BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 9(2019), 95-102 DOI: 10.7251/BIMVI1901095Ç

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

ON CHARACTERIZATIONS OF LATTICES USING THE GENERALIZED SYMMETRIC BI-DERIVATIONS

YILMAZ ÇEVEN

ABSTRACT. In this paper, we introduced the notion of generalized symmetric bi-derivation on lattices and investigated some related properties. We characterized the distributive and modular lattices by generalized symmetric bi-derivations.

1. INTRODUCTION

The lattice algebra plays a significant role in various branches such as information theory, information retrieval, information access controls and cryptanalysis [4, 6, 8, 16]. Recently, the properties of lattices were widely researched. In the theory of rings, the notion of derivation is an important topic to study. After the derivation on a ring was defined by Posner in [15], many researchers studied the derivation theory on various algebraic structures. In [9, 20], authors introduced the notion of derivation on a lattice and discussed some related properties. In [1], Alshehri is introduced the notion of generalized derivation for a lattice and investigated various properties. After the symmetric biderivation on rings was defined in [10, 11] by Maksa, a lot of researchers studied the symmetric biderivation in rings and nearrings [12, 13, 17, 18, 19]. In [7], Çeven applied the notion of symmetric biderivation to lattices and investigated some related properties. The notion of generalized biderivation on rings was introduced by Argaç in [2].

In this paper, we apply the notion of generalized symmetric biderivation to lattices and investigate some related properties which is discussed in [7] and [14]. Also we characterize the distributive and modular lattices by generalized symmetric biderivations.

²⁰⁰⁰ Mathematics Subject Classification. 06B35, 06B99, 16B70, 16B99.

Key words and phrases. lattice, derivation, poset, symmetric bi-derivation, trace.

YILMAZ ÇEVEN

2. Preliminaries

Definition 1. ([5]) Let L be a nonempty set endowed with operations " \wedge " and " \vee ". If (L, \wedge, \vee) satisfies the following conditions for all $x, y, z \in L$, then L is called a lattice.

(a) $x \wedge x = x, x \vee x = x$,

(b) $x \wedge y = y \wedge x, x \vee y = y \vee x,$ (c) $(x \wedge y) \wedge z = x \wedge (y \wedge z), (x \vee y) \vee z = x \vee (y \vee z),$ (d) $(x \wedge y) \vee x = x, (x \vee y) \wedge x = x.$

Definition 2. ([5]) Let (L, \wedge, \vee) be a lattice. A binary relation " \leq " is defined by $x \leq y$ if and only if $x \wedge y = x$ and $x \vee y = y$.

Definition 3. [5] A lattice L is distributive if the following identities hold:

i) $x \land (y \lor z) = (x \land z) \lor (x \land z),$ ii) $x \lor (y \land z) = (x \lor y) \land (x \lor z).$

In any lattice, the above conditions are equivalent.

Definition 4. ([3]) A lattice L is modular if the following identity holds: If $x \le z$, then $x \lor (y \land z) = (x \lor y) \land z$.

Lemma 1 ([20]). Let (L, \wedge, \vee) be a lattice. Define the binary relation " \leq " as the Definition 2. Then (L, \leq) is a poset and for any $x, y \in L$, $x \wedge y$ is the g.l.b of $\{x, y\}$, and $x \vee y$ is the l.u.b. of $\{x, y\}$.

Definition 5. Let *L* be a lattice. A mapping $D(.,.): L \times L \to L$ is called symmetric if D(x,y) = D(y,x) holds for all $x, y \in L$.

Definition 6. Let *L* be a lattice. A mapping $d: L \to L$ defined by d(x) = D(x, x) is called trace of D(., .), where $D(., .): L \times L \to L$ is a symmetric mapping.

Definition 7. ([10, 20]) Let L be a lattice and $d: L \to L$ be a mapping. The mapping d is called a derivation on L, if it satisfies the following condition

$$d(x \wedge y) = (d(x) \wedge y) \lor (x \wedge d(y))$$

for all $x, y, z \in L$.

Definition 8. ([1]) Let L be a lattice. A function $D: L \to L$ is called a generalized derivation on L if there exists a derivation $d: L \to L$ such that

$$D(x \land y) = (D(x) \land y) \lor (x \land d(y))$$

for all $x, y, z \in L$.

