary relation $" \leq "$ as the Definition 2. Then $(L, \leq)$ is a poset and for any $x, y \in L, x \wedge y$ is the g.l.b of $\{x, y\}$, and $x \vee y$ is the l.u.b. of $\{x, y\}$.

Definition 5. Let $L$ be a lattice. A mapping $D(.,):. L \times L \rightarrow L$ is called symmetric if $D(x, y)=D(y, x)$ holds for all $x, y \in L$.

Definition 6. Let $L$ be a lattice. A mapping $d: L \rightarrow L$ defined by $d(x)=D(x, x)$ is called trace of $D(.,$.$) , where D(.,):. L \times L \rightarrow L$ is a symmetric mapping.

Definition 7. ([10, 20]) Let $L$ be a lattice and $d: L \rightarrow L$ be a mapping. The mapping $d$ is called a derivation on $L$, if it satisfies the following condition

$$
d(x \wedge y)=(d(x) \wedge y) \vee(x \wedge d(y))
$$

for all $x, y, z \in L$.
Definition 8. ([1]) Let L be a lattice. A function $D: L \rightarrow L$ is called a generalized derivation on $L$ if there exists a derivation $d: L \rightarrow L$ such that

$$
D(x \wedge y)=(D(x) \wedge y) \vee(x \wedge d(y))
$$

for all $x, y, z \in L$.
Definition 9. ([7]) Let $L$ be a lattice and $D: L \times L \rightarrow L$ be a symmetric mapping. We call $D$ a symmetric biderivation on $L$, if it satisfies the following condition

$$
D(x \wedge y, z)=(D(x, z) \wedge y) \vee(x \wedge D(y, z))
$$

for all $x, y, z \in L$.
Note that if $D$ is a symmetric biderivation on a lattice $L$, then the mappings $d_{1}: L \longrightarrow L, d_{1}(x)=D(x, y)$ and $d_{2}: L \longrightarrow L, d_{2}(y)=D(x, y)$ are derivations on $L$.

Proposition 1 ([7]). Let $L$ be a lattice and let $d$ be the trace of symmetric biderivation $D$. Then the following hold:
i) $D(x, y) \leq x$ and $D(x, y) \leq y$,
ii) $D(x, y) \leq x \wedge y$,
iii) $d(x) \leq x$,
iv) $d^{2}(x)=d(x)$,
for all $x, y \in L$.

## 3. The Generalized Symmetric bi-derivations on lattices

The following definition introduces the notion of generalized symmetric bi-derivation for a lattice.

Definition 10. Let $L$ be a lattice, $D: L \times L \rightarrow L$ be a symmetric biderivation and $\Delta: L \times L \rightarrow L$ be a symmetric mapping. We call $\Delta$ a generalized symmetric biderivation related to $D$, if it satisfies the following condition

$$
\Delta(x \wedge y, z)=(\Delta(x, z) \wedge y) \vee(x \wedge D(y, z))
$$

for all $x, y, z \in L$.The mapping $\delta: L \longrightarrow L$ defined by $\delta(x)=\Delta(x, x)$ is called the trace of generalized symmetric biderivation $\Delta$.

Obviously, a generalized symmetric biderivation $\Delta$ on $L$ satisfies the relation $\Delta(x, y \wedge z)=(\Delta(x, y) \wedge z) \vee(y \wedge D(x, z))$ for all $x, y, z \in L$.

Now we give examples and present some properties for a generalized symmetric biderivation on $L$.

Example 1. Let $L$ be a lattice with a least element 0 . The mapping $D(x, y)=0$ is a symmetric biderivation on $L$. Define a mapping on $L$ by $\Delta(x, y)=x \wedge y$ for all $x, y \in L$. Then we can see that $\Delta$ is a generalized symmetric biderivation related to $D$ on $L$.

Example 2. Let $L$ be a lattice with a least element 0 and $a \in L$. The mapping on $L$ defined by $\Delta(x, y)=(x \wedge y) \wedge a$ is a generalized symmetric biderivation related to $D(x, y)=0$ on $L$.

