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ON CHARACTERIZATIONS OF LATTICES USING THE

GENERALIZED SYMMETRIC BI-DERIVATIONS

YILMAZ ÇEVEN

Abstract. In this paper, we introduced the notion of generalized symmetric

bi-derivation on lattices and investigated some related properties.We char-
acterized the distributive and modular lattices by generalized symmetric bi-
derivations.

1. Introduction

The lattice algebra plays a significant role in various branches such as information
theory, information retrieval, information access controls and cryptanalysis [4, 6, 8,
16]. Recently, the properties of lattices were widely researched. In the theory of
rings, the notion of derivation is an important topic to study. After the derivation
on a ring was defined by Posner in [15], many researchers studied the derivation
theory on various algebraic structures. In [9, 20], authors introduced the notion
of derivation on a lattice and discussed some related properties. In [1], Alshehri is
introduced the notion of generalized derivation for a lattice and investigated various
properties. After the symmetric biderivation on rings was defined in [10, 11] by
Maksa, a lot of researchers studied the symmetric biderivation in rings and near-
rings [12, 13, 17, 18, 19]. In [7], Çeven applied the notion of symmetric biderivation
to lattices and investigated some related properties. The notion of generalized
biderivation on rings was introduced by Argaç in [2].

In this paper, we apply the notion of generalized symmetric biderivation to
lattices and investigate some related properties which is discussed in [7] and [14].
Also we characterize the distributive and modular lattices by generalized symmetric
biderivations.
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2. Preliminaries

Definition 1. ([5]) Let L be a nonempty set endowed with operations ”∧” and
”∨”. If (L,∧,∨) satisfies the following conditions for all x, y, z ∈ L , then L is called
a lattice.

(a) x ∧ x = x, x ∨ x = x,
(b) x ∧ y = y ∧ x, x ∨ y = y ∨ x,
(c) (x ∧ y) ∧ z = x ∧ (y ∧ z), (x ∨ y) ∨ z = x ∨ (y ∨ z),
(d) (x ∧ y) ∨ x = x, (x ∨ y) ∧ x = x.

Definition 2. ([5]) Let (L,∧,∨) be a lattice. A binary relation ”≤ ” is defined by
x ≤ y if and only if x ∧ y = x and x ∨ y = y.

Definition 3. [5] A lattice L is distributive if the following identities hold:
i) x ∧ (y ∨ z) = (x ∧ z) ∨ (x ∧ z),
ii) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

In any lattice, the above conditions are equivalent.

Definition 4. ([3]) A lattice L is modular if the following identity holds:
If x ≤ z, then x ∨ (y ∧ z) = (x ∨ y) ∧ z.

Lemma 1 ([20]). Let (L,∧,∨) be a lattice. Define the binary relation ”≤ ” as the
Definition 2. Then (L,≤) is a poset and for any x, y ∈ L, x ∧ y is the g.l.b of
{x, y} , and x ∨ y is the l.u.b. of {x, y} .

Definition 5. Let L be a lattice. A mappingD(., .) : L×L → L is called symmetric
if D(x, y) = D(y, x) holds for all x, y ∈ L.

Definition 6. Let L be a lattice. A mapping d : L → L defined by d(x) = D(x, x)
is called trace of D(., .), where D(., .) : L× L → L is a symmetric mapping.

Definition 7. ([10, 20]) Let L be a lattice and d : L → L be a mapping. The
mapping d is called a derivation on L, if it satisfies the following condition

d(x ∧ y) = (d(x) ∧ y) ∨ (x ∧ d(y))

for all x, y, z ∈ L.

Definition 8. ([1]) Let L be a lattice. A function D : L → L is called a generalized
derivation on L if there exists a derivation d : L → L such that

D(x ∧ y) = (D(x) ∧ y) ∨ (x ∧ d(y))

for all x, y, z ∈ L.

Definition 9. ([7]) Let L be a lattice and D : L×L → L be a symmetric mapping.
We call D a symmetric biderivation on L, if it satisfies the following condition

D(x ∧ y, z) = (D(x, z) ∧ y) ∨ (x ∧D(y, z))

for all x, y, z ∈ L.