Definition 9. ([7]) Let L be a lattice and $D: L \times L \to L$ be a symmetric mapping. We call D a symmetric biderivation on L, if it satisfies the following condition

$$D(x \land y, z) = (D(x, z) \land y) \lor (x \land D(y, z))$$

for all $x, y, z \in L$.

Note that if D is a symmetric biderivation on a lattice L, then the mappings $d_1: L \longrightarrow L$, $d_1(x) = D(x, y)$ and $d_2: L \longrightarrow L$, $d_2(y) = D(x, y)$ are derivations on L.

Proposition 1 ([7]). Let L be a lattice and let d be the trace of symmetric biderivation D. Then the following hold:

i) $D(x,y) \leq x$ and $D(x,y) \leq y$, ii) $D(x,y) \leq x \wedge y$, iii) $d(x) \leq x$, iv) $d^2(x) = d(x)$, for all $x, y \in L$.

3. The Generalized Symmetric bi-derivations on lattices

The following definition introduces the notion of generalized symmetric bi-derivation for a lattice.

Definition 10. Let *L* be a lattice, $D: L \times L \to L$ be a symmetric biderivation and $\Delta: L \times L \to L$ be a symmetric mapping. We call Δ a generalized symmetric biderivation related to *D*, if it satisfies the following condition

$$\Delta(x \wedge y, z) = (\Delta(x, z) \wedge y) \lor (x \wedge D(y, z))$$

for all $x, y, z \in L$. The mapping $\delta : L \longrightarrow L$ defined by $\delta(x) = \Delta(x, x)$ is called the trace of generalized symmetric biderivation Δ .

Obviously, a generalized symmetric biderivation Δ on L satisfies the relation $\Delta(x, y \wedge z) = (\Delta(x, y) \wedge z) \lor (y \wedge D(x, z))$ for all $x, y, z \in L$.

Now we give examples and present some properties for a generalized symmetric biderivation on L.

Example 1. Let *L* be a lattice with a least element 0. The mapping D(x, y) = 0 is a symmetric biderivation on *L*. Define a mapping on *L* by $\Delta(x, y) = x \wedge y$ for all $x, y \in L$. Then we can see that Δ is a generalized symmetric biderivation related to *D* on *L*.

Example 2. Let *L* be a lattice with a least element 0 and $a \in L$. The mapping on *L* defined by $\Delta(x, y) = (x \land y) \land a$ is a generalized symmetric biderivation related to D(x, y) = 0 on *L*.

Proposition 2. Let Δ is a generalized symmetric biderivation related to a symmetric biderivation D. Then the mappings $f_1 : L \longrightarrow L$, $f_1(x) = \Delta(x, z)$ and $f_2 : L \longrightarrow L$, $f_2(y) = \Delta(x, y)$ are generalized derivations on L.

Proof. We have $\begin{array}{ll} f_1(x \wedge y) &= \Delta(x \wedge y, z) \\ &= (\Delta(x, z) \wedge y) \vee (x \wedge D(y, z)) \\ &= (f_1(x) \wedge y) \vee (x \wedge g_1(y)). \end{array}$

In this equation, the mapping $g_1 : L \longrightarrow L$, $g_1(y) = D(y, z)$ is a derivation on L where D is the symmetric biderivation. Hence the mapping f_1 is a generalized derivation on L.

Theorem 1. Let L be a lattice, Δ be a generalized symmetric biderivation related to a symmetric biderivation D, δ be the trace of Δ and d be the trace of D. Then (i) $D(x, y) \leq \Delta(x, y)$ for all $x, y \in L$.

