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EQUITABLE TOTAL DOMINATING GRAPHS

B. Basavanagoud and Sujata Timmanaikar

Abstract. The equitable total dominating graph Dqt(G) of a graph G =
(V, E) is the graph with the vertex set V ∪ S where S is the collection of all
minimal equitable total dominating sets of G with two vertices u, v ∈ V ∪ S

adjacent in Dqt(G) if u ∈ V and v is a minimal equitable total dominating
set in S containing u. In this paper, we initiate a study of this new graph
and obtain basic properties of Dqt(G) like, connectedness, covering invariants,
connectivity, traversability and planarity.

1. Introduction

All graphs considered here are simple, finite, connected and nontrivial. Let G =
(V (G), E(G)) be a graph, where V (G) is the vertex set and E(G) be the edge set of
G. The vertex v ∈ V is called a pendant vertex, if deg

G
(v) = 1 and an isolated vertex

if deg
G
(v) = 0, where deg

G
(x) is the degree of a vertex x ∈ V (G). A vertex which

is adjacent to a pendant vertex is called a support vertex. We denote �(G)(Δ(G))
as the minimum(maximum) degree and n = ∣V (G)∣, m = ∣E(G)∣ the order and size
of G respectively. A spanning subgraph is a subgraph containing all the vertices of
G. A shortest u − v path is often called a geodesic. The diameter diam(G) of a
connected graph G is the length of any longest geodesic. The neighborhood of a
vertex u in V is the set N(u) consisting of all vertices v which are adjacent with
u. The closed neighborhood is N [u] = N(u) ∪ {u}. A subset S ⊆ V (G) is said to
be vertex covering set if every edge of G is incident to at least one vertex in S.
The minimum cardinality among all vertex covering sets is called vertex covering
number. It is denoted by �0(G). A subset F ⊆ E(G) is said to be edge covering set
if every vertex of G is incident to at least one edge in F . The minimum cardinality
among all edge covering sets is called edge covering number. It is denoted by �1(G).
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58 EQUITABLE TOTAL DOMINATING GRAPH

The cardinality of maximum independent set of vertices( respectively edges) of a
graph G is called vertex(respectively edge) independence number. It is denoted
by �0(G) (respectively �1(G)). The vertex connectivity is the minimum number
of vertices are required to disconnect a graph. It is denoted by �(G). Similarly,
the edge connectivity is the minimum number of edges are required to disconnect
a graph. It is denoted by �(G).

A subset D of V is called a dominating set of G if every vertex in V − D is
adjacent to some vertex in D. A dominating set D of G is minimal if for every
vertex v ∈ D, D−{v} is not a dominating set of G. The domination number 
(G)
of G is the minimum cardinality of a minimal dominating set.

Cockayne et. al [3] introduced the concept of total domination in graphs.
A dominating set D of G is called a total dominating set if ⟨D⟩ has no isolated
vertices. The minimum cardinality of a total dominating set of G is called the total
domination number of G and is denoted by 
t(G).

A subset D of V is called an equitable dominating set if for every vertex v ∈
V −D there exists a vertex u ∈ D such that uv ∈ E(G) and ∣deg(u)− deg(v)∣ ⩽ 1.
The minimum cardinality of such a dominating set is called the equitable domination
number and is denoted by 
e(G). This concept was introduced by Swaminathan
et. al [12].

A subset D of V is called an equitable total dominating set of G, if D is an
equitable dominating set and ⟨D⟩ has no isolated vertices. The minimum cardinal-
ity taken over all equitable total dominating sets is the equitable total domination
number [2] and is denoted by 
e

t (G).

The minimal dominating graph of G is an intersection graph on the minimal
dominating sets of vertices of G. This concept was introduced by Kulli and Janaki-
ram [8].

In [9], the concept of common minimal dominating graph of G was defined
as the graph having same vertex set as G with two vertices adjacent if there
is a minimal dominating set containing them. The concept of vertex minimal
dominating graph MV D(G) of G was introduced in [10], as the graph having
V (MV D(G)) = V (G) ∪ S(G), where S(G) is the set of all minimal dominating
sets of G with two vertices u, v adjacent if they are adjacent in G or v = D is a
minimal dominating set containing u.

