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ON COEQUALITY RELATIONS

ON SET WITH APARTNESS

Daniel Abraham Romano

Abstract. This investigation is in the mathematics based on the Intuition-
istic logic. A relation ρ is a coequality relation if it is consistent, symmetric
and co-transitive. For a coequality relation ρ on a set X with apartness we

analyze the family Cop(X) of all classes of the relation. Characteristics of this
family allow us to introduce a new concept, ’co-partition’ in set with apaerness
- a specific family of proper subsets. In addition, a connection between the
family of all coequality relations and the family of all co-partitions is given.

At the end of this article, some examples and applications in the semigroups
with apartness theory are given.

1. Introduction

This investigation is in Bishop’s constructive mathematics in sense of well-
known books [1, 2, 3, 4, 5, 8, 9, 13, 14] and our papers [6, 7, 10, 11, 12].

Bishop’s constructive mathematics is develop on the Intuitionistic Logic ([8,
13, 14])- logic without the Law of Excluded Middle P ∨ ¬P . Let us note that in
the Intuitionistic Logic the ’Double Negation Law’ P ⇐⇒ ¬¬P does not hold, but
the following implication P =⇒ ¬¬P holds even in the Minimal Logic. Since the
Intuitionistic Logic is a part of the Classical Logic, these results in the Constructive
mathematics are compatible with suitable results in the Classical mathematics. Let
us recall that the following deduction principle A ∨B,¬B ⊢ A is acceptable in the
Intuitionistic Logic.

Let (X,=, ̸=) be a set, where the relation ̸= is a binary relation on X, called
diversity on X, which satisfies the following properties:

¬(x ̸= x), x ̸= y =⇒ y ̸= x, (x ̸= y ∧ y = z) =⇒ x ̸= z.
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Following Heyting ([8]), if the following implication

(∀x, y, z ∈ X)(x ̸= z =⇒ (x ̸= y ∨ y ̸= z))

holds, the diversity ̸= is called apartness. Let x be an element of X and A a subset
of X. We write x◃ A if and only if (∀a ∈ A)(x ̸= a), and A◃ = {x ∈ X : x◃ A}.
In X ×X the equality and diversity are defined by

(x, y) = (u, v) ⇐⇒ x = u ∧ y = v,

(x, y) ̸= (u, v) ⇐⇒ x ̸= u ∨ y ̸= v

and equality and diversity relations in power-set ℘(X ×X) of X ×X by

α = β ⇐⇒ (∀(x, y) ∈ X ×X)((x, y) ∈ α⇐⇒ (x, y) ∈ β),

α ̸= β ⇐⇒ (∃x, y ∈ X)((x, y) ∈ α∧ (x, y)◃β)∨ (∃x, y ∈ X)((x, y) ∈ β∧ (x, y)◃α).
Let us note that the diversity relation ̸= is not an apartness relation, in general
case.

Example 1.1. (1) The relation ¬(=) is an apartness on the set Z of integers.

(2) The relation q, defined on the set QN by

(f, g) ∈ q ⇐⇒ (∃k ∈ N)(∃n ∈ N)(m > n =⇒ |f(m)− g(m)| > k−1),

is an apartnerss relation.

(3) In the power-set ℘(X) of set X we define diversity relation on the following
way:

A ̸= B ⇐⇒ (∃a ∈ A)¬(a ∈ B) ∨ (∃b ∈ B)¬(b ∈ A). ♢

In this paper we analyze coequality relation q in set X with separation. Also,
in Theorem 2.1 we analyze the family X/q = {aq : a ∈ X} of all classes of the
coequality relation q generated by elements of set X. This allows us to introduce
a new concept - the specific family of subsets of X called ’co-partition’ of set X
(Theorem 2.2). Further on, we establishing a correspondence between the family
of all coequality relations on set X and the family of all co-partitions in set X
(Theorem 2.3). In addition, in section 3, we give some applications (Theorem 3.2
and Theorem 3.3) in the theory of semigroups with apartness.

So, what is the specificity of this text?
Firstly, it is the using of the Intuitionistic logic instead of the Classical logic.

In Intuitionistic logic formula ’the Law of Excluded Middle’ is neither an axiom
nor a valid formula. Therefore, in this case, a set looks like as the relational system
(X,=, ̸=) where the ′ ̸= ′ is an apartness relation (extensive to the equality on the
set in the following sense: = ◦ ̸= ⊆ ̸=).