Note that if D is a symmetric biderivation on a lattice L, then the mappings
d1 : L −→ L, d1(x) = D(x, y) and d2 : L −→ L, d2(y) = D(x, y) are derivations on
L.



ON CHARACTERIZATIONS OF LATTICES USING THE GENERALIZED ... 97

Proposition 1 ([7]). Let L be a lattice and let d be the trace of symmetric bi-
derivation D. Then the following hold:

i) D(x, y) ≤ x and D(x, y) ≤ y ,
ii) D(x, y) ≤ x ∧ y,
iii) d(x) ≤ x ,
iv) d2(x) = d(x),

for all x, y ∈ L.

3. The Generalized Symmetric bi-derivations on lattices

The following definition introduces the notion of generalized symmetric bi-derivation
for a lattice.

Definition 10. Let L be a lattice, D : L × L → L be a symmetric biderivation
and ∆ : L × L → L be a symmetric mapping. We call ∆ a generalized symmetric
biderivation related to D, if it satisfies the following condition

∆(x ∧ y, z) = (∆(x, z) ∧ y) ∨ (x ∧D(y, z))

for all x, y, z ∈ L.The mapping δ : L −→ L defined by δ(x) = ∆(x, x) is called the
trace of generalized symmetric biderivation ∆.

Obviously, a generalized symmetric biderivation ∆ on L satisfies the relation
∆(x, y ∧ z) = (∆(x, y) ∧ z) ∨ (y ∧D(x, z)) for all x, y, z ∈ L.

Now we give examples and present some properties for a generalized symmetric
biderivation on L.

Example 1. Let L be a lattice with a least element 0. The mapping D(x, y) = 0
is a symmetric biderivation on L. Define a mapping on L by ∆(x, y) = x∧ y for all
x, y ∈ L. Then we can see that ∆ is a generalized symmetric biderivation related
to D on L.

Example 2. Let L be a lattice with a least element 0 and a ∈ L. The mapping on
L defined by ∆(x, y) = (x ∧ y) ∧ a is a generalized symmetric biderivation related
to D(x, y) = 0 on L.

Proposition 2. Let ∆ is a generalized symmetric biderivation related to a sym-
metric biderivation D. Then the mappings f1 : L −→ L, f1(x) = ∆(x, z) and
f2 : L −→ L, f2(y) = ∆(x, y) are generalized derivations on L.

Proof. We have
f1(x ∧ y) = ∆(x ∧ y, z)

= (∆(x, z) ∧ y) ∨ (x ∧D(y, z))
= (f1(x) ∧ y) ∨ (x ∧ g1(y)).

In this equation, the mapping g1 : L −→ L, g1(y) = D(y, z) is a derivation on
L where D is the symmetric biderivation. Hence the mapping f1 is a generalized
derivation on L. �

Theorem 1. Let L be a lattice, ∆ be a generalized symmetric biderivation related
to a symmetric biderivation D, δ be the trace of ∆ and d be the trace of D. Then

(i) D(x, y) ≤ ∆(x, y) for all x, y ∈ L.
If L is distributive lattice, then

(ii) ∆(x, y) ≤ x and ∆(x, y) ≤ y,
(iii) ∆(x, y) ≤ x ∧ y,
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(iv) d(x) ≤ δ(x) ≤ x
(v) d(x) = x =⇒ δ(x) = x

for all x, y ∈ L.

Proof. (i) Since
∆(x, y) = ∆(x ∧ x, y)

= (∆(x, y) ∧ x) ∨ (x ∧D(x, y))
= (∆(x, y) ∧ x) ∨D(x, y), (by Proposition 1 (i))

it is seen that D(x, y) ≤ ∆(x, y).
(ii) If L is distributive lattice, then we have
∆(x, y) = (∆(x, y) ∧ x) ∨D(x, y)

= (∆(x, y) ∨D(x, y)) ∧ (x ∨D(x, y))
= ∆(x, y) ∧ x, by (i) and Proposition 1 (i).

