
BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE
ISSN (p) 2303-4874, ISSN (o) 2303-4955
www.imvibl.org /JOURNALS / BULLETIN
Vol. 9(2019), 177-188

DOI: 10.7251/BIMVI1901177R

Former
BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA

ISSN 0354-5792 (o), ISSN 1986-521X (p)
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AND COMPLETE ALGEBRAIC GRAPHS

Marapureddy Murali Krishna Rao

Abstract. The main objective of this paper is to connect algebra and graph

theory with functions. In this paper we introduce the notion of algebraic
graph, Eulerian, Hamiltonian,regular and complete algebraic graphs and prove

the results in graph theorey using definition of algebraic graphs. We study the

properties of Hamiltonian, Eulerian algebraic graphs. In this paper,we prove
that the necessary and sufficient condition for a graph to be Hamiltonian using

definition of algebraic graphs.

1. Introduction

In 1735, Euler introduced graph theory to solve Konigsberg bridge problem.
Graph theory serves as a mathematical model for any system involving a binary
relation. A graph is a convenient way of representing information involving rela-
tionship between objects. The objects are represented by vertices and relations by
edges. Many problems that occur in the field of Computer Science, Information
Technology, Electrical Engineering and many other areas can be analyzed by using
techniques described in graph theory.

Ore’s Theorem: Let G(V,E) be a graph of order n(n > 3). If the sum
of degrees of every pair of nonadjacent vertices greater than or equal to n, then
G(V,E) is a Hamiltonian graph.

Dirac’s Theorem: Let G(V,E) be a graph of order n(n > 3). If deg(v) >
n

2
for all v ∈ V , then G(V,E) is a Hamiltonian graph .

Ore’s Theorem and Dirac’s Theorem provide only sufficient conditions for a
graph to be Hamiltonian. We have a characterization of Eulerian graph whereas
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the characterization of Hamiltonian graph is a major unsolved problem in graph
theory. In this paper,we prove that the necessary and sufficient condition for a
graph to be Hamiltonian using definition of algebraic graphs.

2. Preliminaries.

A bijection mapping of a finite set V onto itself is called a permutation. If
V = {v1, v2, . . . , vn} is a finite set and f is a bijection on V , then we write

f =

(
v1 v2 . . . vn

f (v1) f (v2) . . . f (vn)

)
.

If f : V → V is a bijection, then the number of elements of V is called the
degree of f and it is denoted by d(f). Let V = {v1, v2, . . . , vn}. A permutation

f =

(
v1 v2 . . . vk vk+1 . . . vn
v2 v3 . . . vk+1 vk+2 . . . v1

)
is called a cyclic permutation of degree n. It is represented as (v1, v2, . . . , vn) which
is a cycle of length n. If f , g be two cycles on V such that they have no common
element, then f , g are disjoint cycles.

A graph is a pair (V,E) where V is a non-empty set and E is a set of unordered
pairs of elements of V . The graph (V,E) is denoted by G(V,E). The number of
vertices in G(V,E) is called the order of G and it is denoted by |V |. The number
of edges in G(V,E) is called the size of G(V,E) and it is denoted by |E| . Two
vertices x and y in G(V,E) are said to be adjacent or neighbors if {x, y} is an edge
of G. The neighbor set of a vertex x of G(V,E) is the set of all elements in V
which are adjacent to x and it is denoted by N(x). The degree of vertex x is defined
as the number of edges incident on x and it is denoted by d(x) or equivalently
deg(x) = |N(x)|.

A closed path in a graph G(V,E) is called an Euler circuit if it includes every
edge exactly once.

A connected graph G(V,E) that contains an Euler circuit is called an Euler
graph or Eulerian graph.

A closed path in a graph G(V,E) is called a Hamiltonian cycle if it includes
every vertex of G(V,E) exactly once.

A graph that contains a Hamiltonian cycle is called a Hamiltonian graph.

Let G(V,E) be a graph. Then twice the number of edges of graph G(V,E) is
sum of the degrees of all vertices belong to V .

A graph is an Eulerian if and only if it is connected and degree of every vertex
is even.

