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SOME APPLICATIONS OF EXISTENCE OF

COMMON FIXED AND COMMON STATIONARY

POINT OF A HYBRID PAIR

Anita Tomar, Ritu Sharma, and Shivangi Upadhyay

Abstract. The common fixed and the common stationary point in a symmet-

ric space using Hausdorff distance and δ-distance respectively are established.
Results obtained are utilised to solve the functional equations in dynamic pro-
gramming and Volterra integral inclusion and are supported by illustrative
examples.

1. Introduction

Contractive conditions perform significant role in establishing common fixed
and common stationary point of a single valued, set-valued and a hybrid pair of
mappings. One of the most advantageous result in the fixed point theory is the
Banach contraction principle (1922, [1]), which has been generalized in distinctive
directions. In particular, set-valued generalization of Banach contraction is given
by Nadler [4]. It is well known that coincidence point, common fixed point and
common stationary point theorems of pairs of mappings are some generalizations of
theorems of a single mapping. Over the last decades, fixed point theory for a hybrid
pair has been investigated extensively as it provides the techniques for solving a
variety of problems emerging in different branches of mathematics, physics, biology
economics, engineering and so on. Motivated by the fact that a common fixed
point of a hybrid pair of mappings may be viewed as a rest-point of the dynamic
system whereas a common stationary point may be observed as an end-point of the
system, we establish coincidence point, common fixed point and common stationary
point in a symmetric space using CLR-property introduced by Sintunaravat and
Kumam [5] and later extended it to a hybrid pair of mapping by Imdad et al.
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[2]. Also we establish common fixed point and common stationary point using
a common limit range property-type I, (CLR-I property) recently introduced by
Yamaod and Sintunavarat [7]. In the last section, results obtained are applied to
find the solutions of functional equations emerging in dynamic programming and
Volterra integral inclusion.

2. Preliminaries

A symmetry on a set X is a function d : X ×X → [0,∞) satisfying d(x, y) = 0
iff x = y and d(x, y) = d(y, x) for all x, y ∈ X. A pair (X, d) is known as a
symmetric space. A subset A of X is said to be

(1) Closed if A = Ā where Ā = {x ∈ X : d(x,A) = 0}.
(2) Bounded if δ(A) < ∞ where δ(A) = sup{d(a, b) : a, b ∈ A}.

We shall follow the following notations and definitions.
CB(X) = Class of all nonempty closed and bounded subsets of X.

H(A,B) = max{sup
x∈A

d(x,B), sup
x∈B

d(x,A)},

for every A,B ∈ CB(X), x ∈ X, where d(x,A) = inf{d(x, a) : a ∈ A}. Such a
mapping H is called a Pompeiu-Hausdorff metric (distance) on CB(X). Clearly,
(CB(X),H) is a symmetric space.

• (t, S) is known as a hybrid pair if t : X → X is a single valued and
S : X → CB(X) is a set-valued mapping.

• u ∈ X is a coincidence point of a hybrid pair (t, S) if tu ∈ Su.
• u ∈ X is a stationary coincidence point of a hybrid pair (t, S) if Su = {tu}.
• u ∈ X is a common fixed point of a hybrid pair (t, S) if u = tu ∈ Su.
• u ∈ X is a common stationary point of a hybrid pair (t, S) if Su = {tu} =

{u}.
By the convergence of Hausdorff metric H we mean that, lim

n→∞
H(An, A) = 0,

where A ∈ CB(X) and {An} ⊂ CB(X), i.e., for any ϵ > 0, there exists a positive
integer N such that An ∈ Nδ(A) = {x ∈ X : d(x,A) < ϵ}, for all n > N.

Definition 2.1. ([2]) A hybrid pair (t, S) satisfies the CLRt-property (com-
mon limit in the range property) with respect to S, if ∃ a sequence {xn} ∈ X and
A ∈ CB(X) satisfying

lim
n→∞

txn = tu ∈ A = lim
n→∞

Sxn, for u ∈ X.

Now we furnish example of CLRt-property with respect to S in a symmetric
space.

Example 2.1. Let X = [0, 5] and d(x, y) = (x − y)2 be given. Let us define
t and S as tx = 3+x

2 and Sx = [2, x], for all x ∈ X. Let {un} in X be defined as

un = 3 + 1
2n , n ∈ N. Clearly, we have

lim
n→∞

tun = 3 = t3 ∈ [2, 3] = lim
n→∞

Sun.