Proposition 2. Let $\Delta$ is a generalized symmetric biderivation related to a symmetric biderivation $D$. Then the mappings $f_{1}: L \longrightarrow L, f_{1}(x)=\Delta(x, z)$ and $f_{2}: L \longrightarrow L, f_{2}(y)=\Delta(x, y)$ are generalized derivations on $L$.

Proof. We have $\begin{aligned} f_{1}(x \wedge y) & =\Delta(x \wedge y, z) \\ & =(\Delta(x, z) \wedge y) \vee(x \wedge D(y, z))\end{aligned}$

$$
=\left(f_{1}(x) \wedge y\right) \vee\left(x \wedge g_{1}(y)\right)
$$

In this equation, the mapping $g_{1}: L \longrightarrow L, g_{1}(y)=D(y, z)$ is a derivation on $L$ where $D$ is the symmetric biderivation. Hence the mapping $f_{1}$ is a generalized derivation on $L$.

Theorem 1. Let $L$ be a lattice, $\Delta$ be a generalized symmetric biderivation related to a symmetric biderivation $D, \delta$ be the trace of $\Delta$ and $d$ be the trace of $D$. Then
(i) $D(x, y) \leq \Delta(x, y)$ for all $x, y \in L$.

If $L$ is distributive lattice, then
(ii) $\Delta(x, y) \leq x$ and $\Delta(x, y) \leq y$,
(iii) $\Delta(x, y) \leq x \wedge y$,
(iv) $d(x) \leq \delta(x) \leq x$
(v) $d(x)=x \Longrightarrow \delta(x)=x$
for all $x, y \in L$.
Proof. (i) Since

$$
\begin{aligned}
\Delta(x, y) & =\Delta(x \wedge x, y) \\
& =(\Delta(x, y) \wedge x) \vee(x \wedge D(x, y)) \\
& =(\Delta(x, y) \wedge x) \vee D(x, y), \quad(\text { by Proposition } 1 \text { (i) })
\end{aligned}
$$

it is seen that $D(x, y) \leq \Delta(x, y)$.
(ii) If $L$ is distributive lattice, then we have

$$
\begin{aligned}
\Delta(x, y) & =(\Delta(x, y) \wedge x) \vee D(x, y) \\
& =(\Delta(x, y) \vee D(x, y)) \wedge(x \vee D(x, y)) \\
& =\Delta(x, y) \wedge x, \text { by (i) and Proposition } 1 \text { (i). }
\end{aligned}
$$

Hence it is seen that $\Delta(x, y) \leq x$. Since $\Delta$ is a symmetric, we have also $\Delta(x, y) \leq$ $y$.
(iii) is clear by (ii).
(iv) is clear by (i) and (ii).
(v) is clear by (iv).

Corollary 1. Let $L$ be a distributive lattice and $\Delta$ be a generalized symmetric biderivation related to a symmetric biderivation $D$. Let the least element of $L$ be 0 and the greatest element of $L$ be 1 . Then $\Delta(0, x)=\Delta(x, 0)=0$ and $\Delta(1, x)=$ $\Delta(x, 1) \leq x$ for all $x \in L$.

Proof. It is trivial from the Theorem 1 (ii).
Theorem 2. Let $L$ be a distributive lattice, $\Delta$ be a generalized symmetric biderivation related to a symmetric biderivation $D, \delta$ be the trace of $\Delta$ and $d$ be the trace of $D$. Then
(i) $\delta^{2}(x)=\delta(x)$,
(ii) $\delta(x \wedge y)=(\delta(x) \wedge y) \vee(x \wedge d(y)) \vee D(x, y)$
(iii) $D(x, y) \leq \delta(x \wedge y), \delta(x) \wedge y \leq \delta(x \wedge y), x \wedge d(y) \leq \delta(x \wedge y)$
for all $x, y \in L$.
Proof. (i) Using Proposition 1(i) and Theorem 1 (iv), we have

$$
\begin{aligned}
\delta^{2}(x) & =\delta(\delta(x)) \\
& =\delta(x \wedge \delta(x)) \\
& =\Delta(x \wedge \delta(x), x \wedge \delta(x)) \\
& =(\Delta(x, x \wedge \delta(x)) \wedge \delta(x)) \vee(x \wedge D(\delta(x), x \wedge \delta(x))) \\
& =\{[(\Delta(x, x) \wedge \delta(x)) \vee(x \wedge D(\delta(x), x))] \wedge \delta(x)\} \\
& \vee\{x \wedge[(D(x, \delta(x)) \wedge \delta(x)) \vee(x \wedge D(\delta(x), \delta(x)))]\} \\
& =\{[\delta(x) \vee D(\delta(x), x)] \wedge \delta(x)\} \vee\{x \wedge[\delta(x) \vee \delta(x)]\} \\
& =\delta(x) .
\end{aligned}
$$