Hence it is seen that ∆(x, y) ≤ x. Since ∆ is a symmetric, we have also ∆(x, y) ≤
y.

(iii) is clear by (ii).
(iv) is clear by (i) and (ii).
(v) is clear by (iv). �

Corollary 1. Let L be a distributive lattice and ∆ be a generalized symmetric
biderivation related to a symmetric biderivation D. Let the least element of L be
0 and the greatest element of L be 1. Then ∆(0, x) = ∆(x, 0) = 0 and ∆(1, x) =
∆(x, 1) ≤ x for all x ∈ L.

Proof. It is trivial from the Theorem 1 (ii). �

Theorem 2. Let L be a distributive lattice, ∆ be a generalized symmetric bideriva-
tion related to a symmetric biderivation D, δ be the trace of ∆ and d be the trace
of D. Then

(i) δ2(x) = δ(x),
(ii) δ(x ∧ y) = (δ(x) ∧ y) ∨ (x ∧ d(y)) ∨D(x, y)
(iii) D(x, y) ≤ δ(x ∧ y), δ(x) ∧ y ≤ δ(x ∧ y), x ∧ d(y) ≤ δ(x ∧ y)

for all x, y ∈ L.

Proof. (i) Using Proposition 1(i) and Theorem 1 (iv), we have
δ2(x) = δ(δ(x))

= δ(x ∧ δ(x))
= ∆(x ∧ δ(x), x ∧ δ(x))
= (∆(x, x ∧ δ(x)) ∧ δ(x)) ∨ (x ∧D(δ(x), x ∧ δ(x)))
= {[(∆(x, x) ∧ δ(x)) ∨ (x ∧D(δ(x), x))] ∧ δ(x)}
∨ {x ∧ [(D(x, δ(x)) ∧ δ(x)) ∨ (x ∧D(δ(x), δ(x)))]}
= {[δ(x) ∨D(δ(x), x)] ∧ δ(x)} ∨ {x ∧ [δ(x) ∨ δ(x)]}
= δ(x).

(ii) Using Proposition 1(i) and Theorem 1 (iv), we have
δ(x ∧ y) = ∆(x ∧ y, x ∧ y)

= (∆(x, x ∧ y) ∧ y) ∨ (x ∧D(y, x ∧ y))
= {[(∆(x, x) ∧ y) ∨ (x ∧D(x, y))] ∧ y}
∨ {x ∧ [(D(x, y) ∧ y) ∨ (x ∧D(y, y))]}
= {[(δ(x) ∧ y) ∨D(x, y)] ∧ y} ∨ {x ∧ [D(x, y) ∨ (x ∧ d(y))]}
= {(δ(x) ∧ y) ∨D(x, y)} ∨ {D(x, y) ∨ (x ∧ d(y))}
= (δ(x) ∧ y) ∨ (x ∧ d(y)) ∨D(x, y)



ON CHARACTERIZATIONS OF LATTICES USING THE GENERALIZED ... 99

(iii) It is clear by (ii). �
Theorem 3. Let L be a distributive lattice and ∆ be a generalized symmetric
biderivation related to a symmetric biderivation D and δ be the trace of ∆. Then

d(x) ∧ d(y) ≤ δ(x) ∧ δ(y) ≤ δ(x ∧ y)

for all x, y ∈ L.

Proof. By Theorem 2 (iii) and Theorem 1 (iv), since δ(x) ∧ y ≤ δ(x ∧ y) and
δ(y) ≤ y, we get δ(x) ∧ δ(y) ≤ δ(x) ∧ y ≤ δ(x ∧ y). Using Theorem 1 (iv), we have
d(x) ∧ d(y) ≤ δ(x) ∧ δ(y). �
Theorem 4. Let L be a distributive lattice and ∆ be a generalized symmetric
biderivation related to a symmetric biderivation D. Let the least element of L be 0
and the greatest element of L be 1, then

(i) if x ≤ δ(1), then δ(x) = x,
(ii) if x ≥ δ(1), then δ(1) ≤ δ(x),
(iii) if x ≤ y and d(y) = y, then δ(x) = x.