Secondly, the duality of the relationship, which appears with this aspect of
observation on concepts and processes in mathematics based on the Intuitionistic
logic, opens possibilities for us to analyze the specific relationships that do not
appear in classical mathematics as coequality relation, for example. So, we are
interested to study some specific relations that appear on sets with the apartness.
In addition, we are also interested to analyze structures based on those specific
relations.
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2. Coequality relation and its co-partition

Definition 2.1. A relation q on X is a coequality relation on X if and only if
it is consistent, symmetric and cotransitive:

q ⊆ ≠, q = q−1, q ⊆ q ∗ q,
where ”∗” the operation of relations α ⊆ X × Y and ⊆ Y ×Z, called filled product
of relations α and β, are relation on X × Z defined by

(a, c) ∈ β ∗ α⇐⇒ (∀b ∈ X)((a, b) ∈ α ∨ (b, c) ∈ β).

For an equivalence e and a coequalence q on set X we say that they are asso-
ciated if e ◦ q ⊆ q holds.

Put on C(x) = {y ∈ X : y ̸= x}. The subset C(x) satisfies the following
implication:

y ∈ C(x) =⇒ (∀z ∈ X)(y ̸= z ∨ z ∈ C(x)).

It is called a principal strongly extensional subset ofX such that x◃C(x). Following
this special case, for a subset A of X, we say that it is a strongly extensional subset
of X if and only if the following implication holds

x ∈ A =⇒ (∀y ∈ X)(x ̸= y ∨ y ∈ A).

For a subset A of set X we say that it is detachable if (∀x ∈ X)(x ∈ A ∨ x◃A)
holds.

For a coequality relation q on a set X we can form the family Aq = {qx}x∈X

of classes of the relation q generated by elements of X. It is clear that xq = qx
because the relation q is symmetric. Since q is a consistent relation, we have
x ◃ qx. Besides, since q is a cotransitive relation any qx is a strongly extensional
subset of X. Indeed, for any elements x, y, z ∈ X such that (x, y) ∈ q, holds
(x, z) ∈ q ∨ (z, y) ∈ q. Thus, by consistency of q, z ∈ qx ∨ y ̸= z. So, the family
{qx}x∈X is a subfamily of strongly extensional subsets of X. Suppose that for two
classes xq and yq is true xq ̸= yq. It means (∃u ∈ X)(u ∈ xq ∧ ¬(u ∈ yq)) or
(∃v ∈ X)(¬(v ∈ xq) ∧ v ∈ yq). From (x, u) ∈ q follows (x, y) ∈ q ∨ (y, u) ∈ q.
Hence, we have xq∪ yq = X because the second case is impossible. From (v, y) ∈ q
we analogously again got xq ∪ yq = X. Therefore, for the family {qx}x∈X is true:

(i) x◃ xq; (ii) xq = qx; and (iii) xq ̸= yq =⇒ xq ∪ yq = X.

Now, suppose that a family {At}t∈X of strongly extensional proper subsets of
X satisfies the following conditions:

(a) For any t ∈ X there exists a strongly extensional subset At such that t◃At;

(b) At ̸= As =⇒ At ∪As = X for any t, s ∈ X.

Let us define a relation R on X by

(x, y) ∈ R if and only if (∃u ∈ X)(x ∈ Au ∧ y ◃Au).

It is clear that relation R is consistent. Besides, for elements x, y there exist subsets
Ax and Ay such that x ◃ Ax and y ◃ Ay. So, since x ∈ Au ∧ x ◃ Ax we have
Au ∪ Ax = X. Hence, y ∈ Ax. Thus, we have x ∈ Ay. Finally, we have x ∈
Ay ∧ y ◃Ay ∧ x◃Ax ∧ y ∈ Ax. So, the relation R is symmetric.
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Assume (x, z) ∈ R and y ∈ X. Then there exist subsets Ax and Az such that
x◃Ax, z ◃Az, x ∈ Az and z ∈ Ax. By (b), we have Ax ∪ Az = X and y ∈ Ax or
y ∈ Az. Therefore, we have x ◃ Ax ∧ y ∈ Ax or y ∈ Az ∧ z ◃ Az. We conclude
that (x, y) ∈ R or (z, y) ∈ R. So, the relation R is a cotransitive relation on X.
Finally, we have that the relation R is a coequality relation on X.