(ii) Using Proposition 1(i) and Theorem 1 (iv), we have
$\delta(x \wedge y)=\Delta(x \wedge y, x \wedge y)$

$$
=(\Delta(x, x \wedge y) \wedge y) \vee(x \wedge D(y, x \wedge y))
$$

$$
=\{[(\Delta(x, x) \wedge y) \vee(x \wedge D(x, y))] \wedge y\}
$$

$$
\vee\{x \wedge[(D(x, y) \wedge y) \vee(x \wedge D(y, y))]\}
$$

$$
=\{[(\delta(x) \wedge y) \vee D(x, y)] \wedge y\} \vee\{x \wedge[D(x, y) \vee(x \wedge d(y))]\}
$$

$$
=\{(\delta(x) \wedge y) \vee D(x, y)\} \vee\{D(x, y) \vee(x \wedge d(y))\}
$$

$$
=(\delta(x) \wedge y) \vee(x \wedge d(y)) \vee D(x, y)
$$

(iii) It is clear by (ii).

Theorem 3. Let $L$ be a distributive lattice and $\Delta$ be a generalized symmetric biderivation related to a symmetric biderivation $D$ and $\delta$ be the trace of $\Delta$. Then

$$
d(x) \wedge d(y) \leq \delta(x) \wedge \delta(y) \leq \delta(x \wedge y)
$$

for all $x, y \in L$.
Proof. By Theorem 2 (iii) and Theorem 1 (iv), since $\delta(x) \wedge y \leq \delta(x \wedge y)$ and $\delta(y) \leq y$, we get $\delta(x) \wedge \delta(y) \leq \delta(x) \wedge y \leq \delta(x \wedge y)$. Using Theorem 1 (iv), we have $d(x) \wedge d(y) \leq \delta(x) \wedge \delta(y)$.
Theorem 4. Let $L$ be a distributive lattice and $\Delta$ be a generalized symmetric biderivation related to a symmetric biderivation $D$. Let the least element of $L$ be 0 and the greatest element of $L$ be 1 , then
(i) if $x \leq \delta(1)$, then $\delta(x)=x$,
(ii) if $x \geq \delta(1)$, then $\delta(1) \leq \delta(x)$,
(iii) if $x \leq y$ and $d(y)=y$, then $\delta(x)=x$.

Proof. From Theorem 2 (iii), we have $\delta(1) \wedge x \leq \delta(x)$. Hence
(i) if $x \leq \delta(1)$, then we get $x \leq \delta(x)$. Using Theorem 1 (iv), we get $\delta(x)=x$.
(ii) If $x \geq \delta(1)$, then we have $\delta(1) \leq \delta(x)$.
(iii) Since $\delta(x) \leq x \leq y, d(y)=y, D(x, y) \leq x$ we have, by Theorem 2 (ii),
$\delta(x)=\delta(x \wedge y)$
$=(\delta(x) \wedge y) \vee(x \wedge d(y)) \vee D(x, y)$
$=\delta(x) \vee x \vee D(x, y)$
$=x$.
In every lattice $L$ with the least element 0 , the mapping $D(x, y)=0$ is a symmetric biderivation. The mapping $\Delta(x, y)=x \vee y$ in any lattice $L$ is not a generalized symmetric biderivation related to $D(x, y)=0$. Then we have the following Corollary:
Corollary 2. In a lattice with the least element 0 , if the mapping $\Delta(x, y)=x \vee y$ related to $D(x, y)=0$ is a generalized symmetric biderivation, then the lattice $L$ is modular lattice.