If L is distributive lattice, then

(ii) $\Delta(x, y) \leq x$ and $\Delta(x, y) \leq y$, (iii) $\Delta(x, y) \leq x \wedge y$

(iii) $\Delta(x, y) \le x \land y$,

YILMAZ ÇEVEN

(iv) $d(x) \le \delta(x) \le x$ (v) $d(x) = x \Longrightarrow \delta(x) = x$ for all $x, y \in L$. *Proof.* (i) Since $\Delta(x,y)$ $=\Delta(x \wedge x, y)$ $= (\Delta(x,y) \land x) \lor (x \land D(x,y))$ $= (\Delta(x, y) \wedge x) \vee D(x, y),$ (by Proposition 1 (i)) it is seen that $D(x, y) \leq \Delta(x, y)$. (ii) If L is distributive lattice, then we have $\Delta(x,y) = (\Delta(x,y) \land x) \lor D(x,y)$ $= (\Delta(x,y) \lor D(x,y)) \land (x \lor D(x,y))$ $= \Delta(x, y) \wedge x$, by (i) and Proposition 1 (i). Hence it is seen that $\Delta(x, y) \leq x$. Since Δ is a symmetric, we have also $\Delta(x, y) \leq x$. y. (iii) is clear by (ii).

(ii) is clear by (i).(iv) is clear by (i) and (ii).(v) is clear by (iv).

Corollary 1. Let L be a distributive lattice and Δ be a generalized symmetric biderivation related to a symmetric biderivation D. Let the least element of L be 0 and the greatest element of L be 1. Then $\Delta(0, x) = \Delta(x, 0) = 0$ and $\Delta(1, x) = \Delta(x, 1) \leq x$ for all $x \in L$.

Proof. It is trivial from the Theorem 1 (ii).

Theorem 2. Let L be a distributive lattice, Δ be a generalized symmetric biderivation related to a symmetric biderivation D, δ be the trace of Δ and d be the trace of D. Then

(i) $\delta^2(x) = \delta(x)$, (ii) $\delta(x \wedge y) = (\delta(x) \wedge y) \vee (x \wedge d(y)) \vee D(x, y)$ (iii) $D(x, y) \leq \delta(x \wedge y), \delta(x) \wedge y \leq \delta(x \wedge y), x \wedge d(y) \leq \delta(x \wedge y)$ for all $x, y \in L$.

Proof. (i) Using Proposition 1(i) and Theorem 1 (iv), we have $\delta^2(x) = \delta(\delta(x))$

 $\begin{aligned} &= \delta(x \land \delta(x)) \\ &= \Delta(x \land \delta(x), x \land \delta(x)) \\ &= (\Delta(x, x \land \delta(x)) \land \delta(x)) \lor (x \land D(\delta(x), x \land \delta(x))) \\ &= \{[(\Delta(x, x) \land \delta(x)) \lor (x \land D(\delta(x), x))] \land \delta(x)\} \\ &\lor \{x \land [(D(x, \delta(x)) \land \delta(x)) \lor (x \land D(\delta(x), \delta(x)))]\} \\ &= \{[\delta(x) \lor D(\delta(x), x)] \land \delta(x)\} \lor \{x \land [\delta(x) \lor \delta(x)]\} \\ &= \delta(x). \end{aligned}$ (ii) Using Proposition 1(i) and Theorem 1 (iv), we have

$$\begin{split} \delta(x \wedge y) &= \Delta(x \wedge y, x \wedge y) \\ &= (\Delta(x, x \wedge y) \wedge y) \lor (x \wedge D(y, x \wedge y)) \\ &= \{[(\Delta(x, x) \wedge y) \lor (x \wedge D(x, y))] \land y\} \\ &\lor \{x \land [(D(x, y) \wedge y) \lor (x \wedge D(y, y))]\} \\ &= \{[(\delta(x) \wedge y) \lor D(x, y)] \land y\} \lor \{x \land [D(x, y) \lor (x \wedge d(y))]\} \\ &= \{(\delta(x) \wedge y) \lor D(x, y)\} \lor \{D(x, y) \lor (x \wedge d(y))\} \\ &= (\delta(x) \wedge y) \lor (x \wedge d(y)) \lor D(x, y) \end{split}$$

ON CHARACTERIZATIONS OF LATTICES USING THE GENERALIZED ...

(iii) It is clear by (ii).

Theorem 3. Let L be a distributive lattice and Δ be a generalized symmetric biderivation related to a symmetric biderivation D and δ be the trace of Δ . Then

$$d(x) \wedge d(y) \le \delta(x) \wedge \delta(y) \le \delta(x \wedge y)$$

for all $x, y \in L$.