Therefore, the hybrid pair (t, S) satisfies (CLRt)-property.
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Significance of the (CLRt)-property is that one does not need closedness of
range subspaces or completeness of space for the existence of common fixed point
as well as common stationary point using it. It is interesting to notice that, if tX is
closed, then a non-compatible hybrid pair (t, S) satisfies the (CLRt)-property with
respect to S.

Recently Yamaod and Sintunavarat [7] introduced the following modification
of the common limit in the range property.

Definition 2.2. [7] A hybrid pair (t, S) of a metric space (X, d) satisfies the
CLRt-I property with respect to t, (common limit in the range property-type I),
if ∃ {xn} ∈ X,u ∈ X and A ∈ CB(X) satisfying

lim
n→∞

txn = tu ∈ A = lim
n→∞

Sxn

and lim
n→∞

Sxn ̸= Su for all n ∈ N.

Clearly, a hybrid pair (t, S) satisfying CLRt-I property also satisfies (CLRt)-
property however reverse implication need not be true.

3. Main Results

In all that follows ϕ : [0,∞) → [0,∞) is a continuous monotonic increasing
function satisfying ϕ(0) = 0 and ϕ(t) < t for each t > 0.

Theorem 3.1. Let a hybrid pair (t, S) of a symmetric space (X, d) satisfies:

(1) (CLRt)-property with respect to S,

(2) δP (Sx, Sy) 6

ϕ

{
max{dP (tx, ty), dP (tx, Sx), dP (ty, Sy), 1

2 (d
P (Sy, tx) + dP (Sx, ty))}

}
,

for each x, y ∈ X, P > 1. Then t and S have a stationary coincidence point.
Furthermore, they have a unique common stationary point given that ttu = tu for
some u ∈ C(t, S) ̸= ϕ.

Proof. Since a hybrid pair (t, S) satisfies the (CLRt)-property with respect
to S, ∃ a sequence {xn} ∈ X satisfying lim

n→∞
txn = tu ∈ A = lim

n→∞
Sxn, for u ∈ X

and A ∈ CB(X). Now, we prove Su = {tu}. If not, taking x = xn and y = u in
condition (2),

δP (Sxn, Su) 6

ϕ

{
max{dP (txn, tu), d

P (txn, Sxn), d
P (tu, Su),

1

2
(dP (Su, txn) + dP (Sxn, tu))}

}
.

Letting n → ∞,

δP (A,Su) 6

ϕ

{
max{dP (tu, tu), dP (tu,A), dP (tu, Su),

1

2
(dP (Su, tu) + dP (A, tu))}

}
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or δP (A,Su) 6 ϕ(dP (tu, Su)) or δP (A,Su) < dP (tu, Su). Since tu ∈ A, it follows
from the definition of δ distance

dP (tu, Su) 6 δP (A,Su) < dP (tu, Su), a contradiction.

Hence, dP (tu, Su) = 0, i.e., Su = {tu}. Thus u is a stationary coincidence point,
i.e., C(t, S) ̸= ϕ. Now by the assumption we have Su = {ttu} = {tu}. From
condition (2), for x = tu and y = u we get

δP (Stu, Su) 6

ϕ

{
max{dP (ttu, tu), dP (ttu, Stu), dP (tu, Su), 1

2
(dP (Su, ttu) + dP (Stu, tu))}

}
or

δP (Stu, Su) 6 ϕ(dP (tu, Stu)) < (dP (tu, Stu)).

Using the definition of δ distance

dP (tu, Stu) 6 δP (Stu, Su) < dP (tu, Stu), a contradiction.

Hence, Su = {ttu} = {tu} ⇒ tu is a common stationary point. Now the uniqueness
follows using condition (2). �

Theorem 3.2. Let a hybrid pair (t, S) of a symmetric space (X, d) satisfies:

(1) (CLRt)-property with respect to S.
(2) δ(Sx, Sy) 6

ϕ

{
max{d(tx, ty), d(tx, Sx), d(ty, Sy), 1

2 (d(Sy, tx) + d(Sx, ty))}
}
,

for each x, y ∈ X. Then t and S have a stationary coincidence point. Furthermore,
they have a unique common stationary point, given that ttu = tu for some u ∈
C(t, S) ̸= ϕ.