Proof. From Theorem 2 (iii), we have δ(1) ∧ x ≤ δ(x). Hence
(i) if x ≤ δ(1), then we get x ≤ δ(x). Using Theorem 1 (iv), we get δ(x) = x.
(ii) If x ≥ δ(1), then we have δ(1) ≤ δ(x).
(iii) Since δ(x) ≤ x ≤ y, d(y) = y,D(x, y) ≤ x we have, by Theorem 2 (ii),
δ(x) = δ(x ∧ y)

= (δ(x) ∧ y) ∨ (x ∧ d(y)) ∨D(x, y)
= δ(x) ∨ x ∨D(x, y)
= x.

�

In every lattice L with the least element 0, the mapping D(x, y) = 0 is a symmet-
ric biderivation. The mapping ∆(x, y) = x ∨ y in any lattice L is not a generalized
symmetric biderivation related to D(x, y) = 0. Then we have the following Corol-
lary:

Corollary 2. In a lattice with the least element 0, if the mapping ∆(x, y) = x ∨ y
related to D(x, y) = 0 is a generalized symmetric biderivation, then the lattice L is
modular lattice.

Proof. From the equality ∆(y ∧ z, x) = (∆(y, x) ∧ z) ∨ (y ∧D(z, x)) , we have x ∨
(y ∧ z) = (x ∨ y) ∧ z for all x, y, z ∈ L, hence L is a modular lattice. �
Definition 11. Let L be a lattice. The mapping ∆ satisfying ∆(x ∨ y, z) =
∆(x, z) ∨∆(y, z) for all x, y ∈ L, is called a joinitive mapping.

Theorem 5. Let L be a lattice and ∆ be a joinitive and symmetric mapping with
the trace δ on L. Then

(i) δ(x ∨ y) = δ(x) ∨ δ(y) ∨∆(x, y) ,
(ii) δ(x) ∨ δ(y) ≤ δ(x ∨ y)

for all x, y ∈ L.

Proof. (i) By the definition of joinitive mapping and symmetry, we have
δ(x ∨ y) = ∆(x ∨ y, x ∨ y)

= ∆(x, x) ∨∆(x, y) ∨∆(y, y)
= δ(x) ∨ δ(y) ∨∆(x, y).

(ii) it is clear from (i). �



100 YILMAZ ÇEVEN

Proposition 3. If the mapping ∆(x, y) = x ∧ y in a lattice L is also a joinitive
mapping, then the lattice L is a distributive lattice.

Proof. Using the equality ∆(x ∨ y, z) = ∆(x, z) ∨ ∆(y, z), we have (x ∨ y) ∧ z =
(x ∧ z) ∨ (y ∧ z) for all x, y ∈ L. So L is a distributive lattice. �

Let L be a distributive lattice, ∆ be a generalized symmetric biderivation related
to a symmetric biderivation D, δ be the trace of ∆ and d be the trace of D.
Denote Fixd(L) = {x ∈ L : d(x) = x} . By Theorem 1 (v), x ∈ Fixd(L) implies
that x ∈ Fixδ(L) for all x ∈ L. That is, Fixd(L) ⊆ Fixδ(L). Furthermore, from
the Theorem 4 (iii), x ∈ Fixd(L) and y ≤ x implies that y ∈ Fixδ(L).

Definition 12. Let L be a lattice, ∆ be a generalized symmetric biderivation
related to a symmetric biderivation D, δ be the trace of ∆. If x ≤ y implies δ(x) ≤
δ(y), then δ is called an isotone mapping.

Proposition 4. Let L be a distributive lattice, ∆ be a generalized symmetric
biderivation related to a symmetric biderivation D, δ be the trace of ∆. If δ is
isotone and x, y ∈ Fixδ(L), then δ(x ∨ y) = x ∨ y for all x, y ∈ L.