Proof. By Theorem 2 (iii) and Theorem 1 (iv), since $\delta(x) \wedge y \leq \delta(x \wedge y)$ and $\delta(y) \leq y$, we get $\delta(x) \wedge \delta(y) \leq \delta(x) \wedge y \leq \delta(x \wedge y)$. Using Theorem 1 (iv), we have $d(x) \wedge d(y) \leq \delta(x) \wedge \delta(y)$.

Theorem 4. Let L be a distributive lattice and Δ be a generalized symmetric biderivation related to a symmetric biderivation D. Let the least element of L be 0 and the greatest element of L be 1, then

- (i) if $x \leq \delta(1)$, then $\delta(x) = x$,
- (ii) if $x \ge \delta(1)$, then $\delta(1) \le \delta(x)$,
- (iii) if $x \leq y$ and d(y) = y, then $\delta(x) = x$.

Proof. From Theorem 2 (iii), we have $\delta(1) \wedge x \leq \delta(x)$. Hence

- (i) if $x \leq \delta(1)$, then we get $x \leq \delta(x)$. Using Theorem 1 (iv), we get $\delta(x) = x$. (ii) If $x \geq \delta(1)$, then we have $\delta(1) \leq \delta(x)$.
- (iii) Since $\delta(x) \le x \le y, d(y) = y, D(x, y) \le x$ we have, by Theorem 2 (ii),
- $\delta(x) = \delta(x \land y)$ = $(\delta(x) \land y) \lor (x \land d(y)) \lor D(x, y)$ = $\delta(x) \lor x \lor D(x, y)$ = x.

In every lattice L with the least element 0, the mapping D(x, y) = 0 is a symmetric biderivation. The mapping $\Delta(x, y) = x \vee y$ in any lattice L is not a generalized symmetric biderivation related to D(x, y) = 0. Then we have the following Corollary:

Corollary 2. In a lattice with the least element 0, if the mapping $\Delta(x, y) = x \lor y$ related to D(x, y) = 0 is a generalized symmetric biderivation, then the lattice L is modular lattice.

Proof. From the equality $\Delta(y \wedge z, x) = (\Delta(y, x) \wedge z) \vee (y \wedge D(z, x))$, we have $x \vee (y \wedge z) = (x \vee y) \wedge z$ for all $x, y, z \in L$, hence L is a modular lattice. \Box

Definition 11. Let *L* be a lattice. The mapping Δ satisfying $\Delta(x \lor y, z) = \Delta(x, z) \lor \Delta(y, z)$ for all $x, y \in L$, is called a joinitive mapping.

Theorem 5. Let L be a lattice and Δ be a joinitive and symmetric mapping with the trace δ on L. Then

(i) $\delta(x \lor y) = \delta(x) \lor \delta(y) \lor \Delta(x, y)$, (ii) $\delta(x) \lor \delta(y) \le \delta(x \lor y)$

for all $x, y \in L$.

 $\delta(x \vee$

Proof. (i) By the definition of joinitive mapping and symmetry, we have

$$y) = \Delta(x \lor y, x \lor y) = \Delta(x, x) \lor \Delta(x, y) \lor \Delta(y, y) = \delta(x) \lor \delta(y) \lor \Delta(x, y).$$

(ii) it is clear from (i).

99

Proposition 3. If the mapping $\Delta(x, y) = x \wedge y$ in a lattice L is also a joinitive mapping, then the lattice L is a distributive lattice.

Proof. Using the equality $\Delta(x \lor y, z) = \Delta(x, z) \lor \Delta(y, z)$, we have $(x \lor y) \land z = (x \land z) \lor (y \land z)$ for all $x, y \in L$. So L is a distributive lattice. \Box

Let L be a distributive lattice, Δ be a generalized symmetric biderivation related to a symmetric biderivation D, δ be the trace of Δ and d be the trace of D. Denote $Fix_d(L) = \{x \in L : d(x) = x\}$. By Theorem 1 (v), $x \in Fix_d(L)$ implies that $x \in Fix_{\delta}(L)$ for all $x \in L$. That is, $Fix_d(L) \subseteq Fix_{\delta}(L)$. Furthermore, from the Theorem 4 (iii), $x \in Fix_d(L)$ and $y \leq x$ implies that $y \in Fix_{\delta}(L)$.

