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MONOTONICITY AND INEQUALITIES RELATED

TO GAMMA FUNCTION

Ravi Bhukya and Venkata Lakshmi Akavaram

Abstract. In this paper, the authors establish some monotonicity and in-
equalities related Gamma function by using the method of analysis and theory
of inequality.

1. Introduction

The Euler gamma function Γ(x) is defined for x > 0 by

(1.1) Γ(x) =

∫ ∞

0

e−ttx−1dt

The logarithmic derivative of the gamma function Γ(x) is denoted by

Ψ(x) =
d

dx
(log(Γ(x))) =

Γ′(x)

Γ(x)

is called the digamma or psi function. The gamma and digamma or psi function
has been investigated intensively by many authors even recent years. In particular,
many authors have published numerous interesting inequalities for this important
function (see [8] - [10] and references therein). In this paper, we are interested to
approximate for gamma function Γ(x + 1) on the interval (2,∞). In [2, Theorem.
8], Alzer proved that the function

Rn(x) = (−1)n
[
ln Γ(x)−

(
x− 1

2

)
lnx− ln

√
2π −

n∑
j=1

B2j

2j(2j − 1)x2j−1

]
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is completely monotonic on (0,∞). Here Bn denote the Bernoulli numbers. This
gives the following inequalities:

√
2πx

(
x

e

)x

exp

( 2n∑
j=1

B2j

2j(2j − 1)x2j−1

)

(1.2) < Γ(x+ 1) <
√
2πx

(
x

e

)x

exp

( 2n+1∑
j=1

B2j

2j(2j − 1)x2j−1

)
, x > 0

In particular, we have, by (1.2),

(1.3) Γ(x+ 1) <
√
2πx

(
x

e

)x

exp

(
1

12x

)
, x > 0

In this paper, we are going to improve the right hand side of the double inequality
(1.2) on the interval (2,∞) we also establish some inequalities related to the gamma
function and generalise following results from [11, Page. No. 193].

If n > 2 is an integer, then

(1.4)

[
n(n+ 1)3

8

]n
> (n!)4.

If n > 2 is an integer, then

(1.5) 2!4! · · · (2n)! > ((n+ 1)!)n.

If n > 2 is an integer, then

(1.6) n! < 2
n(n−1)

2 .

Our main results are stated as follows

(1)

[
x(x+ 1)3

8

]x
> Γ(x+ 1)4, x > 1.

(2)
Γ(1 + e)

ee/2
xx/2 6 Γ(x+ 1) 6

(
Γ(1 + e)

( 1+e
2 )e

)(
x+ 1

2

)x

, x > e.

(3) Γ(x+ 1) < 2
x(x−1)

2 , x > 2.

(4)
2x

x
<

xx

Γ(x+ 1)
< 3x−1, x > 2.

(5) Γ(x+ 3)Γ(x+ 5)Γ(x+ 7) . . .Γ(x+ 2n+ 1) > Γ(x+ n+ 2)n.

The following lemma ([2], [7]) is used in proofs

Lemma 1.1. For x > 0 we have

(1) log(x)− 1
x < Ψ(x) < log(x)− 1

2x

(2) For β > 1
2 ,we have Ψ(x+ β) > log(x)
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2. The Main Results

Theorem 2.1. For x > 2 , we have

(2.1)
xx−1

3x−1
< Γ(x+ 1) <

xx

2x
.

Proof. Let f(x) = xx/Γ(x+ 1)2x. Define g(x) = log(f(x)). Then

g(x) = x log(x)− x log(2)− log(Γ(x+ 1)).

Differentiating with respect to x, we have

g′(x) = 1− log(2) + log(x)−Ψ(x+ 1)

since, for x > 0, log(x)− 1
x < Ψ(x) < log(x)− 1

2x

g′(x) >
1

2(x+ 1)
− log(x+ 1) + log(x) + 1− log(2)

=
1

2(x+ 1)
+ log

(
x

x+ 1

)
+ 1− log(2)

The range of 1
2(x+1)+log

(
x

x+1

)
+1−log(2) is ( 76−ln (3) , 1−ln (2)), for x > 2. And

7
6 − ln (3) > 0. Thus, g is increasing on (2,∞), which implies that f is increasing
on (2,∞). For 2 < x, we have 1 < f(2) < f(x), implies right side the inequality
(2.1).

For the other part, let f(x) = Γ(x + 1)3x−1/xx−1. Define g(x) = log(f(x)).
Then

g(x) = (x− 1) log(3) + log Γ(x+ 1)− (x− 1) log(x).

Differentiating with respect to x, we have

g′(x) = log(3) + Ψ(x+ 1)− 1 +
1

x
− log(x)

since, for x > 0, log(x)− 1
x < Ψ(x) < log(x)− 1

2x

g′(x) > log(x+ 1)− 1

x+ 1
+ log(3)− log(x)− 1 +

1

x

= log

(
x+ 1

x

)
+

1

x(x+ 1)
+ log(3)− 1

The range of log

(
x+1
x

)
+ 1

x(x+1)+log(3)−1 is

(
ln (3)−1, ln

(
9
2

)
− 5

6

)
, for x > 2. And

ln (3)−1) > 0. Thus, g is increasing on (2,∞), which implies that f is increasing on
(2,∞). For 2 < x, we have f(2) < f(x), implies left side of the inequality (2.1). �

Remark 2.1. From the inequality (1.3), the right hand side of the inequality
(2.1) is shaper than the right hand side of the inequality (1.2) for all x > 2.

Remark 2.2. The left hand side of the inequality (2.1) is holds for all x > 0.
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Theorem 2.2. For x > 1, we have

(2.2)

[
x(x+ 1)3

8

]x
> Γ(x+ 1)4.