Proof. From the equality $\Delta(y \wedge z, x)=(\Delta(y, x) \wedge z) \vee(y \wedge D(z, x))$, we have $x \vee$ $(y \wedge z)=(x \vee y) \wedge z$ for all $x, y, z \in L$, hence $L$ is a modular lattice.
Definition 11. Let $L$ be a lattice. The mapping $\Delta$ satisfying $\Delta(x \vee y, z)=$ $\Delta(x, z) \vee \Delta(y, z)$ for all $x, y \in L$, is called a joinitive mapping.
Theorem 5. Let $L$ be a lattice and $\Delta$ be a joinitive and symmetric mapping with the trace $\delta$ on L. Then
(i) $\delta(x \vee y)=\delta(x) \vee \delta(y) \vee \Delta(x, y)$,
(ii) $\delta(x) \vee \delta(y) \leq \delta(x \vee y)$
for all $x, y \in L$.
Proof. (i) By the definition of joinitive mapping and symmetry, we have

$$
\begin{aligned}
\delta(x \vee y) & =\Delta(x \vee y, x \vee y) \\
& =\Delta(x, x) \vee \Delta(x, y) \vee \Delta(y, y) \\
& =\delta(x) \vee \delta(y) \vee \Delta(x, y) .
\end{aligned}
$$

(ii) it is clear from (i).

Proposition 3. If the mapping $\Delta(x, y)=x \wedge y$ in a lattice $L$ is also a joinitive mapping, then the lattice $L$ is a distributive lattice.

Proof. Using the equality $\Delta(x \vee y, z)=\Delta(x, z) \vee \Delta(y, z)$, we have $(x \vee y) \wedge z=$ $(x \wedge z) \vee(y \wedge z)$ for all $x, y \in L$. So L is a distributive lattice.

Let $L$ be a distributive lattice, $\Delta$ be a generalized symmetric biderivation related to a symmetric biderivation $D, \delta$ be the trace of $\Delta$ and $d$ be the trace of $D$. Denote Fix $_{d}(L)=\{x \in L: d(x)=x\}$. By Theorem 1 (v), $x \in$ Fix $x_{d}(L)$ implies that $x \in \operatorname{Fix} x_{\delta}(L)$ for all $x \in L$. That is, $\operatorname{Fix}_{d}(L) \subseteq \operatorname{Fix}_{\delta}(L)$. Furthermore, from the Theorem 4 (iii), $x \in \operatorname{Fix}_{d}(L)$ and $y \leq x$ implies that $y \in \operatorname{Fix}_{\delta}(L)$.

Definition 12. Let $L$ be a lattice, $\Delta$ be a generalized symmetric biderivation related to a symmetric biderivation $D, \delta$ be the trace of $\Delta$. If $x \leq y$ implies $\delta(x) \leq$ $\delta(y)$, then $\delta$ is called an isotone mapping.

Proposition 4. Let $L$ be a distributive lattice, $\Delta$ be a generalized symmetric biderivation related to a symmetric biderivation $D, \delta$ be the trace of $\Delta$. If $\delta$ is isotone and $x, y \in \operatorname{Fix}_{\delta}(L)$, then $\delta(x \vee y)=x \vee y$ for all $x, y \in L$.

Proof. Since $x \leq x \vee y$ and $y \leq x \vee y$ and $\delta$ is isotone, we have $\delta(x) \leq \delta(x \vee y)$ and $\delta(y) \leq \delta(x \vee y)$. So it is seen that $\delta(x) \vee \delta(y) \leq \delta(x \vee y)$ and since $x, y \in F i x_{\delta}(L)$, $x \vee y \leq \delta(x \vee y)$. By Theorem 1 (iv), since $\delta(x \vee y) \leq x \vee y$, we obtain $\delta(x \vee y)=$ $x \vee y$.

Proposition 5. Let $L$ be a distributive lattice, $\Delta$ be a generalized symmetric biderivation related to a symmetric biderivation $D, \delta$ be the trace of $\Delta$ and $d$ be the trace of $D$. Then $1 \in F i x_{\delta}(L)$ if and only if $\delta$ is an identity mapping.