The edge dominating graph ED(G) of G as the graph with V (ED(G)) =
E(G) ∪ S(G), where S(G) is the set of all minimal edge dominating sets of G

with two vertices u, v ∈ V (ED(G)) adjacent, if u ∈ E and v = S is a minimal edge
dominating set containing u [1].

In this paper, we introduce the concept of equitable total dominating graph,
which is defined as follows:

Definition 1.1. The equitable total dominating graph Dqt(G) of a graph G =
(V,E) is the graph with the vertex set V ∪S where S is the collection of all minimal
equitable total dominating sets of G with two vertices u, v ∈ V ∪ S adjacent in
Dqt(G) if u ∈ V and v is a minimal equitable total dominating set in S containing
u..
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In Figure 1, a graph G and its equitable total dominating graph Dqt(G) are
shown: Here the minimal equitable total dominating sets of a graph G are: D1 =
{1, 2}, D2 = {1, 3}, D3 = {2, 3} .

b

b b

b b b

b b b

1

2 3

G : Dqt(G) :

1 2 3

{1, 2} {1, 3} {2, 3}

Figure 1: A graph and its equitable total dominating graph.

2. Observations

(1) For any graph G, Dqt(G) is bipartite, hence bicolorable.
(2) V (Dqt(G)) = V ∪ S, where S is the set of all minimal equitable total

dominating sets in G. No two vertices of G and S(G) are adjacent vertices
in Dqt(G).

(3) For star graph, Dqt(G) does not exist.

(4) V (Dqt(G)) ⩽ n(n+1)
2 , where p is the number of vertices in G.

3. Connectedness of Dqt(G)

Theorem 3.1. For any graph G, the equitable total dominating graph Dqt(G)
of G is connected if and only if

(1) vi ∩ {s1, s2, s3, ⋅ ⋅ ⋅ , sk} ∕= �, where vi ∈ V ; 1 ⩽ i ⩽ p;

(2)
∪k

j=1 sj = V .

Proof. Let G be a graph with vertex set V = {v1, v2, v3, ⋅ ⋅ ⋅ , vp} and let S be
set of all minimal equitable total dominating sets of G i.e S = {s1, s2, s3, ⋅ ⋅ ⋅ , sk}
for some positive integer k. Suppose G does not satisfies the conditions (1) and (2),
then there exist a vertex say vi ∈ V (G) which belongs to the minimal equitable total
dominating set sj ∈ S(G) such that vi ∩ sj = �. Hence there is no path between
the vertex vi or sj to any other vertex of Dqt(G). Hence Dqt(G) is disconnected.

Conversely, suppose G satisfies the conditions (1) and (2) then there is a path
between any pair of vertices in Dqt(G). Hence Dqt(G) is connected. □

Theorem 3.2. For any connected graph G, Dqt(G) = S1(G) if and only if
every pair of adjacent vertices of G forms an equitable total dominating set in G,
where S1(G) is the subdivision graph of G.

Proof. Let Dqt(G) = S1(G). Suppose there exists a pair of adjacent vertices
in G which do not forms an equitable total dominating set in G, then in Dqt(G)
these two vertices are independent and have no common point to join them, a
contradiction. Hence every pair of adjacent vertices of G forms an equitable total
dominating set in G.

Converse is obvious. □
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Proposition 3.1. For any disconnected graph G with n-components (G ∕=
∪n

i=1 K2), Dqt(G) is (n+1) partite graph.

Proof. Suppose G is connected then Dqt(G) is bipartite by Observation (1).
That is if G has only one component then Dqt(G) is bipartite. Suppose G has two
components then we get 3 pair of independent vertex sets i.e., Dqt(G) is tripartite.
Hence for n-components of G, Dqt(G) is (n+1) partite graph. □

4. Covering invariants for Dqt(G)

Theorem 4.1. For any graph G, �0(Dqt(G)) = max{∣V ∣, ∣S∣}, where V is the
vertex set of a graph G and S is the set of all minimal equitable total dominating
sets of G.