Proof. Since x ≤ x∨ y and y ≤ x∨ y and δ is isotone, we have δ(x) ≤ δ(x∨ y) and
δ(y) ≤ δ(x ∨ y). So it is seen that δ(x) ∨ δ(y) ≤ δ(x ∨ y) and since x, y ∈ Fixδ(L),
x ∨ y ≤ δ(x ∨ y). By Theorem 1 (iv), since δ(x ∨ y) ≤ x ∨ y, we obtain δ(x ∨ y) =
x ∨ y. �

Proposition 5. Let L be a distributive lattice, ∆ be a generalized symmetric
biderivation related to a symmetric biderivation D, δ be the trace of ∆ and d be the
trace of D. Then 1 ∈ Fixδ(L) if and only if δ is an identity mapping.

Proof. If 1 ∈ Fixδ(L), since δ(1) = 1, by Theorem 2, we have
δ(x) = δ(1 ∧ x) = (δ(1) ∧ x) ∨ (1 ∧ d(x)) ∨D(1, x) = x ∨ d(x) ∨D(1, x) = x.

Converse is trivial. �

Theorem 6. Let L be a distributive lattice, ∆1 and ∆2 be generalized symmetric
biderivations related to a same symmetric biderivation D. The mapping ∆1 ∧ ∆2

defined by (∆1∧∆2)(x, y) = ∆1(x, y)∧∆2(x, y), is a generalized symmetric bideriva-
tion related to the symmetric biderivation D.

Proof. Since
(∆1 ∧∆2)(x ∧ y, z) = ∆1(x ∧ y, z) ∧∆2(x ∧ y, z)

= [(∆1(x, z) ∧ y) ∨ (x ∧D(y, z))]
∧ [(∆2(x, z) ∧ y) ∨ (x ∧D(y, z))]
= [(∆1(x, z) ∧ y) ∧ (∆2(x, z) ∧ y)] ∨ (x ∧D(y, z))
= (∆1(x, z) ∧∆2(x, z) ∧ y) ∨ (x ∧D(y, z))
= ((∆1 ∧∆2)(x, z) ∧ y) ∨ (x ∧D(y, z)),

so the Theorem is true. �

Theorem 7. Let L be a distributive lattice, ∆1 and ∆2 be generalized symmetric
biderivations related to a same symmetric biderivation D. The mapping ∆1 ∨ ∆2

defined by (∆1∨∆2)(x, y) = ∆1(x, y)∨∆2(x, y), is a generalized symmetric bideriva-
tion related to the symmetric biderivation D.
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Proof. Since
(∆1 ∨∆2)(x ∧ y, z) = ∆1(x ∧ y, z) ∨∆2(x ∧ y, z)

= (∆1(x, z) ∧ y) ∨ (x ∧D(y, z))
∨ (∆2(x, z) ∧ y) ∨ (x ∧D(y, z))
= (∆1(x, z) ∧ y) ∨ (∆2(x, z) ∧ y) ∨ (x ∧D(y, z))
= ((∆1(x, z) ∨∆2(x, z)) ∧ y) ∨ (x ∧D(y, z))
= ((∆1 ∨∆2)(x, z) ∧ y) ∨ (x ∧D(y, z)),

so the Theorem is true. �

Proposition 6. Let L be a distributive lattice, ∆1 and ∆2 be generalized symmetric
biderivations, δ1 be the trace of ∆1 and δ2 be the trace of ∆2. If δ1 and δ2 are isotone
mapping, then δ1 = δ2 if and only if Fixδ1(L) = Fixδ2(L).

Proof. Let Fixδ1(L) = Fixδ2(L). If x ∈ Fixδ1(L), since δ1(δ1(x)) = δ1(x), we
have δ1(x) ∈ Fixδ1(L) = Fixδ2(L). Hence δ2(δ1(x)) = δ1(x). Similarly, we see that
δ1(δ2(x)) = δ2(x). Since δ1 and δ2 are isotone mapping and δ1(x) ≤ x, δ2(x) ≤
x, we get δ2(δ1(x)) ≤ δ2(x) = δ1(δ2(x)) and δ1(δ2(x)) ≤ δ1(x) = δ2(δ1(x)). So
δ1(δ2(x)) = δ2(δ1(x)). Therefore we obtain δ1(x) = δ2(δ1(x)) = δ1(δ2(x)) = δ2(x),
that is, δ1 = δ2. The converse is trivial. �

