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ON CHARACTERIZATIONS OF LATTICES USING THE
GENERALIZED SYMMETRIC BI-DERIVATIONS

YILMAZ CEVEN

ABSTRACT. In this paper, we introduced the notion of generalized symmetric
bi-derivation on lattices and investigated some related properties.We char-
acterized the distributive and modular lattices by generalized symmetric bi-
derivations.

1. INTRODUCTION

The lattice algebra plays a significant role in various branches such as information
theory, information retrieval, information access controls and cryptanalysis [4, 6, 8,
16]. Recently, the properties of lattices were widely researched. In the theory of
rings, the notion of derivation is an important topic to study. After the derivation
on a ring was defined by Posner in [15], many researchers studied the derivation
theory on various algebraic structures. In [9, 20], authors introduced the notion
of derivation on a lattice and discussed some related properties. In [1], Alshehri is
introduced the notion of generalized derivation for a lattice and investigated various
properties. After the symmetric biderivation on rings was defined in [10, 11] by
Maksa, a lot of researchers studied the symmetric biderivation in rings and near-
rings [12, 13, 17, 18, 19]. In [7], Ceven applied the notion of symmetric biderivation
to lattices and investigated some related properties. The notion of generalized
biderivation on rings was introduced by Argag in [2].

In this paper, we apply the notion of generalized symmetric biderivation to
lattices and investigate some related properties which is discussed in [7] and [14].
Also we characterize the distributive and modular lattices by generalized symmetric
biderivations.
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2. PRELIMINARIES

Definition 1. ([5]) Let L be a nonempty set endowed with operations ”A” and
"VvIOIE (L, A, V) satisfies the following conditions for all z,y, z € L, then L is called
a lattice.

(a) cAx=2x,2Va=ur,

b)zAy=yAz,xVy=yVaz,

() (zAhy)Az=xzAYAz),(aVy)Vz=zV(yVz),

d) (zAy)Vz=z,(zVy) ANz ==z

Definition 2. ([5]) Let (L, A, V) be a lattice. A binary relation ”< ” is defined by
r<yifandonlyif t Ay=x and x Vy =y.

Definition 3. [5] A lattice L is distributive if the following identities hold:
Dan(yvz)=(xAz)V(zAz),
)zV(yAz)=(@Vy A(zVz).

In any lattice, the above conditions are equivalent.

Definition 4. ([3]) A lattice L is modular if the following identity holds:
Ifx <z thenxzV(yAz)=(zVy)A-z

Lemma 1 ([20]). Let (L,A,V) be a lattice. Define the binary relation "<” as the
Definition 2. Then (L,<) is a poset and for any xz,y € L, x Ay is the g.l.b of
{z,y}, and x V y is the Lu.b. of {z,y}.

Definition 5. Let L be a lattice. A mapping D(.,.) : LxL — L is called symmetric
it D(z,y) = D(y,«) holds for all z,y € L.

Definition 6. Let L be a lattice. A mapping d : L — L defined by d(x) = D(z, x)
is called trace of D(.,.), where D(.,.) : L x L = L is a symmetric mapping.

Definition 7. ([10, 20]) Let L be a lattice and d : L — L be a mapping. The
mapping d is called a derivation on L, if it satisfies the following condition

dz Ny) = (d(z) Ay) V (z A d(y))
for all z,y,z € L.

Definition 8. ([1]) Let L be a lattice. A function D : L — L is called a generalized
derivation on L if there exists a derivation d : L — L such that

Dz Ay) = (D(x) Ay) V (zAd(y))
for all z,y,z € L.

Definition 9. ([7]) Let L be a lattice and D : L x L — L be a symmetric mapping.
We call D a symmetric biderivation on L, if it satisfies the following condition

D(x Ny, z) = (D(xz,2) Ny) V (x A D(y, 2))
for all z,y,z € L.

Note that if D is a symmetric biderivation on a lattice L, then the mappings
dy: L — L,dy(z) = D(z,y) and dy : L — L, da(y) = D(x,y) are derivations on
L.
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Proposition 1 ([7]). Let L be a lattice and let d be the trace of symmetric bi-
deriwation D. Then the following hold:

i) D(z,y) <z and D(z,y) <y ,

11) D(l}y) <z Ay,

i) d(z) <z,

iv) d?(x) = d(z),
forall z,y € L.

3. THE GENERALIZED SYMMETRIC BI-DERIVATIONS ON LATTICES

The following definition introduces the notion of generalized symmetric bi-derivation
for a lattice.

Definition 10. Let L be a lattice, D : L x L — L be a symmetric biderivation
and A : L x L — L be a symmetric mapping. We call A a generalized symmetric
biderivation related to D, if it satisfies the following condition

Az ANy, z) = (A(z,2) Ay) V (z A D(y, 2))

for all z,y,z € L.The mapping 6 : L — L defined by 6(z) = A(z, z) is called the
trace of generalized symmetric biderivation A.