Proof. Proof follows on putting P = 1 in Theorem 3.1. �

Example furnished exhibits a fascinating feature of the main result that con-
tinuity of mappings is not essentially required for the existence of a common sta-
tionary point.

Example 3.1. X = [0, 7] and d be symmetric onX such that d(x, y) = (x−y)2.
Let mappings t and S on X be defined as follows:

tx =

{
5 + x, 0 6 x < 2
2, 2 6 x 6 7,

Sx =

{
[0, 1], 0 6 x < 2
{2}, 2 6 x 6 7.

Consider a sequence {xn} for all n 6 1 such that xn = 2 + log(1 + 1
n ). It is clear

that

lim
n→∞

txn = 2 ∈ {2} = lim
n→∞

Sxn.

Hence, the hybrid pair (t, S) satisfies (CLRt)-property with respect to S. The
point t = 2 is a stationary coincidence point and tt2 = t2.

For x, y ∈ [0, 2), we have δ(Sx, Sy) = 1 6 1
2 (4 + x)2 = d(tx,Sx)

2 .

For x ∈ [0, 2) and y ∈ [2, 7], we have δ(Sx, Sy) = 4 6 1
2 (4 + x)2 = d(tx,Sx)

2 .
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For x ∈ [2, 7] and y ∈ (0, 2], we have δ(Sx, Sy) = 4 6 1
2 (4 + y)2 = d(ty,Sy)

2 .
For x, y ∈ [2, 7], we have δ(Sx, Sy) = 0.
Thus, all the hypotheses of Theorem 3.2 are satisfied for ϕ(t) = t

2 and 2 is their
common stationary point. Furthermore, t and S are both discontinuous mappings
and tx ̸⊂ Sx.

Now we establish our next result using Hausdorff distance.

Theorem 3.3. Let a hybrid pair (t, S) of a symmetric space satisfies:

(1) (CLRt)-property with respect to S,

(2) HP (Sx, Sy) 6 ϕ

{
max{dP (tx, ty), dP (tx, Sx), dP (ty, Sy), 1

2 (d
P (Sy, tx) +

dP (Sx, ty))}
}
,

for each x, y ∈ X, P > 1. Then t and S have a coincidence point. Furthermore,
they have a unique common fixed point in X given that ttu = tu for some u ∈
C(t, S) ̸= ϕ.

Proof. Since a hybrid pair (t, S) satisfies the (CLRt)-property with respect
to S, ∃ a sequence {xn} ∈ X satisfying lim

n→∞
txn = tu ∈ A = lim

n→∞
Sxn, u ∈

X and A ∈ CB(X). Now, we prove tu ∈ Su. If not, taking x = xn and y = u in
condition (2),

HP (Sxn, Su) 6 ϕ

{
max{dP (txn, tu), d

P (txn, Sxn), d
P (tu, Su),

1

2
(dP (Su, txn)+

dP (Sxn, tu))}
}
.

Letting n → ∞,

HP (A,Su) 6 ϕ

{
max{dP (tu, tu), dP (tu,A), dP (tu, Su),

1

2
(dP (Su, tu)+

dP (A, tu))}
}

or

HP (A,Su) 6 ϕ(dP (tu, Su))

or

HP (A,Su) < dP (tu, Su).

Since tu ∈ A, it follows from the definition of hausdroff distance

dP (tu, Su) 6 HP (A,Su) < dP (tu, Su), a contradiction.

Hence, dP (tu, Su) = 0, i.e., tu ∈ Su ⇒ u is a coincidence point, i.e., C(t, S) ̸= ϕ.
Now by the assumption we have ttu = tu ∈ Su. Taking x = tu, y = u in condition
(2),

HP (Stu, Su) 6 ϕ

{
max{dP (ttu, tu), dP (ttu, Stu), dP (tu, Su), 1

2
(dP (Su, ttu)+
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dP (Stu, tu))}
}

or
HP (Stu, Su) 6 ϕ(dP (tu, Stu)) < dP (tu, Stu).

From the definition of Hausdorff distance

dP (tu, Stu) 6 HP (Stu, Su) < dP (tu, Stu), a contradiction.