3. Eulerian and Hamiltonian algebraic graphs

In this section, we introduce the notion of algebraic graph, Eulerian, Hamil-
tonian and complete algebraic graphs and study the properties of these graphs.
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Definition 3.1. A graph G(V,E) is said to be algebraic graph if there are
bijective functions fi : Vi →Mi, (i = 1, 2, . . . , n) where Vi and Mi are subsets of V
and functions satisfying the following conditions.

(i) d (f1) > d (f2) > . . . > d (fn) and
n⋃

i=1

Vi ∪Mi = V

and there is no function defined on M which is a subset of V if o(M) > o (V1),
(ii) If {a, b} ∈ E, then there exists a unique function fi such that fi(a) = b .
(iii) If there is a path {v1, v2}, {v2, v3}, {v3, v4}, . . . {vn−1, vn} ∈ E, then there

exists a function fi, such that fi(v1) = v2, fi(v2) = v3, fi(v3) = v4,
. . . , fi(vn−1) = vn.

The number of elements in a set M is denoted by o(M).
An algebraic graph of graph G(V,E) is denoted by G(V,E, F ).

Definition 3.2. Let G(V,E, F ) be an algebraic graph where F = {fi | i =
1, 2, . . . , n}. The degree of function f ∈ F is defined as the number of elements in
the domain of f.

Definition 3.3. Let G(V,E, F ) be an algebraic graph where F = {fi | i =
1, 2, . . . , n}. Size of an algebraic graph is defined as n if |E| = n and order of an
algebraic graph is defined as |V |.

Definition 3.4. Diameter of an algebraic graph G(V,E, F ) where

F = {fi | i = 1, 2, . . . , n}, d (f1) > d (f2) > . . . > d (fn) ,

is defined as degree of f1.

Example 3.1. Define graph

a

c

b

d

Figure 1. Graph

f1 =

(
a b c d
b c d a

)
and f2 =

(
a b
a c

)
. d (f1) + d (f2) = 6. Here F =

d {f1, f2}. Therefore
∑
d(F ) = |E|.

Example 3.2. Let G(V,E) be a graph with vertices V = {a, b, c, d, e} and edges
E = {{a, c}, {a, d}, {d, b}, {b, e}, {c, b}}. Define a function f1 on V1 = {c, a, d, b}
such that f1(c) = a, f1(a) = d, f1(d) = b, f1(b) = e and a function f2 on V2 = {c}
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by f2(c) = b. Therefore degree of f1 = 4 and degree of os f2 = 1. Therefore
number of edges = 4+1=5. G(V,E, F ) where F = {f1, f2} is an algebraic graph
and diameter of an algebraic graph G(V,E, F ) is 4.

Example 3.3. Let G(V,E) be a graph shown in the figure 2, where V =
{a, b, c, d, e} and E = {{a, e}, {a, d}, {e, d}, {a, c}, {e, b}, {d, c}, {d, b}}. Define func-

tions f1 : {a, e, b, d, c} → V by f1 =

(
a e b d c
e b d c a

)
and f2 : {a, d} → V by

f2 =

(
a d
d e

)
. Define functions g1 : {a, e, d, c} → V by g1 =

(
a e d c
e d c a

)
and g2 : {e, b, d} → V by g2 =

(
e b d
b d a

)
.

a

d

e

c

b

Figure 2. Diagram of graph G(V,E)

We observe that G(V,E, F1) where F1 = {f1, f2} is an algebraic graph and
G(V,E, F2) where F2 = {g1, g2} is not an algebraic graph,since domain of g1 is a
proper subset of f1.Hence F2 is not satisfying the condition (i) in Definition 3.1

Example 3.4. Let G(V,E) be a bipartite graph, shown in the figure 2, with
vertices V = {a, b, c, d, e} and E = {{a, d}, {a, e}, {b, d}, {b, e}, {c, d}, {c, e}}. We

define functions by f1 =

(
a d b e c
d b e c d

)
and f2 =

(
a
e

)
.We observe that

G(V,E, F ) where F = {f1, f2} is an algebraic graph

a b c

d e

Figure 3. Bipartite graph G(V,E).
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Example 3.5. Let G(V,E) be a graph with V = {a, b, c, d} and E = {{a, b},
{b, c}}. We cannot define a function on any subset of V which contains d. Hence
G(V,E) is not an algebraic graph.