Proposition 7. Let L be a distributive lattice and ∆ be a generalized symmetric
biderivation related to a symmetric biderivation D, δ be the trace of ∆ and the
greatest element of L be 1. Then the following conditions are equivalent:

(i) δ is an isotone mapping
(ii) δ(x)∨ δ(y) ≤ δ(x ∨ y)
(iii) δ(x ∧ y) = δ(x)∧ δ(y)
(iv) δ(x) = x ∧ δ(1) for all x, y ∈ L.

Proof. (i)=⇒(ii): Since x ≤ x ∨ y and y ≤ x ∨ y and δ is an isotone mapping, we
have δ(x) ≤ δ(x ∨ y) and δ(y) ≤ δ(x ∨ y), so δ(x) ∨ δ(y) ≤ δ(x ∨ y).

(ii)=⇒(i): Let δ(x)∨ δ(y) ≤ δ(x ∨ y) and x ≤ y. Since x ∨ y = y, we have δ(x)∨
δ(y) ≤ δ(y). Also it is known that δ(y) ≤ δ(x)∨ δ(y). Hence we obtain δ(x)∨ δ(y) =
δ(y), so δ(x) ≤ δ(y).

(i)=⇒(iii): Since x ∧ y ≤ x and x ∧ y ≤ y and δ is an isotone mapping, we have
δ(x ∧ y) ≤ δ(x) and δ(x ∧ y) ≤ δ(y) and so δ(x ∧ y) ≤ δ(x) ∧ δ(y). By Theorem 3
(ii), we have δ(x) ∧ δ(y) ≤ δ(x ∧ y). Hence δ(x) ∧ δ(y) = δ(x ∧ y).

(iii)=⇒(i): Let δ(x ∧ y) = δ(x)∧ δ(y) and x ≤ y. Since x ∧ y = x, we get
δ(x) = δ(x ∧ y) = δ(x)∧ δ(y) ≤ δ(y).
(i)=⇒(iv): Since x ≤ 1 and δ is an isotone mapping, we have δ(x) ≤ δ(1).By

Theorem 1 (iv), since δ(x) ≤ x, we get δ(x) ≤ x∧ δ(1). By Theorem 2 (ii), we have
δ(x) ∧ y ≤ δ(x ∧ y). Taking x = 1, we get δ(1) ∧ y ≤ δ(y) for all y ∈ L. Hence we
have δ(x) = x ∧ δ(1).

(iv)=⇒(iv): Let δ(x) = x ∧ δ(1) and x ≤ y. Since x ∧ y = x, we have
δ(x) = δ(x ∧ y) = (x ∧ y) ∧ 1 = (x ∧ 1) ∧ (y ∧ 1) = δ(x) ∧ δ(y). Hence δ(x) ≤

δ(y). �
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References

[1] N. O. Alshehri. Generalized Derivations of Lattices. Int. J. Contemp. Math. Sci.,

5(13)(2010), 629–640.
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[17] M. Sapancı, M. A. Öztürk and Y. B. Jun. Symmetric bi-derivations on prime rings. East

Asian Mathematical Journal, 15(1)(1999), 105–109.
[18] J. Vukman. Symmetric bi-derivations on prime and semi-prime rings. Aequationes Mathe-

maticae 38(1989), 245–254.
[19] J. Vukman. Two results concerning symmetric bi-derivations on prime rings. Aequationes

Mathematicae 40(1990), 181–189.
[20] X. L. Xin, T. Y. Li and J. H. Lu. On derivations of lattices. Inform. Sci., 178(2)(2008),

307–316.

Receibed by editors 23.05.2018; Revised version 11.11.2018; Available online 19.11.2018.

Suleyman Demirel University, Faculty of Arts and Sciences,, Dept. of Mathematics,
32260-Isparta-TURKEY

E-mail address: yilmazceven@sdu.edu.tr