In the following assertion we describe the connection between a coequality
relation R and the corresponding family {At}t∈X .

Theorem 2.1. For a coequality relation R on a set X there exists the unique
family {At}t∈X of strongly extensional subsets of X which satisfies the condition
(a) and (b).

Opposite, if the family {At}t∈X satisfies condition (a) and (b), then the relation
qA, defined by (x, y) ∈ qA ⇐⇒ (∃u ∈ X)(x ∈ Au ∧ y◃Au), is a coeguality relation
on set X.

Therefore, we can construct the family {aq : a ∈ X} of all classes aq = {x ∈
X : (a, x) ∈ q} of q generated by the elements a ∈ X, with

aq = bq ⇐⇒ (a, b)◃ q, aq ̸= bq ⇐⇒ (a, b) ∈ q.

It is clear that the mapping ϑq : X −→ X/q, defined by ϑq(x) = xq, is a
strongly extensional surjective function.

If q is a coequality relation on set X, then the relation q◃ = {(x, y) ∈ S × S :
(x, y) ◃ q} is an equivalence on X associated with q ([6], Theorem 2.3) in the
following way q◃ ◦ q ⊆ q, and we can ([6], Theorem 2.4) construct the factor-set
X/(q◃, q) = {aq◃ : a ∈ X}, where aq◃ = {x ∈ X : (x, a) ∈ q◃} is a class of q◃

generated by the element a, with:

aq◃ = bq◃ ⇐⇒ (a, b)◃ q, aq◃ ̸= bq◃ ⇐⇒ (a, b) ∈ q.

It is easily to check that there exists the strongly extensional, surjective, injec-
tive and embedding mapping ϕ : X/q −→ X/(q◃, q). That mapping is defined by
ϕ(aq◃) = aq.

Definition 2.2. A copartition of a set X is a nonempty collection of nonempty
subsets of X whose satisfy conditions

(a) For any t ∈ X there exists a strongly extensional subset At such that t◃At,

(b) At ̸= As =⇒ At ∪As = X for any t, s ∈ X,

and it is written as Cop(X).

The next theorem shows that if we generate a copartition by means of a co-
equality relation q, then the coequality relation generated by the copartition is
simply q again; and similarly if we begin with the coequality relation generated by
a copartition, this relation generates the given copartition.

Theorem 2.2. Let (X,=, ̸=) be a set with an apartness. Let Coeq(X) be the
family of all coequaity relations on set X, and let Copart(X) be the family of all
copartitions on set X. Then

(1) qX/c = c for every c ∈ Coeq(X);

(2) X/qCop(X) = Cop(X) for every Cop(X) ∈ Copart(X).
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Proof. (1) Let c be a coequality relation on X. Then

(x, y) ∈ c⇐⇒ y ∈ Ax

=⇒ x◃Ax ∧ y ∈ Ax

⇐⇒ (x, y) ∈ qX/c.

(x, y) ∈ qX/c ⇐⇒ (∃Yu ∈ Aq)(x◃ Yu ∧ y ∈ Yu)
⇐⇒ (∃Yu ∈ Aq)(x◃ Yu ∧ (y, u) ∈ c)
=⇒ (∃Yu ∈ Aq)(x◃ Yu ∧ ((y, x) ∈ q ∨ (x, u) ∈ c))
=⇒ (∃Yu ∈ Aq)(x◃ Yu ∧ (y, x) ∈ c)
=⇒ (y, x) ∈ c.

(2) Let Cop(X) ∈ Copart(X) be a copartition on set X. If Y ∈ Cop(X), then
Y ⊂ X and (∃x ∈ X)(x ◃ Y ). So, for every y ∈ Y , we have (x, y) ∈ qCop(X).
Therefore y◃Yx. Thus Y ⊆ Yx. At the other hand, u ∈ Yx implies (x, u) ∈ qCop(x),
i.e. x ◃ Y and u ∈ Y . So, Y = Yx. We have Cop(X) ⊆ X/qCop(x). Let Yx ∈
X/qCop(X). Then for every element y of Yx we have (x, y) ∈ qCop(X)). Thus, we
conclude that there exists Y ∈ Cop(X) such that x ◃ Y and y ∈ Y . So Yx ⊆ Y .
Therefore Yx ∈ Cop(X), and X/qCop(X) ⊆ Cop(X). �

So, there is a natural correspondence between the family Coeq(X) of all co-
equality relations on X and the family Copart(X) of all copartitions of X.