Proof. Let G be a graph with vertex set V = {v1, v2, v3, ⋅ ⋅ ⋅ , vp} and let S be
set of all minimal equitable total dominating sets of G i.e., S = {s1, s2, s3, ⋅ ⋅ ⋅ , sk}
for some positive integer k. Notice that Dqt(G) is a bipartite graph with the
partition V ∪ S. Hence no two vertices in the set V or in the set S are adjacent.
Therefore, the set of maximum cardinality will form a vertex independence number
for Dqt(G). Thus, �0(Dqt(G)) = max{∣V ∣, ∣S∣}. □

Corollary 4.1. For any graph G, �0(Dqt(G)) =

{

∣S∣, if ∣V ∣ > ∣S∣

∣V ∣, if ∣S∣ > ∣V ∣
, where

V is the vertex set of a graph G and S is the set of all minimal equitable total
dominating sets of G.

Proof. By Theorem 4.1, �0(Dqt(G)) = max{∣V ∣, ∣S∣}. Also we know that
V (Dqt(G)) = V ∪ S. Hence the theorem follows from the fact for any graph G,
�0(G) + �0(G) = p [4]. □

Theorem 4.2. For any graph G, �1(Dqt(G)) =

{

∣S∣, if ∣V ∣ > ∣S∣

∣V ∣, if ∣S∣ > ∣V ∣
, where

V is the vertex set of a graph G and S is the set of all minimal equitable total
dominating sets of G.

Proof. Let G be any graph. Then by Observation (1), Dqt(G) is bipartite.
Since for any bipartite graph G, �0(G) = �1(G). Therefore the result follows from
Corollary 4.1. □

Corollary 4.2. For any graph G, �1(Dqt(G)) = ∣V ∣+ ∣S∣−�1(Dqt(G)) where
V is the vertex set of a graph G and S is the set of all minimal equitable total
dominating sets of G.

Proof. Let G be any graph. By the definition ofDqt(G), V (Dqt(G)) = V (G)∪
S(G), i.e., ∣V (Dqt(G))∣ = ∣V ∣+ ∣S(G)∣. Further from Theorem 4.2 and the fact that
�1(G) + �1(G) = ∣V (G)∣, we have the following useful observations

∙ Suppose ∣V (G)∣ < ∣S(G)∣, then �1(Dqt(G)) = ∣S(G)∣.
∙ Suppose ∣V (G)∣ > ∣S(G)∣, then �1(Dqt(G)) = ∣V (G)∣.
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□

Corollary 4.3. For any graph G, �1(Dqt(G)) ⩽ p(p+1)
2 − �1(Dqt(G)) where

V is the vertex set of a graph G and S is the set of all minimal equitable total
dominating sets of G.

Proof. Proof follows from Observation (4) and Corollary 4.2. □

5. Connectivity of Dqt(G)

Theorem 5.1. For any graph G,

�(Dqt(G)) = min{min1⩽i⩽p(deg(vi)),min1⩽j⩽p∣sj ∣}

where sj are the minimal equitable total dominating sets in G.

Proof. Let G be a (p, q) graph. Clearly vertex set and equitable total domi-
nating sets of G are independent. We consider the following cases.

Case1 : Let u ∈ vi for some i, having minimum degree among all vi’s in Dqt(G).
If the degree of u is less than any other vertex in Dqt(G), then by deleting those
vertices of Dqt(G) which are adjacent with u results in a disconnected graph.

Case2 : Let w ∈ sj for some j having minimum degree among all vertices of
sj ’s. If degree w is less than any other vertices in Dqt(G), then by deleting those
vertices which are adjacent with w, results in a disconnected graph. Thus

�(Dqt(G)) = min{min1⩽i⩽p(deg(vi)),min1⩽j⩽p∣sj ∣}.

□

Theorem 5.2. For any graph G,

�(Dqt(G)) = min{min1⩽i⩽p(deg(vi)),min1⩽j⩽p∣sj ∣}

where sj are the minimal equitable total dominating sets in G.

Proof. Let G be a (p, q) graph. Clearly vertex set and equitable total domi-
nating sets of G are independent. We consider the following cases.