Theorem 3.1 (The first theorem of algebraic graph theory).
Let G(V,E, F ) be an algebraic graph. Then the number of edges of an algebraic
graph G(V,E, F ) is the sum of the degrees of all functions belong to F .

Proof. Let G(V,E, F ) be an algebraic graph and F = {fi | i = 1, 2, . . . , n}.
Suppose the degree of each function fi is di. By the Definition [3.3],if the degree of
function f ∈ F is n, then there are n edges ∈ E. Therefore the number of edges in
E = d1 + d2 + . . . + dn. Hence number of edges of algebraic graph is the sum of
degrees of all functions belong to F . Hence the theorem. �

Definition 3.5. Let G(V,E, F ) where F = {fi | i = 1, 2, . . . , n} be an alge-
braic graph. Size of an algebraic graph is defined as n if |E| = n and order is
defined as |V |.

Definition 3.6. Let G(V,E, F ) where F = {fi | i = 1, 2, . . . , n} be an alge-
braic graph. The degree of function f ∈ F is defined as the number of elements in
the domain of fand it is denoted by d(f).

Definition 3.7. Diameter of an algebraic graph G(V,E, F ) where

F = {fi | i = 1, 2, . . . , n} and d (f1) > d (f2) > . . . > d (fn) ,

is defined as degree of f1 .

Note 1. An algebraic graph is a graph but a graph need not be an algebraic
graph.

Note 2. Let G(V,E, F ) be an algebraic graph. If f ∈ F and

f =

(
a b c d e
b c d e a

)
then by definition of algebraic graph there is a closed path from a−b−c−d−e−a.

Note 3. Let G(V,E, F ) be an algebraic graph. Suppose the functions f, g ∈ F

such that f =

(
a b c d e
b c d e b

)
and g =

(
b d
d a

)
. By definition of algebraic

graph there is a closed path from a− b− c− d− e− b− d− a.

Note 4. Let G(V,E, F ) be an algebraic graph. If all the degrees of vertices
are two then there is a only one cyclic permutation on V .

Note 5. Let G(V,E, F ) be an algebraic graph. If all the degrees of vertices
are two except one vertex of degree is 3 then there are only two functions in F and
one function is a cyclic permutation on V .

Note 6. Let G(V,E, F ) be an algebraic graph.If the degree of function f ∈ F
is n then there are n edges ∈ E
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Example 3.6. Let G(V,E) be a graph with V = {a, b, c, d, e, f} and E =
{{a, b}, {b, c}, {c, d}, {d, e}, {e, f}, {f, a}}. We define a cyclic permutation f1 : V →
V such that f1(a) = b, f1(b) = c, f1(c) = d, f1(d) = e, f1(e) = f , f1(f) = a. Hence
G(V,E, F ) where F = {f1} is an algebraic graph and diameter of the algebraic
graph G(V,E, F ) is 6.

Example 3.7. Let G(V,E) be a graph with V = {a, b, c, d, e} and E =
{{a, c}, {a, d}, {d, b}, {b, e}, {c, b}}. Define a function f1 on V1 = {c, a, d, b} such
that f1(c) = a, f1(a) = d, f1(d) = b, f1(b) = e.and a function f2 on V2 = {c} by
f2(c) = b. Obviously degree of f1 = 4 and degree off2 = 1. Therefore G(V,E, F )
where F = {f1, f2} is an algebraic graph and diameter of an algebraic graph
G(V,E, F ) is 4 and number of edges = 4+1=5.

Definition 3.8. An algebraic graph G(V,E, F ) is said to be Hamiltonian al-
gebraic graph if there is a function f ∈ F such that f is a cyclic permutation on
V.

Definition 3.9. An algebraic graph G(V,E, F ) is said to be Eulerian algebraic
graph if there exists a subset F1 of F and each fi ∈ F1 is a cyclic permutation on
Vi, ∪Vi = V and ∩Vi 6= φ

Definition 3.10. An algebraic graph G(V,E, F ) is said to be k − regular
algebraic graph if deg(v) = k for all v ∈ V.