Theorem 2.3. There exists the unique injective and surjective mapping

ψ : Coeq(X) −→ Copart(X).

Proof. The proof of this assertion is a compilation of Theorem 2.1 and The-
orem 2.2. If we generate a copartition X/q by means of a coequality relation q,
then the coequality relation qX/q generated by the copartition X/q is simply q
again. Similarly, if we begin with the coequality relation qCop(X) generated by
an copartition Cop(X), this relation generates the given copartition, i.e. holds
X/qCop(X) = Cop(X) again. �

In the following theorem we will give some basic properties of classes of asso-
ciated a pair of an equality and a coequality relations.

Theorem 2.4. An equality relation e and a coequality relations q on a set
(X,=, ̸=) are associated if and only if

(∀x, z ∈ X)(x ̸= z ∧ xe ∩ qz ̸= ∅ =⇒ xe ⊆ yq)

Proof. (1) Let e and q be associated relations on set X and let xe ∩ yq ̸= ∅
for each x, z in X such that x ̸= z. Then (∃y ∈ X)(y ∈ xe ∧ y ∈ qz), i.e.
(∃y ∈ X)((x, y) ∈ e ∧ (y, z) ∈ q). Thus (x, z) ∈ q because relation e and q are
associated. Further on, we have
u ∈ ex⇐⇒ (x, u) ∈ e

=⇒ (x, u) ∈ e ∧ (x, z) ∈ q
=⇒ (u, z) ∈ q
⇐⇒ u ∈ zq.

(2) Let (∀x, z ∈ X)(x ̸= z ∧ xe ∩ qz ̸= ∅ =⇒ xe ⊆ yq) holds. Then
(x, y) ∈ e ∧ (y, z) ∈ q ⇐⇒
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(∃ex ∈ X/e)(x ∈ ex ∧ y ∈ ex) ∧ (∃zq ∈ X/q)(y ◃ zq ∧ z ◃ zq) =⇒
(∃xe ∈ X/e)(∃zq ∈ X/q)(x ∈ xe ∧ y ∈ xe ∩ zq ∧ z ◃ zq) =⇒
(∃zq ∈ X/q)(x ∈ xe ⊆ zq ∧ z ◃ zq) ⇐⇒ (x, z) ∈ q. �

3. Examples and applications

Example 3.1. For set X = {1, 2, 3, 4} and coequality relation

R = {(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (4, 1), (4, 2)}

the corresponding family of strongly extensional subsets contains the following sub-
sets: 1R = {2, 3, 4}, 2R = {1, 3, 4}, 3R = {1, 2} and 4R = {1, 2}. ♢

Example 3.2. (1) ([11]) Let T be a set and ℑ be a subfamily of ℘(T ) such
that ∅ ⊆ ℑ, A ⊆ B ∧ B ∈ ℑ =⇒ A ∈ ℑ, A ∩ B ∈ ℑ =⇒ A ∈ ℑ ∨ B ∈ ℑ.
If (Xt)t∈T is a family of sets, then the relation q on

∏
t∈T Xt ( ̸= ∅) defined by

(f, g) ∈ q ⇐⇒ {s ∈ T : f(s) = g(s)} ∈ ℑ, is a coequality relation on the Cartesian
product

∏
tXt.

(2) ([9]) A ring R is a local ring if for each r ∈ R, either r or 1− r is a unit, and let
M be a module over R. The relation q on M , defined by (x, y) ∈ q if there exists a
homomorphism f : M −→ R such that f(x − y) is a unit, is a coequality relation
on M .

(3) Let T be a strongly extensional subset of semigroup S such that (∀x, y ∈ S)(xy ∈
T =⇒ x ∈ T ∧ y ∈ T ). Then relation q on semigroup S, defined by (a, b) ∈ q if and
only if a ̸= b ∧ (a ∈ T ∨ b ∈ T ), is a coequality relation on S and it is compatible
with semigroup operation in the following sense (∀x, y, a, b ∈ S)((xay, xby) ∈ q =⇒
(a, b) ∈ q). In this case, such coequality we call cocongruence on semigroup S.