Obviously, a generalized symmetric biderivation A on L satisfies the relation
Alx,y N z) = (A(z,y) AN2) V (y A D(z,2)) for all z,y,z € L.

Now we give examples and present some properties for a generalized symmetric
biderivation on L.

Example 1. Let L be a lattice with a least element 0. The mapping D(z,y) =0
is a symmetric biderivation on L. Define a mapping on L by A(x,y) = x Ay for all
xz,y € L. Then we can see that A is a generalized symmetric biderivation related
to D on L.

Example 2. Let L be a lattice with a least element 0 and a € L. The mapping on
L defined by A(z,y) = (x Ay) Aa is a generalized symmetric biderivation related
to D(z,y) =0 on L.

Proposition 2. Let A is a generalized symmetric biderivation related to a sym-
metric biderivation D. Then the mappings f1 : L — L, fi(z) = A(x,z) and
fo: L — L, fa(y) = A(z,y) are generalized derivations on L.

filxAy) =A(x ANy, 2)
Proof. We have = (A(z,2) Ny) V (x A D(y, 2))
= (fil@) Ay) V(A gr(y)).
In this equation, the mapping g1 : L — L, g1(y) = D(y, z) is a derivation on
L where D is the symmetric biderivation. Hence the mapping fi is a generalized
derivation on L. O

Theorem 1. Let L be a lattice, A be a generalized symmetric biderivation related
to a symmetric biderivation D, § be the trace of A and d be the trace of D. Then
(i) D(z,y) < A(z,y) for all z,y € L.
If L is distributive lattice, then
(i) Aw,y) <@ and Al,y) < v,
(if)) A(z,9) < 2 Ay,
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(iv) d(z) < d(x) < =
V)dz)=2z = 90(z)==z
for all x,y € L.

Proof. (i) Since
Az,y) =AzAz,y)
= (Alz,y) Az)V (2 A D(x,9)
= (A(z,y) Az)V D(z,y), (by Proposition 1 (i))
it is seen that D(z,y) < A(z,y).
(i) If L is distributive lattice, then we have
Az,y) = (A(Z‘, y) ANx)V D(ﬂl‘, Y)
= (Aw,y) v D(,9) A (2 v D(w,y)
= A(z,y) Az, by (i) and Proposition 1 (i).
Hence it is seen that A(z,y) < x. Since A is a symmetric, we have also A(z,y) <
y.
(i) is clear by (ii).
(iv) is clear by (i) and (ii).
(v) is clear by (iv). O

Corollary 1. Let L be a distributive lattice and A be a generalized symmetric
biderivation related to a symmetric biderivation D. Let the least element of L be
0 and the greatest element of L be 1. Then A(0,x) = A(x,0) = 0 and A(l,z) =
A(x,1) <z for allz € L.

Proof. 1t is trivial from the Theorem 1 (ii). O

Theorem 2. Let L be a distributive lattice, A be a generalized symmetric bideriva-
tion related to a symmetric biderivation D, § be the trace of A and d be the trace
of D. Then
(i) 6°(z) = d(x
(i) 6(z Ay) =
(iii) D(x,y) <
for all x,y € L.

Proof. (i) Using Proposition 1(i) and Theorem 1 (iv), we have
0*(x) =d(6(x))
= 6(x A d(x))
— Alw A d(z), 2 A 6(2))
= (A(z, 3 A 8(2) A8(@) V (2 A D(3(2), 2 A 5(2))
[( (z,2) Ad(x)) V (x A D(0(x), )] Ad(x)}
A(D(z,6(x)) Ad(x)) V (2 A D(8(x), 5(2)))]}
Eg) D(6(x), )] A8(@)} v {z A () v 3(x)]}
roposition 1(i) and Theorem 1 (iv), we have
=A(xz ANy, Ay)
= (A(z,z Ay) Ay)
{[(A(z, ) Ay) v
{z AN (D(z,y) Ny
{[(3(x) Ay) v D(a,
{(6(z) Ay) v D(z,
= (6(x) Ay) V(2 Ad(

\%
N

{
{z
{
5
Pr

V (z A D(y,z ANy))

(z A D(z,y))] Ay}

)V (z A D(y,y))]}

Ay VA{z A[D(z,y) vV (zAd(y))]}
PVAD(z,y) v (z Ad(y))}

)V D(z,y)
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(iii) It is clear by (ii). O

Theorem 3. Let L be a distributive lattice and A be a generalized symmetric
biderivation related to a symmetric biderivation D and § be the trace of A. Then

d(z) Nd(y) < 6(z) Né(y) < 6(z Ay)
forall x,y € L.