Proof. If $1 \in \operatorname{Fix}(L)$, since $\delta(1)=1$, by Theorem 2 , we have
$\delta(x)=\delta(1 \wedge x)=(\delta(1) \wedge x) \vee(1 \wedge d(x)) \vee D(1, x)=x \vee d(x) \vee D(1, x)=x$.
Converse is trivial.
Theorem 6. Let $L$ be a distributive lattice, $\Delta_{1}$ and $\Delta_{2}$ be generalized symmetric biderivations related to a same symmetric biderivation $D$. The mapping $\Delta_{1} \wedge \Delta_{2}$ defined by $\left(\Delta_{1} \wedge \Delta_{2}\right)(x, y)=\Delta_{1}(x, y) \wedge \Delta_{2}(x, y)$, is a generalized symmetric biderivation related to the symmetric biderivation $D$.

Proof. Since

$$
\begin{aligned}
\left(\Delta_{1} \wedge \Delta_{2}\right)(x \wedge y, z) & =\Delta_{1}(x \wedge y, z) \wedge \Delta_{2}(x \wedge y, z) \\
& =\left[\left(\Delta_{1}(x, z) \wedge y\right) \vee(x \wedge D(y, z))\right] \\
& \wedge\left[\left(\Delta_{2}(x, z) \wedge y\right) \vee(x \wedge D(y, z))\right] \\
& =\left[\left(\Delta_{1}(x, z) \wedge y\right) \wedge\left(\Delta_{2}(x, z) \wedge y\right)\right] \vee(x \wedge D(y, z)) \\
& =\left(\Delta_{1}(x, z) \wedge \Delta_{2}(x, z) \wedge y\right) \vee(x \wedge D(y, z)) \\
& =\left(\left(\Delta_{1} \wedge \Delta_{2}\right)(x, z) \wedge y\right) \vee(x \wedge D(y, z)),
\end{aligned}
$$

so the Theorem is true.
Theorem 7. Let $L$ be a distributive lattice, $\Delta_{1}$ and $\Delta_{2}$ be generalized symmetric biderivations related to a same symmetric biderivation $D$. The mapping $\Delta_{1} \vee \Delta_{2}$ defined by $\left(\Delta_{1} \vee \Delta_{2}\right)(x, y)=\Delta_{1}(x, y) \vee \Delta_{2}(x, y)$, is a generalized symmetric biderivation related to the symmetric biderivation $D$.

Proof. Since

$$
\begin{aligned}
\left(\Delta_{1} \vee \Delta_{2}\right)(x \wedge y, z) & =\Delta_{1}(x \wedge y, z) \vee \Delta_{2}(x \wedge y, z) \\
& =\left(\Delta_{1}(x, z) \wedge y\right) \vee(x \wedge D(y, z)) \\
& \vee\left(\Delta_{2}(x, z) \wedge y\right) \vee(x \wedge D(y, z)) \\
& =\left(\Delta_{1}(x, z) \wedge y\right) \vee\left(\Delta_{2}(x, z) \wedge y\right) \vee(x \wedge D(y, z)) \\
& =\left(\left(\Delta_{1}(x, z) \vee \Delta_{2}(x, z)\right) \wedge y\right) \vee(x \wedge D(y, z)) \\
& =\left(\left(\Delta_{1} \vee \Delta_{2}\right)(x, z) \wedge y\right) \vee(x \wedge D(y, z)),
\end{aligned}
$$

so the Theorem is true.

Proposition 6. Let $L$ be a distributive lattice, $\Delta_{1}$ and $\Delta_{2}$ be generalized symmetric biderivations, $\delta_{1}$ be the trace of $\Delta_{1}$ and $\delta_{2}$ be the trace of $\Delta_{2}$. If $\delta_{1}$ and $\delta_{2}$ are isotone mapping, then $\delta_{1}=\delta_{2}$ if and only if Fix $x_{\delta_{1}}(L)=\operatorname{Fix}_{\delta_{2}}(L)$.