(4) Let (R,=, ̸=,+, 0, ·, 1) be a commutative ring. A subset Q of R is a coideal
of R if and only if 0 ◃ Q, −x ∈ Q =⇒ x ∈ Q, x + y ∈ Q =⇒ x ∈ Q ∨ y ∈ Q,
xy ∈ Q =⇒ x ∈ Q ∧ y ∈ Q.

Coideals of commutative ring with apartness were first defined and studied
by Ruitenburg 1982 in his dissertation ([13]). After that, coideals (anti-ideals)
studied by A.S. Troelstra and D. van Dalen in their monograph [14] (Vol. II;
Section: Algebra). This author proved, in his paper [10], if Q is a coideal of a ring
R, then the relation q on R, defined by (x, y) ∈ q ⇐⇒ x − y ∈ Q, satisfies the
following properties:
(a) q is a coequality relation on R;
(b) (∀x, y, u, v ∈ R)((x+ u, y + v) ∈ q =⇒ (x, y) ∈ q ∨ (u, v) ∈ q);
(c) (∀x, y, u, v ∈ R)((xu, yv) ∈ q =⇒ (x, y) ∈ q ∨ (u, v) ∈ q).
A relation q on R, which satisfies the property (a)-(c), is called cocongruence on R
([10]) or coequality relation compatible with ring operations. If q is a cocongruence
on a ring R, then the set Q = {x ∈ R : (x, 0) ∈ q} is a coideal of R ([10]). ♢

Let q be a coequality relation on a set X and let f : X×X −→ X be a strongly
extensional mapping. We say that f is compatible with the coequality relation q if

(∀x, y, u, v ∈ X)((f(x, y), f(u, v)) ∈ q =⇒ (x, u) ∈ q ∨ (y, v) ∈ q)
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holds.
In the following theorem we give a result on compatibility of function f :

X2 −→ X with the given coequality relation q on the set X.

Theorem 3.1. If the strongly extensional mapping f : X2 −→ X is compatible
with the coequality relation q on X, then there is a strongly extensional mapping
F : X/q ×X/q −→ X/q such that ϑX ◦ f = F ◦ (ϑX , ϑX).

Proof. Let us define mapping F by F (uq, vq) = f(u, v)q. Then:
(1) Let (xq, yq) = (uq, vq). It means xq = uq and yq = vq. Suppose that s ∈
f(x, y)q, i.e. suppose that (f(x, y), s) ∈ q. Thus, by cotransitivity of q, we have
(f(x, y), f(u, v)) ∈ q or (f(u, v), s) ∈ q Hence, by compatibility f and q follows
(x, u) ∈ q or (y, v) ∈ q or s ∈ f(u, v)q. So, s ∈ f(u, v)q because (x, u) ◃ q and
(y, v)◃ q. Finally, we have f(x, y)q ⊆ f(u, v)q. We also have f(u, v)q ⊆ f(x, y)q
by analogy. Finally, we have f(u, v)q = f(x, y)q. Therefore, the correspondence F
is a mapping.

(2) Let F (uq, vq) ̸= F (xq, yq) be holds for uq, vq, xq, yq ∈ X/q. It means f(u, v)q ̸=
f(x, y)q and (f(u, v), f(x, y)) ∈ q. Since the mapping f is compatible with q, follows
(u, x) ∈ q or (v, y) ∈ q. Finally, we have uq ̸= xq or vq ̸= yq. So, the mapping F is
a strongly extensional.

(3) Let (x, y) be an arbitrary pair of elements of X ×X. We have

(ϑX ◦ f)(x, y) = ϑX(f(x, y)) = f(x, y)q = F (xq, yq) = F (ϑX(x), ϑX(y)) =
F ((ϑX , ϑX)(x, y)) = (F ◦ (ϑX , ϑX))(x, y).

Therefore, seeking equality is valid. �
In the next statement we give a proposition: If q is a coequality relation on a

semigroup S compatible with the semigroup operation, then the copartition S/q is
a semigroup. (On semigroup with apartness reader can find in our articles [6, 7].)