Definition 3.11. An algebraic graph G(V,E, F ) is said to be complete if there
exists a subset F1 of F such that |F1|= k where k is a natural number such that
|E| − k|V | < |V | and each f ∈ F1 is a cyclic permutation on V

Theorem 3.2. A graph G(V,E) is an Eulerian if and only if algebraic graph
G(V,E, F ) is an Eulerian algebraic graph

Proof. Suppose G(V,E) is an Eulerian, then there exists a closed path

v1 − v2 − v3 − v4 − v1 − v5 − v6 · · · · − vn − v1.
Define functions

f1 =

(
v1 v5 · · · vn
v5 v6 · · · v1

)
and f2 =

(
v1 v2 v3 v4
v2 v3 v4 v1

)
.

Then algebraic graph G(V,E, F ) where F = {f1, f2} and f1, f2 are cyclic permu-
tations. Therefore by Definition [3.9], G(V,E, F ) is an Eulerian algebraic graph .
Converse is obvious. �

Corollary 3.1. A graph G(V,E) is a Hamitonian if and only if algebraic
graph G(V,E, F ) is a Hamitonian

Theorem 3.3. If a graph G(V,E) is complete, then algebraic graph G(V,E, F )
is a complete algebraic graph

Theorem 3.4. If an algebraic graph G(V,E, F ) is 2n−regular, then there are
n Hamiltonian disjoint cycles.
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Proof. Suppose G(V,E, F ) is 2n − regular. Then
∑
d(fi) = 2n

|V |
2

. Thus∑
d(fi) = n|V | and d(fi) = |V |, for all i. Therefore there are n Hamiltonian

disjoint cycles. �

Theorem 3.5. Let G(V,E, F ) be a complete algebraic graph with n vertices
each f ∈ F is a cyclic permutation on V . Then the number of functions in F is
(n− 1)/2 if n is odd.

Proof. We know that maximum number of edges in any simple graph with
n vertices is n(n− 1)/2 and let F = {fi, i = 1, 2, · · ·, k}. Then by algebraic graph
first theorem we have

∑
d(fi) = n(n − 1)/2. We know that maximum degree of

each function is n
⇒ n+ n+ · · ·k terms = n(n− 1)/2

⇒ kn = n(n− 1)/2

⇒ k = (n− 1)/2.

Therefore maximum number of functions in F is
(n− 1)/2 if n is odd �

Theorem 3.6. Let G(V,E) be a complete graph and order of V be n (n is odd).
Then there are (n− 1)/2 edge disjoint Hamiltonian cycles.

Proof. Suppose G(V,E) is a complete graph then G(V,E, F ) is an algebraic
complete graph. Therefore number of edges in the algebraic graph is n(n − 1)/2.
Since G(V,E, F ) is a complete algebraic graph,we have F = {fi} i = 1, 2, · · ·, k and
each fi is a cyclic permutation on V . Hence there are k cyclic permutations on V .
We know that every cyclic permutation represents a Hamiltonian cycle. Therefore

o(f1) + o(f2) + · · ·+ o(fk) = n(n− 1)/2

⇒ nk = n(n− 1)/2

Therefore k = (n− 1)/2.

Hence there are (n− 1)/2 edge disjoint Hamiltonian cycles. �

Theorem 3.7. The G(V,E, F ) be a complete algebraic graph with n vertices
(n > 3) is an Eulerian if n is odd.