Hence, tu = ttu ∈ Stu, i.e., tu is a common fixed point. Now the uniqueness follows
using condition (2). �

Theorem 3.4. Let a hybrid pair (t, S) of a symmetric space (X, d) satisfies:

(1) (CLRt)-property with respect to S,

(2) H(Sx, Sy) 6 ϕ

{
max{d(tx, ty), d(tx, Sx), d(ty, Sy), 1

2 (d(Sy, tx) +

d(Sx, ty))}
}
,

for each x, y ∈ X. Then t and S have a coincidence point. Furthermore, t and S
have a unique common fixed point in X given that ttu = tu for some u ∈ C(t, S) ̸=
ϕ.

Proof. Proof follows on putting P = 1 in Theorem 3.3. �
Example furnished demonstrate the fact that continuity of mappings is no

longer required using Hausdorff distance for the existence of common fixed point
via CLRt-property.

Example 3.2. X = [0, 4] and d be the symmetry such that d(x, y) = (x− y)2.
Let mappings t and S on X be defined as:

tx =

{
x, 0 6 x 6 1
4, 1 < x 6 4,

Sx =

{
[1, 2], 0 6 x 6 1
[ 12 ,

3
4 ], 1 < x 6 4.

Consider a sequence {xn} for all n > 1 in such a way that xn = 1− 1
n . So

lim
n→∞

txn = 1 ∈ [1, 2] = lim
n→∞

Sxn.

Hence, the hybrid pair (t, S) satisfies CLRt-property with respect to S. The point
t = 1 is a coincidence point and tt1 = t1. Now,

For x, y ∈ [0, 1], we have H(Sx, Sy) = 0.

For x ∈ [0, 1] and y ∈ (1, 4], we have H(Sx, Sy) = 9
4 6 1

2 (4− x)2 = d(tx,ty)
2 .

For x ∈ (1, 4] and y ∈ [0, 1], we have H(Sx, Sy) = 25
16 6 1

2 (4− y)2 = d(tx,ty)
2 .

For x, y ∈ (1, 4], we have H(Sx, Sy) = 0.
Thus, all the hypotheses of Theorem 3.4 are verified for ϕ(t) = t

2 and 1 is the
common fixed point of t and S. Further, t and S are both discontinuous mappings
and tx ̸⊂ Sx.

Now we utilise recently introduced CLRt-I property to establish unique com-
mon fixed point of a hybrid pair using Hausdorff distance.

Theorem 3.5. Let a hybrid pair (t, S) of a symmetric space (X, d) satisfies:
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(1) (CLRt)-I property with respect to S,

(2) HP (Sx, Sy) 6 ϕ

{
max{dP (tx, ty), dP (tx, Sx), dP (ty, Sy), 1

2 (d
P (Sy, tx) +

dP (Sx, ty))}
}
,

for each x, y ∈ X, P > 1. Then t and S have a coincidence point. Furthermore,
they have a unique common fixed point in X given that ttu = tu for some u ∈
C(t, S) ̸= ϕ.

Proof. Since (t, S) satisfies (CLRt)-I property with respect to the mapping
S, ∃ a sequence {xn} ∈ X satisfying

lim
n→∞

txn = tu ∈ A = lim
n→∞

Sxn, u ∈ X,A ∈ CB(X)

and lim
n→∞

Sxn ̸= Su for all n ∈ N.
Now, we prove tu ∈ Su. If not, taking x = xn and y = u in condition (2) we have

HP (Sxn, Su) 6 ϕ

{
max{dP (txn, tu), d

P (txn, Sxn), d
P (tu, Su),

1

2
(dP (Su, txn)+

dP (Sxn, tu))}
}
.

Letting n → ∞,

HP (A,Su) 6 ϕ

{
max{dP (tu, tu), dP (tu,A), dP (tu, Su),

1

2
(dP (Su, tu)+

dP (A, tu))}
}

or
HP (A,Su) 6 ϕ(dP (tu, Su))

or
HP (A,Su) < dP (tu, Su).

Since tu ∈ A, it follows from the definition of Hausdorff distance

dP (tu, Su) 6 HP (A,Su) < dP (tu, Su), a contradiction.