Proof. By Theorem 2 (iii) and Theorem 1 (iv), since 6(z) Ay < d(x A y) and
0(y) <y, we get 6(z) Ad(y) < d(z) ANy < d(z Ay). Using Theorem 1 (iv), we have
d(z) Ad(y) < d(z) Ad(y). 0

Theorem 4. Let L be a distributive lattice and A be a generalized symmetric
biderivation related to a symmetric biderivation D. Let the least element of L be O
and the greatest element of L be 1, then

(i) if x <6(1), then 6(x) =z,

(ii) if x > 6(1), then 6(1) < (z),

(iii) if x <y and d(y) =y, then §(z) = x.

Proof. From Theorem 2 (iii), we have (1) A z < §(z). Hence
(i) if # < §(1), then we get « < 0(z). Using Theorem 1 (iv), we get d(z) = .
(ii) If z > (1), then we have (1) < §(x).
(iii) Since §(z) <z < y,d(y) =y, D(z,y) < & we have, by Theorem 2 (ii),
§(x) =d(zNy)
=(0(z) Ay)V (z Ad(y)) V D(z,y)
=46(x) VeV D(z,y)

= Xx.

In every lattice L with the least element 0, the mapping D(z,y) = 0 is a symmet-
ric biderivation. The mapping A(z,y) = « V y in any lattice L is not a generalized
symmetric biderivation related to D(z,y) = 0. Then we have the following Corol-
lary:

Corollary 2. In a lattice with the least element 0, if the mapping A(x,y) =V y
related to D(x,y) =0 is a generalized symmetric biderivation, then the lattice L is
modular lattice.

Proof. From the equality A(y A z,2) = (A(y,x) Az) V (y A D(z,2)), we have x V
(yAz)=(xVy)Azforall z,y,z € L, hence L is a modular lattice. O

Definition 11. Let L be a lattice. The mapping A satisfying Az V y,z) =
Az, z) V Ay, z) for all z,y € L, is called a joinitive mapping.

Theorem 5. Let L be a lattice and A be a joinitive and symmetric mapping with
the trace § on L. Then

(i) 6(xVy) =6d(x) Viy) vV A,y) ,

(i) 8(x) v 3(y) < 3z v y)
forall x,y € L.

Proof. (i) By the definition of joinitive mapping and symmetry, we have
d(zVy) =AlxVyzVy)
=A(z,2) VAz,y) V Ay, y)
=46(z) Vi(y) VvV A(z,y).
(ii) it is clear from (i). O
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Proposition 3. If the mapping A(x,y) = x Ay in a lattice L is also a joinitive
mapping, then the lattice L is a distributive lattice.

Proof. Using the equality A(x V y,z) = A(x,2) V Ay, z), we have (z Vy) Az =
(xAN2)V(yAz) forall x,y € L. So L is a distributive lattice. O

Let L be a distributive lattice, A be a generalized symmetric biderivation related
to a symmetric biderivation D, ¢ be the trace of A and d be the trace of D.
Denote Fizy(L) = {x € L:d(x) =z}. By Theorem 1 (v), € Fixq(L) implies
that x € Fias(L) for all x € L. That is, Fizg(L) C Fixs(L). Furthermore, from
the Theorem 4 (iii), z € Fizq(L) and y < x implies that y € Fixs(L).

Definition 12. Let L be a lattice, A be a generalized symmetric biderivation
related to a symmetric biderivation D, ¢ be the trace of A. If z < y implies d(z) <
0(y), then ¢ is called an isotone mapping.

Proposition 4. Let L be a distributive lattice, A be a generalized symmetric
biderivation related to a symmetric biderivation D, § be the trace of A. If § is
isotone and x,y € Fixs(L), then 6(xVy) =xVy for all x,y € L.

Proof. Since x < xVy and y < xVy and J is isotone, we have é(x) < §(z Vy) and
0(y) < d(x Vy). So it is seen that §(x) V é(y) < d(z V y) and since z,y € Fizs(L),
xVy < d(xVy). By Theorem 1 (iv), since 6(z Vy) < z V y, we obtain d(z V y) =
TV y. ([l

Proposition 5. Let L be a distributive lattice, A be a generalized symmetric
biderivation related to a symmetric biderivation D, & be the trace of A and d be the
trace of D. Then 1 € Fixs(L) if and only if 6 is an identity mapping.

Proof. If 1 € Fixs(L), since 6(1) = 1, by Theorem 2, we have
0(z)=61ANz)=(01Q)Az)V(IAdx)VD(l,z)=cVdx)VvD(l,z)=u.
Converse is trivial. O

Theorem 6. Let L be a distributive lattice, A1 and Ao be generalized symmetric
biderivations related to a same symmetric biderivation D. The mapping Ay A Aq
defined by (A1AA2) (2, y) = A1 (z,y)ANAs(z,y), is a generalized symmetric bideriva-
tion related to the symmetric biderivation D.