Proof. Let G(V,E, F ) be a complete algebraic graph of order n, n > and n
is odd. We know that the maximum number of edges in complete graph G(V,E) =
n(n− 1)/2. By Theorem [3.6],there are (n− 1)/2 edge disjoint Hamiltonian cycles.
Therefore every complete algebraic graph of order n is an Eulerian �

Example 3.8. Let G(V,E) be a graph with vertices V = {a, b, c, d, e, f} and
edges E = {{a, b}, {b, c}, {c, d}, {d, e}, {e, f}, {f, a}}. We define a cyclic perumu-
tation f1 : V → V such that f1(a) = b, f1(b) = c, f1(c) = d, f1(d) = e, f1(e) =
f, f1(f) = a. Hence G(V,E, F ) where F = {f1} is Hamiltonian and Eulerian
algebraic graph and diameter of an algebraic graph G(V,E, F ) is 6.
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Example 3.9. Let G(V,E) be a bipartite graph with vertices V = {a, b, c, d, e}
and E = {{a, d}, {a, e}, {b, d}, {b, e}, {c, d}, {c, e}}. We define functions by f1 =(
a d b e c
d b e c d

)
and f2 =

(
a
e

)
. We observe that G(V,E, F ) where F =

{f1, f2} is not a Hamiltonian algebraic graph

Example 3.10. Let G(V,E) be a graph where V = {a, b, c, d, e} and E =
{{a, e}, {a, d}, {e, d}, {a, c}, {e, b}, {d, c}, {d, b}}. The graph shown in the figure 4.

Define f1 : {a, e, b, d, c} → V by f1 =

(
a e b d c
e b d c a

)
and f2 : {a, d} → V

by f2 =

(
a d
d e

)
. Define g1 : {a, e, d, c} → V by g1 =

(
a e d c
e d c a

)
and

g2 : {e, b, d} → V by g2 =

(
e b d
b d a

)
.

a

d

e

c

b

Figure 4. Diagram of graph G(V,E)

We observe that G(V,E, F1) where F1 = {f1, f2} is a Hamiltonian algebraic
graph and G(V,E, F2) where F2 = {g1, g2} is not an algebraic graph.

Example 3.11. Consider the graph shown in the figure 5. Define a function

a b c

d e f

Figure 5. Graph

λ : {a, b, c, d, e, f} → V by λ =

(
a d b e c f
d b e c f a

)
and µ : {a, b, c} → V by
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µ =

(
a c b
e d f

)
. Therefore degree(λ) = 6 and degree(µ) = 3 . Here λ is a cyclic

permutation of degree 6. Hence complete bipartite graph k3,3 is a Hamiltonian.

Theorem 3.8. Every complete algebraic graph G(V,E, F )(n > 3) is a Hamil-
tonian algebraic graph .

Proof. SupposeG(V,E, F ) is a complete algebraic graph of order n and n > 3.
By the definition of complete algebraic graph there exists a f1 ∈ F such that f1 is
a cyclic permutation on V and d(f1) = n. Hence by Theorem [ 2.7], G(V,E, F ) is
a Hamiltonian graph. �

Corollary 3.2. Every complete algebraic graph G(V,E, F )(n > 3 and n is
odd) is Eulerian and Hamiltonian.

Theorem 3.9. A graph G(V,E) is an Eulerian graph if and only if its algebraic
graph G(V,E, F ) has only cyclic permutations whose domains are not disjoint and
union of domains is V.

Proof. Suppose G(V,E, F ) has only two cyclic permutations f and g whose
domains A and B are not disjoint and union of domains is V. Let v ∈ A ∩ B.
Since f and g are only cyclic permutations on A and B respectively, there exist
closed paths v − v1 − v2 − v3 − · · · − v and v − v′1 − v′2 − v′3 − · · · − v.Therefore
v − v1 − v2 − v3 − · · · − v − v′1 − v′2 − v′3 − · · · − v is a circuit. Hence G(V,E) is an
Eulerian graph.

Converse is obvious. �

Corollary 3.3. A regular algebraic graph G(V,E, F ) has only cyclic permu-
tations on V if and only if all vertices of G are of even degree.

Theorem 3.10. If an algebraic graph G(V,E, F ) is a 2 − regular algebraic
graph then F = {f} and d(f) = |V |.

Proof. Suppose G(V,E, F ) is a 2−regular algebraic graph. Then there exists
only one cyclic permutation f on V . Hence by the first theorem on algebraic graph
theory, d(f) = |E| = |V |. �

Note 7. Let G(V,E, F ) be an algebraic graph. If all the degrees of vertices
are two except one vertex of degree 3 then there are only two functions in F and
one is a cyclic permutation and other is a function.