Hence, dP (tu, Su) = 0 ⇒ tu ∈ Su, i.e., u is a coincidence point, i.e., C(t, S) ̸= ϕ.
Now by the assumption we have ttu = tu ∈ Su. Taking x = tu and y = u in the
condition (2) we have

HP (Stu, Su) 6 ϕ

{
max{dP (ttu, tu), dP (ttu, Stu), dP (tu, Su), 1

2
(dP (Su, ttu)+

dP (Stu, tu))}
}

or
HP (Stu, Su) 6 ϕ(dP (tu, Stu)) < dP (tu, Stu).

From the definition of Hausdorff distance

dP (tu, Stu) 6 HP (Stu, Su) < dP (tu, Stu), a contradiction.
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Hence, tu = ttu ∈ Stu ⇒ tu is a common fixed point. The uniqueness follows using
condition (2). �

Theorem 3.6. Let a hybrid pair (t, S) of a symmetric space (X, d) satisfies:

(1) (CLRt)-I property with respect to S,

(2) H(Sx, Sy) 6 ϕ

{
max{d(tx, ty), d(tx, Sx), d(ty, Sy), 1

2 (d(Sy, tx) +

d(Sx, ty))}
}
, for all x, y ∈ X. Then t and S have a coincidence point.

Furthermore, they have a unique common fixed point in X given that
ttu = tu for some u ∈ C(t, S) ̸= ϕ.

Proof. Proof follows on putting P = 1 in Theorem 3.5. �

Example 3.3. X = [0, 12] and d be the symmetry such that d(x, y) = (x−y)2.
Let the mappings t and S be defined as follows:

tx =

{
4− x, 0 6 x 6 2
12, 2 < x 6 12,

Sx =

{
[ 32 , 3], 0 6 x < 2
[2, 4], 2 6 x 6 12.

Consider a sequence {xn} for all n > 1 such that xn = 2− e−n. Clearly,

lim
n→∞

txn = 2 ∈ [
3

2
, 3] = lim

n→∞
Sxn

and lim
n→∞

Sxn = [
3

2
, 3] ̸= [2, 4] = Su. Hence, the pair (t, S) satisfies CLRt-I property

with respect to S. The point u = 2 is a coincidence point and uu2 = u2.
For x, y ∈ [0, 2], we have H(Sx, Sy) = 0.

For x ∈ [0, 2) and y ∈ (2, 12], we have H(Sx, Sy) = 1 6 1
60 (8 + x)2 = d(tx,ty)

60 .
For x = 2 and y ∈ [2, 12],we have H(Sx, Sy) = 0.

For x ∈ (2, 12] and y ∈ [0, 2),we have H(Sx, Sy) = 1 6 1
60 (8 + y)2 = d(tx,ty)

60 .

For x ∈ (2, 12] and y = 2, we have H(Sx, Sy) = 1 6 1
60100 = d(tx,ty)

60 .
For x, y ∈ [2, 4], we have H(Sx, Sy) = 0.

Thus, t and S satisfy all the conditions of Theorem 3.6 for ϕ(t) = t
60 and 2 is their

common fixed point of t and S. Further, t and S are both discontinuous mappings
and tx ̸⊂ Sx.

Remark 3.1. All the theorems generalize and improve the related theorems
included in Imdad and Chauhan [2], Sintunavarat and Kumam [5], Yamaod and
Sintunavarat [7] and others without using completeness, continuity or containment
of involved mappings.

4. Applications

4.1. Application to Dynamic Programming Problem. Consider a mul-
tistage process, reduced to the system of functional equations

(4.1) qi(x) = sup
y∈D

{g(x, y) +Gi(x, y, q(τ(x, y)))}, x ∈ W, i ∈ {1, 2}
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where τ : W ×D → W , g : W ×D → R and Gi : W ×D × R → R are mappings,
while W ⊆ U is a state space, D ⊆ V is a decision space and U, V are Banach
spaces.

Let B(W ) be the set of all bounded real-valued functions onW. For an arbitrary
h ∈ B(W ), define ∥h∥ = supx∈W |h(x)|2 with respective metric d. Also, (B(W ), ∥.∥)
is a Banach space wherein convergence is uniform. Therefore, if we consider a
Cauchy sequence {hn} ∈ B(W ), then the sequence {hn} converges uniformly to a
function, say h∗ ∈ B(W ).