Definition 12. Let *L* be a lattice, Δ be a generalized symmetric biderivation related to a symmetric biderivation *D*, δ be the trace of Δ . If $x \leq y$ implies $\delta(x) \leq \delta(y)$, then δ is called an isotone mapping.

Proposition 4. Let L be a distributive lattice, Δ be a generalized symmetric biderivation related to a symmetric biderivation D, δ be the trace of Δ . If δ is isotone and $x, y \in Fix_{\delta}(L)$, then $\delta(x \lor y) = x \lor y$ for all $x, y \in L$.

Proof. Since $x \leq x \lor y$ and $y \leq x \lor y$ and δ is isotone, we have $\delta(x) \leq \delta(x \lor y)$ and $\delta(y) \leq \delta(x \lor y)$. So it is seen that $\delta(x) \lor \delta(y) \leq \delta(x \lor y)$ and since $x, y \in Fix_{\delta}(L)$, $x \lor y \leq \delta(x \lor y)$. By Theorem 1 (iv), since $\delta(x \lor y) \leq x \lor y$, we obtain $\delta(x \lor y) = x \lor y$.

Proposition 5. Let L be a distributive lattice, Δ be a generalized symmetric biderivation related to a symmetric biderivation D, δ be the trace of Δ and d be the trace of D. Then $1 \in Fix_{\delta}(L)$ if and only if δ is an identity mapping.

Proof. If $1 \in Fix_{\delta}(L)$, since $\delta(1) = 1$, by Theorem 2, we have $\delta(x) = \delta(1 \wedge x) = (\delta(1) \wedge x) \vee (1 \wedge d(x)) \vee D(1, x) = x \vee d(x) \vee D(1, x) = x$. Converse is trivial.

Theorem 6. Let *L* be a distributive lattice, Δ_1 and Δ_2 be generalized symmetric biderivations related to a same symmetric biderivation *D*. The mapping $\Delta_1 \wedge \Delta_2$ defined by $(\Delta_1 \wedge \Delta_2)(x, y) = \Delta_1(x, y) \wedge \Delta_2(x, y)$, is a generalized symmetric biderivation related to the symmetric biderivation *D*.

Proof. Since

$$\begin{aligned} (\Delta_1 \wedge \Delta_2)(x \wedge y, z) &= \Delta_1(x \wedge y, z) \wedge \Delta_2(x \wedge y, z) \\ &= \left[(\Delta_1(x, z) \wedge y) \vee (x \wedge D(y, z)) \right] \\ &\wedge \left[(\Delta_2(x, z) \wedge y) \vee (x \wedge D(y, z)) \right] \\ &= \left[(\Delta_1(x, z) \wedge y) \wedge (\Delta_2(x, z) \wedge y) \right] \vee (x \wedge D(y, z)) \\ &= (\Delta_1(x, z) \wedge \Delta_2(x, z) \wedge y) \vee (x \wedge D(y, z)) \\ &= ((\Delta_1 \wedge \Delta_2)(x, z) \wedge y) \vee (x \wedge D(y, z)), \end{aligned}$$

so the Theorem is true.

Theorem 7. Let *L* be a distributive lattice, Δ_1 and Δ_2 be generalized symmetric biderivations related to a same symmetric biderivation *D*. The mapping $\Delta_1 \vee \Delta_2$ defined by $(\Delta_1 \vee \Delta_2)(x, y) = \Delta_1(x, y) \vee \Delta_2(x, y)$, is a generalized symmetric biderivation related to the symmetric biderivation *D*.

$$\begin{aligned} (\Delta_1 \lor \Delta_2)(x \land y, z) &= \Delta_1(x \land y, z) \lor \Delta_2(x \land y, z) \\ &= (\Delta_1(x, z) \land y) \lor (x \land D(y, z)) \\ &\lor (\Delta_2(x, z) \land y) \lor (x \land D(y, z)) \\ &= (\Delta_1(x, z) \land y) \lor (\Delta_2(x, z) \land y) \lor (x \land D(y, z)) \\ &= ((\Delta_1(x, z) \lor \Delta_2(x, z)) \land y) \lor (x \land D(y, z)) \\ &= ((\Delta_1 \lor \Delta_2)(x, z) \land y) \lor (x \land D(y, z)), \end{aligned}$$

so the Theorem is true.