Example 3.12. Consider the graphs (G(V1, E1)), (G(V2, E2)) shown in the
figure 6. Define functions

f1 =

(
a b c d e f g
b c d e f g a

)
and f2 =

(
a c e g b d f
c e g b d f a

)
.

Here f1 and f2 are cyclic permutations. Therefore there are two disjoint Hamilton-
ian cycles.

Define functions

g1 =

(
p q r s t u v
q r s t u v p

)
and g2 =

(
p s v r u q t
s v r u q t p

)
.
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b

a

c

d

e

f

g

p q

r

s

t

u

v

Figure 6. Graphs (G (V1, E1)),(G (V2, E2))

Here g1 and g2 are cyclic permutations. Therefore there are two disjoint Hamilton-
ian cycles.

Theorem 3.11. An algebraic graph G(V,E, F ) is an Eulerian, |V | = n and
|E| = n+ 3 if and only if there are at least two cyclic permutations of degrees nand
3.

Proof. Suppose G(V,E, F ) is an algebraic graph with V = n , |E| = n+3 and
there exist functions f, g ∈ F are cyclic permutations of degree n and 3 respectively,

that is f =

(
v1 v2 v3 · · · vn−1 vn
v2 v3 v4 · · · vn v1

)
and g =

(
v2 v4 v6
v4 v6 v2

)
. Therefore

G(V,E, F ) where F = {f, g} is an Eulerian algebraic graph.
Converse is obvious. �

Example 3.13. Consider the graphs (G (V3, E3)),(G (V4, E4)) shown in the

figures 7. Define a function λ =

(
a b c d e f
b c d e f a

)
. Here F1 = {λ} and λ is

a cyclic permutation. Therefore (G (V1, E1, F1)) is an algebraic graph and it is a
Hamiltonian algebraic graph and Eulerian algebraic graph.

Define a function µ =

(
p s q t r u
s q t r u p

)
. Here F2 = {µ} and µ is a

cyclic permutation. Therefore (G (V2, E2, F2)) is an algebraic graph and it is a
Hamiltonian algebraic graph and Eulerian algebraic graph.

Theorem 3.12. If an algebraic graph G(V,E, F ), F = {f} and f is a cyclic
permutation on V, then the graph G(V,E) is Hamiltonian and Eulerian.

Proof. Suppose G(V,E, F ) is an algebraic graph, o(V ) > 3 and F = {f}
where f is a cyclic permutation on V . Let V = {v1, v2, · · ·, vn} and

f =

(
v1 v2 v3 · · · vn
v2 v3 v4 · · · v1

)
.

Therefore there exists a closed path. Hence G(V,E, F ) is Eulerian and Hamiltonian
algebraic graph. �
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a

f d

c

e

b

p q r

s t u

Figure 7. Graph (G (V3, E3)),(G (V4, E4))

Corollary 3.4. If an algebraic graph G(V,E, F ) where F does not contains
cyclic permutation on V or cyclic permutation on subsets of V and whose union is
V, then the graph G(V,E) is neither Hamiltonian nor Eulerian.

Theorem 3.13. Let G(V,E, F ) be an algebraic graph of order n (n > 3). Then
graph G(V,E) of order n is a Hamiltonian if and only if a function f ∈ F such
that f is a cyclic permutation on V .

Proof. Suppose G(V,E) is a Hamiltonian graph of order n.Therefore there is
a closed path v1 − v2 − v3 − v4 · · · vn−1 − vn − v1 in G. Then by the definition of
algebraic graph there exists a function f ∈ F such that f is a cyclic permutation

on V and f =

(
v1 v2 v3 · · · vn
v2 v3 v4 · · · v1

)
.

Converse is obvious. Hence the theorem. �

4. Conclusion

In this paper, we introduced the notion of Eulerian algebraic graph and the
notion of Hamiltonian algebraic graph. We studied the properties of Hamiltonian
and Eulerian algebraic graphs and we proved that a graph G(V,E) is a Hamiltonian,
|V | = n if and only if there is a cyclic permutation of degree n. In continuation of
this paper we introduce subgraphs and planar graphs of algebraic graph theory
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