Proof. Let f(x) =

[
x(x+1)3

8

]x
/Γ(x+ 1)4. Define g(x) := log(f(x)). We have

g(x) = x
[
log(x) + 3 log(x+ 1)− log(8)

]
− 4Γ(x+ 1).

Then

g′(x) = log(x) + 3 log(x+ 1)− log(8) + 1 +
3

x+ 1
− 4Ψ(x+ 1)

= log(
x

8
) + 3 log(x+ 1) + 1 +

3x

x+ 1
− 4Ψ(x+ 1)

since, log(x)− 1
x < Ψ(x) < log(x)− 1

2x ,

g′(x) > log(
x

8
) + 3 log(x+ 1) + 1 +

3x

x+ 1
+

4

2(x+ 1)
− 4 log(x+ 1)

> log

(
x

8(x+ 1)

)
+ 1 +

3x+ 2

x+ 1
>, 0 for x > 1.

Thus, g is increasing on (1,∞), which implies that f is increasing on (1,∞). For
1 < x, we have f(1) < f(x), using (1.4) we have the inequality (2.2). �

Remark 2.3. After letting x = n the inequality (2.2) becomes[
n(n+ 1)3

8

]n
> (n!)4, n > 2.

which is same as (1.4).

Theorem 2.3. For x > e, we have

(2.3)
Γ(1 + e)

ee/2
xx/2 6 Γ(x+ 1) 6

(
Γ(1 + e)

( 1+e
2 )e

)(
x+ 1

2

)x

.

Proof. Let f(x) =

(
x+1
2

)x

/Γ(x+ 1). Define g(x) := log(f(x)), we have

g(x) = x log(
x+ 1

2
)− log Γ(x+ 1).

Then

g′(x) = log(
x+ 1

2
) +

x

x+ 1
−Ψ(x+ 1)

= log(x+ 1)− log(2) +
x

x+ 1
−Ψ(x+ 1)
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since, log(x)− 1
x < Ψ(x) < log(x)− 1

2x ,

g′(x) >
1

2(x+ 1)
− log(x+ 1)− log(2) + log(x+ 1) +

x

x+ 1

>1− log(2)− 1

2(x+ 1)
> 0 for x > e.

Thus, g is increasing on [e,∞), which implies that f is increasing on [e,∞). For
e < x, we have f(e) 6 f(x). We have the righside inequality of (2.3).

For the other part, let f(x) = Γ(x+1)/xx/2. Define g(x) := log(f(x)), we have
g(x) = log Γ(x+ 1)− x

2 log(x). Then

g′(x) =Ψ(x+ 1)− x

2

1

x
− 1

2
log(x)

=Ψ(x+ 1)− 1

2
− 1

2
log(x)

since, for x > 0 and β > 1
2 , then Ψ(x+ β) > log(x),

g′(x) > log(x)− 1

2
− 1

2
log(x)

>1

2

[
log(x)− 1

]
> 0 for x > e.

Thus, g is increasing on [e,∞), which implies that f is increasing on [e,∞). For
e 6 x, we have f(e) 6 f(x),we have the leftside inequality of (2.3). �

Theorem 2.4. For x > 0 and n > 2, we have

(2.4) Γ(x+ 3)Γ(x+ 5)Γ(x+ 7) . . .Γ(x+ 2n+ 1) > Γ(x+ n+ 2)n.

Proof. Let f(x) = Γ(x+ 3)Γ(x+ 5)Γ(x+ 7) . . .Γ(x+ 2n+ 1)/Γ(x+ n+ 2)n.
Define g(x) = log(f(x)). Then

g(x) =
n∑

k=1

log Γ(x+ 2k + 1)− n log Γ(x+ n+ 2).

Differentiating with respect to x, we have

g′(x) =
n∑

k=1

Ψ(x+ 2k + 1)− nΨ(x+ n+ 2)

since, for x > 0 and β > 1
2 , then Ψ(x+ β) > log(x),

g′(x) >
n∑

k=1

log(x)− n log(x) =
n∑

k=1

(
log(x)− log(x)

)
> 0.

Thus, g is increasing on (0,∞), which implies that f is increasing on (0,∞). For
0 < x, we have f(0) < f(x), using (1.5) we have the inequality (2.4). �
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Remark 2.4. After letting x = 0 the inequality (2.4) becomes

2!4! . . . (2n)! > ((n+ 1)!)n, n > 2.

which is same as (1.5).

Theorem 2.5. For x > 2 , we have

(2.5) Γ(x+ 1) < 2
x(x−1)

2 .

Proof. Let f(x) = 2
x(x−1)

2 /Γ(x+ 1). Define g(x) = log(f(x)). Then

g(x) =
x(x− 1)

2
log(2)− log Γ(x+ 1).

Differentiating with respect to x, we have

g′(x) = (
2x− 1)

2
) log(2)Ψ(x+ 1)

since, for x > 0, log(x)− 1
x < Ψ(x) < log(x)− 1

2x

g′(x) >
1

2(x+ 1)
− log(x+ 1) + (

2x− 1

2
) log(2)

The range of 1
2(x+1) − log(x+1)+( 2x−1

2 ) log(2) is

(
1
6

(
1− 3 ln

(
9
8

))
,∞

)
, for x > 2.

And
(
1− 3 ln

(
9
8

))
> 0. Thus, g is increasing on (2,∞), which implies that f is

increasing on (2,∞). For 2 < x, we have f(2) < f(x), implies the inequality
(2.5). �

Remark 2.5. After letting x = n > 2 the inequality (2.5) becomes n! <

2
n(n−1)

2 . which is same as (1.6).
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