Proposition 6. Let L be a distributive lattice, Δ_1 and Δ_2 be generalized symmetric biderivations, δ_1 be the trace of Δ_1 and δ_2 be the trace of Δ_2 . If δ_1 and δ_2 are isotone mapping, then $\delta_1 = \delta_2$ if and only if $Fix_{\delta_1}(L) = Fix_{\delta_2}(L)$.

Proof. Let $Fix_{\delta_1}(L) = Fix_{\delta_2}(L)$. If $x \in Fix_{\delta_1}(L)$, since $\delta_1(\delta_1(x)) = \delta_1(x)$, we have $\delta_1(x) \in Fix_{\delta_1}(L) = Fix_{\delta_2}(L)$. Hence $\delta_2(\delta_1(x)) = \delta_1(x)$. Similarly, we see that $\delta_1(\delta_2(x)) = \delta_2(x)$. Since δ_1 and δ_2 are isotone mapping and $\delta_1(x) \leq x, \delta_2(x) \leq x$ x, we get $\delta_2(\delta_1(x)) \leq \delta_2(x) = \delta_1(\delta_2(x))$ and $\delta_1(\delta_2(x)) \leq \delta_1(x) = \delta_2(\delta_1(x))$. So $\delta_1(\delta_2(x)) = \delta_2(\delta_1(x))$. Therefore we obtain $\delta_1(x) = \delta_2(\delta_1(x)) = \delta_1(\delta_2(x)) = \delta_2(x)$, that is, $\delta_1 = \delta_2$. The converse is trivial. \square

Proposition 7. Let L be a distributive lattice and Δ be a generalized symmetric biderivation related to a symmetric biderivation D, δ be the trace of Δ and the greatest element of L be 1. Then the following conditions are equivalent:

(i) δ is an isotone mapping (ii) $\delta(x) \lor \delta(y) \le \delta(x \lor y)$ (iii) $\delta(x \wedge y) = \delta(x) \wedge \delta(y)$

(iv) $\delta(x) = x \wedge \delta(1)$ for all $x, y \in L$.

Proof. (i) \Longrightarrow (ii): Since $x \leq x \lor y$ and $y \leq x \lor y$ and δ is an isotone mapping, we have $\delta(x) \leq \delta(x \vee y)$ and $\delta(y) \leq \delta(x \vee y)$, so $\delta(x) \vee \delta(y) \leq \delta(x \vee y)$.

(ii) \Longrightarrow (i): Let $\delta(x) \lor \delta(y) \le \delta(x \lor y)$ and $x \le y$. Since $x \lor y = y$, we have $\delta(x) \lor$ $\delta(y) \leq \delta(y)$. Also it is known that $\delta(y) \leq \delta(x) \vee \delta(y)$. Hence we obtain $\delta(x) \vee \delta(y) = \delta(x) \vee \delta(y)$ $\delta(y)$, so $\delta(x) \leq \delta(y)$.

(i) \Longrightarrow (iii): Since $x \land y \le x$ and $x \land y \le y$ and δ is an isotone mapping, we have $\delta(x \wedge y) \leq \delta(x)$ and $\delta(x \wedge y) \leq \delta(y)$ and so $\delta(x \wedge y) \leq \delta(x) \wedge \delta(y)$. By Theorem 3 (ii), we have $\delta(x) \wedge \delta(y) \leq \delta(x \wedge y)$. Hence $\delta(x) \wedge \delta(y) = \delta(x \wedge y)$.

(iii) \Longrightarrow (i): Let $\delta(x \wedge y) = \delta(x) \wedge \delta(y)$ and $x \leq y$. Since $x \wedge y = x$, we get $\delta(x) = \delta(x \wedge y) = \delta(x) \wedge \delta(y) \le \delta(y).$

(i) \Longrightarrow (iv): Since $x \leq 1$ and δ is an isotone mapping, we have $\delta(x) \leq \delta(1)$.By Theorem 1 (iv), since $\delta(x) \leq x$, we get $\delta(x) \leq x \wedge \delta(1)$. By Theorem 2 (ii), we have $\delta(x) \wedge y \leq \delta(x \wedge y)$. Taking x = 1, we get $\delta(1) \wedge y \leq \delta(y)$ for all $y \in L$. Hence we have $\delta(x) = x \wedge \delta(1)$.