Theorem 3.2. Let (S,=, ̸=, ·) be a semigroup where the semigroup operation
is compatible with the apartness ̸=. If q is a coequality relation on S, then the
family S/q is a semigroup and semigroup operation in S/q, defined by aq · bq =
(ab)q (a, b ∈ S) is compatible with the apartness in S/q.

Proof. Let be x, y, u, v be arbitrary elements in S such that xq = uq and
yq = vq. Let s be an arbitrary element of (ab)q. Thus, ((ab), s) ∈ q. Follows
(ab, uv) ∈ q ∨ (uv, s) ∈ q. By compatibility of the semigroup operation with the
coequality relation q, we have (a, u) ∈ q ∨ (b, v) ∈ q ∨ s ∈ (uv)q. So, s ∈ (uv)q
because (a, u) ◃ q ∧ (b, v) ◃ q. Therefore, we have (ab)q ⊆ (uv)q. Similarly, we
can conclude (uv)q ⊆ (ab)q. Finally, the operation in S/q is well defined.

Let aq · bq = (ab)q ̸= (xy)q = xq · yq be holds for elements a, b, x, y of S. Then
(ab, xy) ∈ q. Thus (a, x) ∈ q or (b, y) ∈ q. So, aq ̸= xq or bq ̸= yq. Therefore, the
operation in S/q is a strongly extensional mapping.

Let a, b, c be arbitrary elements of S. We have

aq · (bq · cq) = aq · (bc)q = a(bc)q = (ab)cq = (ab)q · cq = (aq · bq) · cq.
Finally, the operation in S/q is associative and therefore, S/q is a semigroup. �
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Let q be a coequality relation on a semigroup S with apartness. In the follow-
ing theorem we give a construction of coequality relation q⋆ compatible with the
semigroup operation such that q⋆ is the minimal extension of q.

Theorem 3.3. Let q be a coequality relation on a semigroup (S,=, ̸=, ·, 1).
Then the relation q⋆ = {(x, y) ∈ S × S : (∃a, b ∈ S)((axb, ayb) ∈ q)} is a coequality
relation compatible with the semigroup operation such thet q ⊆ q⋆. If r is a co-
equality relation on S compatible with the semigroup operation such that q ⊆ r ,
then q⋆ ⊆ r.

Proof. (x, y) ∈ q⋆ ⇐⇒ (∃a, b ∈ S)((axb, ayb) ∈ q)
=⇒ (∃a, b ∈ S)(∀u ∈ S)((axb, ayb) ̸= (aub, aub))
=⇒ (∃a, b ∈ S)(∀u ∈ S)(axb ̸= aub ∨ ayb ̸= aub)
=⇒ (∀u ∈ S)(x ̸= u ∨ y ̸= u)
⇐⇒ (∀u ∈ S)(x, y) ̸= (u, u)).

Let (x, y) ∈ q⋆ be an arbitrary element. Then there exist elements a, b in S such
that (axb, ayb) ∈ q. Thus (ayb, axb) ∈ q because q is symmetric. So, (y, x) ∈ q⋆.

Let (x, z) be an element of q⋆ and let y be arbitrary element of S. Then there
exist elements a, b in S such that (axb, azb) ∈ q. Thus we have (axb, ayb) ∈ q or
(ayb, azb) ∈ q because q is cotransitive. Therefore, (x, y) ∈ q⋆ or (y, z) ∈ q⋆.

Let (az, ys) be an element of q⋆. Thus there exist elements a and b in S such
that (axzb, aysb) ∈ q. Further on, we have (axzb, ayzb) ∈ q or (ayzb, aysb) ∈ q.
Therefore (∃a, zb ∈ S)((ax(zb), ay(zb)) ∈ q) or (∃ay, b ∈ S)(((ay)zb, (ay)sb) ∈ q).
So, (x, y) ∈ q⋆ or (z, s) ∈ q⋆.

Let (x, y) be an arbitrary element of q⋆. Then there exist elements a, b ∈ S
such that (axb, ayb) ∈ q ⊆ r. Thus, (x, y) ∈ r since r is a coequality relation on S
compatible with the semigroup operation in S. So, the relation q⋆ is the minimal
extension of q. �
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