Theorem 4.1. Let Ti : B(W ) → B(W ) be such that:

(1) ∃ a continuous monotonic increasing function ϕ : [0,∞) → [0,∞) satis-
fying ϕ(0) = 0 and ϕ(t) < t for each t > 0, such that:

|G1(x, y, h1(x)−G2(x, y, h2(x))| 6 [ϕ(Θ(h1, h2))]
1
2 , where

Θ(h1, h2) = max

{
d(T1h1, T1h2), d(T1h1, T2h1), d(T1h2, T2h2),

1

2
(d(T1h2, T2h1)+

d(T2h2, T1h1))

}
, for h1, h2 ∈ B(W ), x ∈ W, y ∈ D;

(2) ∃ a sequence {hn} in B(W ) and h∗ ∈ B(W ) satisfying

lim
n→∞

T1hn = lim
n→∞

T2hn = T1h
∗;

(3) g : W × D → R and Gi : W × D × R → R are bounded functions, for
i = 1, 2;

(4) T1T1h = T1h, whenever T1h = T2h, h ∈ B(W ).

Then the functional equations

(4.2) Tihi(x) = sup
y∈D

{g(x, y) +Gi(x, y, hi(τ(x, y)))}, hi ∈ B(W ), x ∈ W, i ∈ {1, 2}

has a unique bounded solution.

Proof. By hypothesis (2), the pair (T1, T2) satisfies the CLRt-property with
respect to T1. Now, let λ be an arbitrary positive number, x ∈ W and h1, h2 ∈
B(W ). ∃ y1, y2 ∈ D satisfying

(4.3) T2h1(x) < g(x, y1) +G1

(
x, y1, h1(τ(x, y1))

)
+ λ,

(4.4) T2h2(x) < g(x, y2) +G2

(
x, y2, h2(τ(x, y2))

)
+ λ.

Also by definition

(4.5) T2h1(x) > g(x, y2) +G1

(
x, y2, h1(τ(x, y2))

)
,

(4.6) T2h2(x) > g(x, y1) +G2

(
x, y1, h2(τ(x, y1))

)
.
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Next, by using inequalities (4.3) and (4.6), we obtain

(4.7) T2h1(x)− T2h2(x) < G1

(
x, y1, h1(τ(x, y1))

)
−G2

(
x, y1, h2(τ(x, y1))

)
+ λ

6
∣∣∣∣G1

(
x, y1, h1(τ(x, y1))

)
−G2

(
x, y1, h2(τ(x, y1))

)∣∣∣∣+ λ

(4.8) 6 [ϕ(Θ(h1, h2))]
1
2 + λ.

Analogously, using inequalities (4.4) and (4.5), we get

(4.9) T2h2(x)− T2h1(x) < [ϕ(Θ(h1, h2))]
1
2 + λ.

Combining inequalities (4.8) and (4.9), we get

|T2h1(x)− T2h2(x)| < [ϕ(Θ(h1, h2))]
1
2 + λ.

Implying there by

|T2h1(x)− T2h2(x)| < [ϕ(Θ(h1, h2))]
1
2 ,

which does not depend on x ∈ W and λ > 0 is arbitrary. So, on squaring we get

d(T2h1, T2h2) < ϕ(Θ(h1, h2)).

Using(4), for each t = T1, S = T2 all the conditions of Theorem 3.2 are verified
for the pair (T1, T2). Hence, the operators T1 and T2 have a unique common fixed
point, implying there by that the system of functional equations (4.2) has a unique
bounded solution. �

4.2. Application to Volterra integral inclusions. Inspired by Türkoğlu
and Altun [6], in this section, we establish the existence of solutions of integral
inclusion of the type

(4.10) x(t) ∈ q(t) +

σ(t)∫
a

k(t, s)F (s, x(s))ds

for t ∈ J , where σ : J → J, q : J → E, k : J × J → R are continuous, F : J × E →
C(E), E is a real Banach space with norm ∥.∥E , C(E) denotes the class of all non-
empty closed subsets of E and J = [a, b] in R is a closed and bounded interval. By a
solution for the integral inclusion (4.10), we mean a continuous function x : J → E
such that

x(t) = q(t) +

σ(t)∫
a

k(t, s)v(s)ds

for some v ∈ B(J,E) satisfying v(t) ∈ F (t, x(t)), t ∈ J , where B(J,E) is the
space of all E-valued Bochner-integrable functions on J . Let C(J,E) denote the
space of all continuous E-valued functions on J. Define a norm ∥.∥ on C(J,E) by
∥x∥ = supt∈J |x(t)|2E . We use the following definitions.