Case1 : Let u ∈ ei for some i, having minimum degree among all ei’s in Dqt(G).
If the degree of u is less than any other edge in Dqt(G), then by deleting those edges
of Dqt(G) which are adjacent with u results in a disconnected graph.

Case2 : Let w ∈ sj for some j having minimum degree among all edges of sj ’s.
If degree w is less than any other edge in Dqt(G), then by deleting those edges
which are adjacent with w, results in a disconnected graph. Thus

�(Dqt(G)) = min{min1⩽i⩽p(deg(vi)),min1⩽j⩽p∣sj ∣}.

□
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6. Traversability of Dqt(G)

Theorem 6.1. For any graph G, the equitable total dominating graph Dqt(G)
of G is eulerian if and only if the following conditions are satisfied,

(1) vi ∩ {s1, s2, s3, ⋅ ⋅ ⋅ , sk} ∕= �, where vi ∈ V ; 1 ⩽ i ⩽ n;

(2)
∪k

j=1 sj = V ,

(3) ∣si∣ = 2x; 1 ⩽ i ⩽ k, x ∈ ℤ
+.

Proof. Let G be a graph having vertex set V = {v1, v2, v3, ⋅ ⋅ ⋅ , vp} and let S
be set of all minimal equitable total dominating sets of G i.e S = {s1, s2, s3, ⋅ ⋅ ⋅ , sk}
for some positive integer k. Suppose G satisfies the conditions (1) and (2), then by
Theorem 4.1 Dqt(G) is connected. Now, suppose G satisfies the condition (3), then
the degree of a vertex sj ∈ V (Dqt(G)) and vi ∈ V (Dqt(G)) will be even. Hence
there exist a eulerian path in Dqt(G). Therefore Dqt(G) is eulerian.

Conversely, suppose G does not satisfies any of the above conditions (1), (2)
and (3). Then Dqt(G) either disconnected or containing a vertex of odd degree.
Hence G must satisfies the conditions (1)-(3). □

Theorem 6.2. For any graph G, the equitable total dominating graph Dqt(G)
of G is hamiltonian if the following conditions are satisfied,

(1) vi ∩ {s1, s2, s3, ⋅ ⋅ ⋅ , sk} ∕= �, where vi ∈ V ; 1 ⩽ i ⩽ p,

(2)
∪k

j=1 sj = V

(3) ∣si∣ = 2; 1 ⩽ i ⩽ k.

Proof. Suppose G satisfies the conditions (1) and (2) then by Theorem 4.1
Dqt(G) is connected. Now we have to show that Dqt(G) contains a Hamiltonian
cycle. To show this let us assume that G satisfies the condition (3), then the
degree of every vertex in Dqt(G) will be two, and hence there exists a spanning
cycle in Dqt(G). Hence Dqt(G) contains a Hamiltonian cycle. Therefore, Dqt(G) is
Hamiltonian. □

7. Planarity of Dqt(G)

Theorem 7.1. For any graph G, the equitable total dominating graph Dqt(G)
of G is planar if and only if G does not satisfies the following conditions,

(1) vi ∩ {si, sj, sk} ∕= �

(2) vj ∩ {si, sj , sk} ∕= �

(3) vk ∩ {si, sj , sk} ∕= �

for any vi, vj , vk ∈ V (G) and si, sj , sk ∈ S.

Proof. Let G be a graph having vertex set V = {v1, v2, v3, ⋅ ⋅ ⋅ , vp} and let S
be set of all minimal equitable total dominating sets ofG i.e., S = {s1, s2, s3, ⋅ ⋅ ⋅ , sk}
for some positive integer k. Now we have to prove that the equitable total dominat-
ing graph is planar if and only if it satisfies the hypothesis of the theorem. By well
known Kurtowski’s theorem, a graph G is nonplanar if and only if K5 or K3,3 is
not a subgraph of G. By Observation (1), the equitable total dominating graph is
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bipartite. Therefore, K5 will not be a subgraph of Dqt(G) because it contains odd
cycles. Now we have left with a choice of recognizing the complete bipartite graph
K3,3 as a subgraph in Dqt(G). Let us assume that the hypothesis of the theorem
is true, then the degree of every vertex i.e vi, vj , vk, si, sjandsk will be 3 and by
Observation (1), Dqt(G) is bipartite. Hence Dqt(G) contains a subgraph K3,3 as a
subgraph. Therefore, Dqt(G) is planar if hypothesis of the theorem is not satisfied
by G.