Proof. Since
(AL ANA)(z ANy, 2) =DA1(x ANy, z) ANDAa(x Ay, 2)

— [(A1(2,2) Ay) V (2 A D(y, 2))]
A[(Dz(z,2) Ay) V (z A D(y, 2))]
= [(As(z,2) Ay) A (Do, 2) Ay)V (x A Dy, 2))

= (Ay(x,2) NAs(z,2) ANy) V (z A D(y, 2))

(A1 A Aa)(z,2) A y) V (A D(y, 2)),
so the Theorem is true. (]

Theorem 7. Let L be a distributive lattice, A1 and As be generalized symmetric
biderivations related to a same symmetric biderivation D. The mapping A1 V Aqy
defined by (A1VAQ)(z,y) = Ay (z,y)VAs(x,y), is a generalized symmetric bideriva-
tion related to the symmetric biderivation D.
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Proof. Since
(A VA (xAYy,2) =A1(x Ay, 2)VAs(x Ay, z)
(Ai(z,2) Ay) V (z A D(y, 2))
(Az(z,2) Ay) V (z A Dy, 2))
(Ar(z,2) Ay) V (Az(z,2) Ay) V (z A D(y, 2))
= ((A1(z,2) V As(z,2)) Ay) V (z A D(y, 2))
(A1 V Az)(z,2) Ay) V (z A D(y, 2)),
so the Theorem is true. O

<1

Proposition 6. Let L be a distributive lattice, A1 and As be generalized symmetric
biderivations, §, be the trace of Ay and do be the trace of Ao. If 61 and §o are isotone
mapping, then 61 = d2 if and only if Fixs, (L) = Fixs,(L).

Proof. Let Fixs, (L) = Fixs,(L). If © € Fixs, (L), since §1(d1(x)) = d1(x), we
have 8, (z) € Fixs, (L) = Fizs,(L). Hence d2(d1(z)) = d1(x). Similarly, we see that
01(d2(z)) = 02(z). Since §; and d2 are isotone mapping and §;(z) < x,d02(x) <
x, we get d2(d1(x)) < da(z) = 61(d2(x)) and 61(02(x)) < d1(x) = 02(d1(z)). So
91(82(x)) = 02(d1(z)). Therefore we obtain d1(x) = d2(d1(xz)) = 01(d2(z)) = d2(x),
that is, §;1 = do. The converse is trivial. O

Proposition 7. Let L be a distributive lattice and A be a generalized symmetric
biderivation related to a symmetric biderivation D, § be the trace of A and the
greatest element of L be 1. Then the following conditions are equivalent:

(i) 9 is an isotone mapping
(il) 8(2)V 8(y) < d(x V 1)
(ili) 6(z Ay) = 6(x)A 6(y)
(iv) 6(z) =x A 6(1) for all z,y € L.

Proof. (i)=(ii): Since x < zVy and y < 2 V y and § is an isotone mapping, we
have 6(z) < d(zVy) and é(y) < d(z Vy), so d(z) Vi(y) < d(zVy).

(i) = (1) Let §(z)V 6(y) < §(x Vy) and z < y. Since z V y = y, we have §(z)V
Iso it is known that d(y) < §(x)V 6(y). Hence we obtain 6(z)V §(y) =

’J>

< 6(y).
(i)==(iii): Since x Ay <z and z Ay < y and 0 is an isotone mapping, we have
0(xANy) < d(z) and 6(x Ay) < d(y) and so §(z Ay) < d(z) Ad(y). By Theorem 3

—~

ii), we have 6(z) A d(y) < o(xz Ay). Hence d(z) A d(y) = d(z A y).

(iil)=>(i): Let 6(z Ay) = 6(x)A §(y) and x < y. Since Ay = x, we get

6(x) =d(z Ay) = 6(z)A o(y) < 6(y).

(i)=>(iv): Since z < 1 and J is an isotone mapping, we have é(x) < §(1).By
Theorem 1 (iv), since §(z) < z, we get §(x) < 2 AJ(1). By Theorem 2 (ii), we have
0(x) Ny < 0(xz Ay). Taking z = 1, we get (1) Ay < d(y) for all y € L. Hence we
have 6(z )—x/\é( ).

(iv)=>(iv): Let 6(z) = 2 A d(1) and = < y. Since & Ay = x, we have

o(x) = 5(3:/\y) =(@AyYyANl=(xA)A{YAL) =dx)Ad(y). Hence §(z) <

6(y). 0

—_ T
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