(iv) \Longrightarrow (iv): Let $\delta(x) = x \wedge \delta(1)$ and $x \leq y$. Since $x \wedge y = x$, we have

 $\delta(x) = \delta(x \wedge y) = (x \wedge y) \wedge 1 = (x \wedge 1) \wedge (y \wedge 1) = \delta(x) \wedge \delta(y)$. Hence $\delta(x) \leq \delta(x) = \delta(x) \wedge \delta(y)$. $\delta(y).$

Conflict of Interests

The author declares that there is no conflict of interest regarding the publication of this paper.

YILMAZ ÇEVEN

References

- N. O. Alshehri. Generalized Derivations of Lattices. Int. J. Contemp. Math. Sci., 5(13)(2010), 629–640.
- [2] N. Argaç. On prime and semiprime rings with derivations. Algebra Colloq. 13(3)(2006), 371–380.
- [3] R.Balbes and P. Dwinger. *Distributive Lattices*. University of Missouri Press, Columbia, United States, 1974.
- [4] A. J. Bell. The co-information lattice, 4th Int. Symposium on Independent Component Analysis and Blind Signal Seperation (ICA2003), Nara, Japan, 2003, 921-926.
- [5] G. Birkhoof. Lattice Theory, American Mathematical Society Colloquium, 1940.
- [6] C. Carpineto and G. Romano. Information retrieval through hybrid navigation of lattice representations, International Journal of Human-Computers Studies 45(1996), 553–578.
- [7] Y. Çeven. Symmetric bi-derivations of lattices. Quaestiones Mathematicae, 32(2009), 241– 245.
- [8] G. Durfee. Cryptanalysis of RSA using algebraic and lattice methods, A dissertation submitted to the department of computer science and the committee on graduate studies of Stanford University (2002), 1-114.
- [9] L. Ferrari. On derivations of lattices. PU.M.A., 12(4)(2001), 1-18.
- [10] Gy. Maksa. A remark on symmetric biadditive functions having nonnegative diagonalization. Glasnik Math. 15(35)(1980), 279–282.
- [11] Gy. Maksa. On the trace of symmetric bi-derivations. C. R. Math. Rep. Acad. Sci. Canada 9(1989), 303–307.
- [12] M. A. Öztürk and M. Sapanci. On generalized symmetric bi-derivations in prime rings, East Asian Mathematical Journal, 15(2)(1999), 165–176.
- [13] M. A. Öztürk and Y. B. Jun. On trace of symmetric bi-derivations in near-rings. International Journal of Pure and Applied Mathematics, 17(1)(2004), 95–102.
- [14] M. A. Oztürk, H. Yazarlıand K. H. Kim. Permuting tri-derivations in lattices. Quaest. Math. 32(3)(2009), 415–425.
- [15] E. Posner. Derivations in prime rings. Proc. Amer. Math. Soc., 8(1957), 1093–1100.
- [16] R. S. Sandhu. Role hierarchies and constraints for lattice-based access controls. Proceedings of the 4th European Symposium on research in computer security, Rome, Italy, 1996, 65-79.
- [17] M. Sapanci, M. A. Öztürk and Y. B. Jun. Symmetric bi-derivations on prime rings. East Asian Mathematical Journal, 15(1)(1999), 105–109.
- [18] J. Vukman. Symmetric bi-derivations on prime and semi-prime rings. Aequationes Mathematicae 38(1989), 245–254.
- [19] J. Vukman. Two results concerning symmetric bi-derivations on prime rings. Aequationes Mathematicae 40(1990), 181–189.
- [20] X. L. Xin, T. Y. Li and J. H. Lu. On derivations of lattices. Inform. Sci., 178(2)(2008), 307–316.

Receibed by editors 23.05.2018; Revised version 11.11.2018; Available online 19.11.2018.

Suleyman Demirel University, Faculty of Arts and Sciences, Dept. of Mathematics, 32260-Isparta-TURKEY

E-mail address: yilmazceven@sdu.edu.tr