Definition 4.1. A multivalued function β : J×E → 2E is called Carathèodory
if
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(1) t → β(t, x) is measurable for each x ∈ E, and
(2) x → β(t, x) is upper semi-continuous almost everywhere for t ∈ J .

Denote ∥F (t, x)∥ = sup{∥u∥2E : u ∈ F (t, x)}

Definition 4.2. A Carathèodory multifunction F (t,X) is L1- Carathèodory
if for every real number r > 0 there exists a function hr ∈ L1(J,R) such that
∥F (t, x)∥ 6 hrt for almost every t ∈ J and x ∈ E with ∥x∥E 6 r.

Denote S1
F = {v ∈ B(J,E) : v(t) ∈ F (t, x(t)) a. e. t ∈ J}

Lemma 4.1 ([3]). If diam(E) < ∞ and F : J × E → 2E is L1- Carathèodory,
then S1

F ̸= ϕ for each x ∈ C(J,E).

Lemma 4.2 ([3]). Let E be a Banach space, F a Carathèodory multi-mapping
with S1

F ̸= ϕ and L : L1(J,E) → C(J,E) be a continuous linear mapping. Then the

operator LoS1
F : C(J,E) → 2C(J,E) is a closed graph operator on C(J,E)×C(J,E).

Suppose that the following set of hypotheses hold:

(1) The function k(t, s) is non-negative on J × J with M = supt,s∈J [k(t, s)]
2;

(2) the multivalued function F (t, x) is Carathèodory;
(3) the multivalued function F (t, x) is nondecreasing in x almost everywhere

for t ∈ J ;
(4) there exists a continuous monotonic increasing function ϕ : [0,∞) →

[0,∞) satisfying ϕ(0) = 0 and ϕ(t) < t for each t > 0 such that

|F (s, x(s))− F (s, y(s))| 6 1

M
ϕ(∆(x, y)),

for all s ∈ J, x ∈ E, where

∆(x, y) = max

{
d(tx, ty), d(tx, Sx), d(ty, Sy),

1

2
(d(Sy, tx) + d(Sx, ty))

}
;

(5) S1
F ̸= ϕ for each x ∈ C(J,E);

(6) ∃ a sequence {xn} ∈ C(J,E) and A ∈ 2C(J,E) satisfying
lim
n→∞

xn = z ∈ A = lim
n→∞

Sxn, for z ∈ C(J,E).

Theorem 4.2. Assume that hypotheses (1)-(6) hold. Then the integral inclu-
sion (4.10) has a solution in [a, b] defined on J .

Proof. Let X = C(J,E) and consider the interval [a, b] ∈ X. Define the
multivalued mapping S : [a, b] → 2X for u ∈ [a, b] as

Sx =

{
u(t) = q(t) +

∫ σ(t)

a

k(t, s)v(s)ds

}
v ∈ S1

F (x) for every t ∈ [a, b]. Clearly S is well-defined, since, from (5), S1
F ̸= ϕ.

For all t ∈ [a, b] by (2) and (4) we get

|Sx− Sy| =
∣∣∣∣ ∫ σ(t)

a

(
k(t, s)v1(s)− k(t, s)v2(s)

)
ds

∣∣∣∣
E

.
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Squaring both sides

|Sx− Sy|2 6
∫ σ(t)

a

|k(t, s)|2|v1(s)− v2(s)|2Eds

6 sup
t,s∈J

[k(t, s)]2|F (s, x(s))− F (s, y(s))| = M |F (s, x(s))− F (s, y(s))|.

This implies that
H(Sx, Sy) 6 ϕ(∆(x, y)),

for each t ∈ J. We deduce that the operator S satisfy condition (4), where t is an
identity mapping. Also, using (6), S satisfies all conditions of Theorem 3.4 on [a, b]
and we conclude that the given integral inclusion has a unique solution. �
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