Proof. Let Fix $_{\delta_{1}}(L)=$ Fix $_{\delta_{2}}(L)$. If $x \in \operatorname{Fix}_{\delta_{1}}(L)$, since $\delta_{1}\left(\delta_{1}(x)\right)=\delta_{1}(x)$, we have $\delta_{1}(x) \in \operatorname{Fix}_{\delta_{1}}(L)=\operatorname{Fix}_{\delta_{2}}(L)$. Hence $\delta_{2}\left(\delta_{1}(x)\right)=\delta_{1}(x)$. Similarly, we see that $\delta_{1}\left(\delta_{2}(x)\right)=\delta_{2}(x)$. Since $\delta_{1}$ and $\delta_{2}$ are isotone mapping and $\delta_{1}(x) \leq x, \delta_{2}(x) \leq$ $x$, we get $\delta_{2}\left(\delta_{1}(x)\right) \leq \delta_{2}(x)=\delta_{1}\left(\delta_{2}(x)\right)$ and $\delta_{1}\left(\delta_{2}(x)\right) \leq \delta_{1}(x)=\bar{\delta}_{2}\left(\delta_{1}(x)\right)$. So $\delta_{1}\left(\delta_{2}(x)\right)=\delta_{2}\left(\delta_{1}(x)\right)$. Therefore we obtain $\delta_{1}(x)=\delta_{2}\left(\delta_{1}(x)\right)=\delta_{1}\left(\delta_{2}(x)\right)=\delta_{2}(x)$, that is, $\delta_{1}=\delta_{2}$. The converse is trivial.

Proposition 7. Let $L$ be a distributive lattice and $\Delta$ be a generalized symmetric biderivation related to a symmetric biderivation $D, \delta$ be the trace of $\Delta$ and the greatest element of $L$ be 1 . Then the following conditions are equivalent:
(i) $\delta$ is an isotone mapping
(ii) $\delta(x) \vee \delta(y) \leq \delta(x \vee y)$
(iii) $\delta(x \wedge y)=\delta(x) \wedge \delta(y)$
(iv) $\delta(x)=x \wedge \delta(1)$ for all $x, y \in L$.

Proof. (i) $\Longrightarrow$ (ii): Since $x \leq x \vee y$ and $y \leq x \vee y$ and $\delta$ is an isotone mapping, we have $\delta(x) \leq \delta(x \vee y)$ and $\delta(y) \leq \delta(x \vee y)$, so $\delta(x) \vee \delta(y) \leq \delta(x \vee y)$.
(ii) $\Longrightarrow(\mathrm{i})$ : Let $\delta(x) \vee \delta(y) \leq \delta(x \vee y)$ and $x \leq y$. Since $x \vee y=y$, we have $\delta(x) \vee$ $\delta(y) \leq \delta(y)$. Also it is known that $\delta(y) \leq \delta(x) \vee \delta(y)$. Hence we obtain $\delta(x) \vee \delta(y)=$ $\delta(y)$, so $\delta(x) \leq \delta(y)$.
(i) $\Longrightarrow$ (iii): Since $x \wedge y \leq x$ and $x \wedge y \leq y$ and $\delta$ is an isotone mapping, we have $\delta(x \wedge y) \leq \delta(x)$ and $\delta(x \wedge y) \leq \delta(y)$ and so $\delta(x \wedge y) \leq \delta(x) \wedge \delta(y)$. By Theorem 3 (ii), we have $\delta(x) \wedge \delta(y) \leq \delta(x \wedge y)$. Hence $\delta(x) \wedge \delta(y)=\delta(x \wedge y)$.
(iii) $\Longrightarrow(\mathrm{i})$ : Let $\delta(x \wedge y)=\delta(x) \wedge \delta(y)$ and $x \leq y$. Since $x \wedge y=x$, we get
$\delta(x)=\delta(x \wedge y)=\delta(x) \wedge \delta(y) \leq \delta(y)$.
(i) $\Longrightarrow$ (iv): Since $x \leq 1$ and $\delta$ is an isotone mapping, we have $\delta(x) \leq \delta(1)$. By Theorem 1 (iv), since $\delta(x) \leq x$, we get $\delta(x) \leq x \wedge \delta(1)$. By Theorem 2 (ii), we have $\delta(x) \wedge y \leq \delta(x \wedge y)$. Taking $x=1$, we get $\delta(1) \wedge y \leq \delta(y)$ for all $y \in L$. Hence we have $\delta(x)=x \wedge \delta(1)$.
(iv) $\Longrightarrow$ (iv): Let $\delta(x)=x \wedge \delta(1)$ and $x \leq y$. Since $x \wedge y=x$, we have
$\delta(x)=\delta(x \wedge y)=(x \wedge y) \wedge 1=(x \wedge 1) \wedge(y \wedge 1)=\delta(x) \wedge \delta(y)$. Hence $\delta(x) \leq$ $\delta(y)$.