Conversely, if G does not satisfies the hypothesis of the theorem, then Dqt(G)
does not contain a subgraph homeomorphic to K5 or K3,3. Hence Dqt(G) is pla-
nar. □

Theorem 7.2. For any graph G, the equitable total dominating graph Dqt(G)
of G is outerplanar if and only if G does not satisfies the following conditions,

(1) vi ∩ {si, sj} ∕= �

(2) vj ∩ {si, sj} ∕= �

(3) vk ∩ {si, sj} ∕= �

for any vi, vj , vk ∈ V (G) and si, sj ∈ S.

Proof. Let G be a graph having vertex set V = {v1, v2, v3, ⋅ ⋅ ⋅ , vp} and let S
be set of all minimal equitable total dominating sets of G i.e S = {s1, s2, s3, ⋅ ⋅ ⋅ , sk}
for some positive integer k. Now we have to prove that the equitable total domi-
nating graph is outertplanar if and only if it satisfies the hypothesis of the theorem.
We know that a graph G is outerplanar if and only if G does not contain K4 or
K2,3 as a subgraph. By Observation (1), the equitable total dominating graph is
bipartite. Therefore, K4 will not be a subgraph of Dqt(G) because it contains odd
cycles. Now we have left with a choice of recognizing the complete bipartite graph
K2,3 as a subgraph in Dqt(G). Let us assume that the hypothesis of the theorem
is true, then the degree of every vertex i.e vi, vj , vk is 2 and the degree of si, sj will
be 3 and by Observation (1), Dqt(G) is bipartite. Hence Dqt(G) contains K2,3 as
a subgraph. Therefore, Dqt(G) is outerplanar if hypothesis of the theorem is not
satisfied by G.

Conversely, if G does not satisfies the hypothesis of the theorem, then Dqt(G)
does not contain a subgraph homeomorphic to K4 or K2,3. Hence Dqt(G) is outer-
planar. □

Theorem 7.3. For any graph G, the equitable total dominating graph Dqt(G)
of G is maximal planar if and only if G does not satisfies the following conditions,

(1) vi ∩ {si, sj, sk} ∕= �

(2) vj ∩ {si, sj , sk} ∕= �

(3) vk ∩ {si, sj} ∕= �

for any vi, vj , vk ∈ V (G) and si, sj , sk ∈ S.

Proof. Let G be a graph having vertex set V = {v1, v2, v3, ⋅ ⋅ ⋅ , vp} and let S
be set of all minimal equitable total dominating sets of G i.e S = {s1, s2, s3, ⋅ ⋅ ⋅ , sk}
for some positive integer k. Now we have to prove that the equitable total dom-
inating graph is maximal planar if and only if it satisfies the hypothesis of the
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theorem. We know that a graph G is maximal planar if and only if G does not
contain K5 − x or K3,3 − x (where x is any edge) as a subgraph. By Observation
(1), the equitable total dominating graph is bipartite. Therefore, K5 − x will not
be a subgraph of Dqt(G) because it contains odd cycles. Now we have left with
a choice of recognizing the graph K3,3 − x as a subgraph in Dqt(G). Let us as-
sume that the hypothesis of the theorem is true, then the degree of every vertex
i.e vi, vk, si, sj is 3 and the degree of the vertices vj , sk are 2 and by Observation 1,
Dqt(G) is bipartite. Hence Dqt(G) contains K3,3 − x as a subgraph. Hence Dqt(G)
is maximal planar if hypothesis of the theorem is not satisfied by G.

Conversely, if G does not satisfies the hypothesis of the theorem, then Dqt(G)
does not contain a subgraph homeomorphic to K5 − x or K3,3 − x. Hence Dqt(G)
is maximal planar. □
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