## Conflict of Interests

The author declares that there is no conflict of interest regarding the publication of this paper.

## References

[1] N. O. Alshehri. Generalized Derivations of Lattices. Int. J. Contemp. Math. Sci., 5(13)(2010), 629-640.
[2] N. Argaç. On prime and semiprime rings with derivations. Algebra Colloq. 13(3)(2006), 371-380.
[3] R.Balbes and P. Dwinger. Distributive Lattices. University of Missouri Press, Columbia, United States, 1974.
[4] A. J. Bell. The co-information lattice, $4^{\text {th }}$ Int. Symposium on Independent Component Analysis and Blind Signal Seperation (ICA2003), Nara, Japan, 2003, 921-926.
[5] G. Birkhoof. Lattice Theory, American Mathematical Society Colloquium, 1940.
[6] C. Carpineto and G. Romano. Information retrieval through hybrid navigation of lattice representations, International Joırnal of Human-Computers Studies 45(1996), 553-578.
[7] Y. Çeven. Symmetric bi-derivations of lattices. Quaestiones Mathematicae, 32(2009), 241245.
[8] G. Durfee. Cryptanalysis of RSA using algebraic and lattice methods, A dissertation submitted to the department of computer science and the commitee on graduate studies of Stanford University (2002), 1-114.
[9] L. Ferrari. On derivations of lattices. PU.M.A., 12(4)(2001), 1-18.
[10] Gy. Maksa. A remark on symmetric biadditive functions having nonnegative diagonalization. Glasnik Math. 15(35)(1980), 279-282.
[11] Gy. Maksa. On the trace of symmetric bi-derivations. C. R. Math. Rep. Acad. Sci. Canada 9(1989), 303-307.
[12] M. A. Öztürk and M. Sapancı. On generalized symmetric bi-derivations in prime rings, East Asian Mathematical Journal, 15(2)(1999), 165-176.
[13] M. A. Öztürk and Y. B. Jun. On trace of symmetric bi-derivations in near-rings. International Journal of Pure and Applied Mathematics, 17(1)(2004), 95-102.
[14] M. A. Oztürk, H. Yazarlıand K. H. Kim. Permuting tri-derivations in lattices. Quaest. Math. 32 (3)(2009), 415-425.
[15] E. Posner. Derivations in prime rings. Proc. Amer. Math. Soc., 8(1957), 1093-1100.
[16] R. S. Sandhu. Role hierarchies and constraints for lattice-based access controls. Proceedings of the $4^{\text {th }}$ European Symposium on research in computer security, Rome, Italy, 1996, 65-79.
[17] M. Sapancı, M. A. Öztürk and Y. B. Jun. Symmetric bi-derivations on prime rings. East Asian Mathematical Journal, 15(1)(1999), 105-109.
[18] J. Vukman. Symmetric bi-derivations on prime and semi-prime rings. Aequationes Mathematicae 38(1989), 245-254.
[19] J. Vukman. Two results concerning symmetric bi-derivations on prime rings. Aequationes Mathematicae 40(1990), 181-189.
[20] X. L. Xin, T. Y. Li and J. H. Lu. On derivations of lattices. Inform. Sci., 178(2)(2008), 307-316.

Receibed by editors 23.05.2018; Revised version 11.11.2018; Available online 19.11.2018.
Suleyman Demirel University, Faculty of Arts and Sciences,, Dept. of Mathematics, 32260-Isparta-TURKEY

E-mail address: yilmazceven@sdu.edu.tr


[^0]:    2000 Mathematics Subject Classification. 06B35, 06B99, 16B70, 16B99.
    Key words and phrases. lattice, derivation, poset, symmetric bi-derivation, trace.

