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A COMMON FIXED POINT THEOREM

FOR FOUR MAPS SATISFYING GENERALIZED

α - WEAKLY CONTRACTIVE CONDITION

IN ORDERED PARTIAL METRIC SPACES

K. P. R. Rao and A. Sombabu

Abstract. In this paper we obtain a common fixed point theorem for four
maps satisfying generalized α - weakly contractive condition and we give an

example to illustrate our main theorem. Our result generalize and improve
the theorem of Seonghoon Cho [9].

1. Introduction and Preliminaries

There are many generalizations of the concept of metric spaces in the literature.
One of them is a partial metric space introduced by Matthews [18] as a part of
study of denotational semantics of data flow networks.After that fixed and common
fixed point results in partial metric spaces were studied by many other authors, for
example [26, 13, 14, 15, 6, 7, 22, 29, 12, 25, 3].

Throughout this paper, R+ and N denote the set of all non-negative real num-
bers and the set of all positive integers respectively.

First we recall some basic definitions and lemmas which play crucial role in the
theory of partial metric spaces .

Definition 1.1. ([18]) A partial metric on a non empty set X is a function
p : X ×X → R+ such that for all x, y, z ∈ X,

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),
(p2) p(x, x) 6 p(x, y), p(y, y) 6 p(x, y),
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(p3) p(x, y) = p(y, x),
(p4) p(x, y) 6 p(x, z) + p(z, y)− p(z, z).

The pair (X, p) is called a partial metric space(PMS).

If p is a partial metric on X, then the function dp : X ×X → R+ given by

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y)

is a metric on X. It is clear that
(i) p(x, y) = 0 ⇒ x = y,
(ii) x ̸= y ⇒ p(x, y) > 0 and
(iii) p(x, x) may not be 0.

Example 1.1. (See e.g. [14, 18, 3]) Consider X = R+ with p(x, y) =
max{x, y}. Then (X, p) is a partial metric space. It is clear that p is not a (usual)
metric. Note that in this case dp(x, y) = |x− y|.

We now state some basic topological notations(such as convergence, com-
pleteness, continuity) on partial metric spaces (See e.g. [14, 15, 6, 18, 3]).

Definition 1.2. Let (X, p) be a partial metric space.

(i) A sequence {xn} in (X, p) is said to be convergent to x ∈ X if and only
if p(x, x) = lim

n→∞
p(x, xn).

(ii) A sequence {xn} in (X, p) is said to be Cauchy sequence if
lim

n,m→∞
p(xn, xm) exists and is finite.

(iii) (X, p) is said to be complete if every Cauchy sequence {xn} inX converges
with respect to τp, to a point x ∈ X such that
p(x, x) = lim

n,m→∞
p(xn, xm).

The following lemma is one of the basic results in PMS ([14, 15, 6, 18, 3])

Lemma 1.1. Let (X, p) be a partial metric space.

(i) A sequence {xn} in (X, p) is said to be Cauchy sequence if and only if it
is a Cauchy sequence in the metric space (X, dp).

(ii) (X, p) is complete if and only if the metric space (X, dp) is complete.
Moreover lim

n→∞
dp(x, xn) = 0 if and only if p(x, x) = lim

n→∞
p(x, xn) =

lim
n,m→∞

p(xn, xm).

Next we give a simple lemma which will be used in the proof of our main
result. For the proof we refer to [3].

Lemma 1.2 ([3]). If {xn} converges to z in a partial metric space (X, p) and
p(z, z) = 0 then lim

n→∞
p(xn, y) = p(z, y) for all y ∈ X.

Samet et al. [27] introduced the notion of α - admissible mappings associated
with a single map. Later Karapinar et al. [16] , Shahi et al. [28], Abdeljawad
[4] and Rao et al. [23] extended α - admissible mappings associated with two and
four mappings and proved fixed and common fixed point theorems for mappings
on various spaces.
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Definition 1.3. Let X be a non empty set and α : X ×X → R+

(i) ([27]): A mapping of T : X → X is called α - admissible if α(x, y) > 1
implies α(Tx, Ty) > 1 for all x, y ∈ X.

(ii) ([16]): A mapping of T : X → X is called triangular α - admissible
if α(x, y) > 1 ⇒ α(Tx, Ty) > 1 for all x, y ∈ X and α(x, z) > 1 and
α(z, y) > 1 ⇒ α(x, y) > 1 for all x, y, z ∈ X.

(iii) ([28]): Let f, g : X → X. Then f is said to be α- admissible with respect
to g if α(gx, gy) > 1 implies α(fx, fy) > 1 for all x, y ∈ X.

(iv) ([4]): Let f, g : X → X. Then the pair (f, g) is said to be α-admissible if
α(x, y) > 1 implies α(fx, gy) > 1 and α(gx, fy) > 1 for all x, y ∈ X.

(v) ([23]): Let f, g, S, T : X → X. Then the pair (f, g) is said to be α-
admissible w.r.to the pair (S, T ) if α(Sx, Ty) > 1 implies α(fx, gy) > 1
and α(Tx, Sy) > 1 implies α(gx, fy) > 1 for all x, y ∈ X.Furthermore,
we say that the pair (f, g) is triangular α-admissible with respect to the
pair (S, T ) if (f, g) is α- admissible w.r.to the pair (S, T ) and α(x, z) >
1, α(z, y) > 1 ⇒ α(x, y) > 1 for all x, y, z ∈ X.

Recently Abbas et al. [1, 2] introduced the new concepts in a partially ordered
set as follows.

Definition 1.4. ([1, 2]) Let (X,≼) be a partially ordered set and f : X → X.

(i) f is said to be a dominating map if x ≼ fx, ∀x ∈ X.
(ii) f is said to be dominated if fx ≼ x,∀x ∈ X.

In 1977, Alber et al. [5] generalized the Banach contraction principle by
introducing the concept weak contraction mappings in Hilbert space and proved
that every weak contraction mapping on a Hilbert space has a unique fixed point.

Rhodes [24] extended weak contraction principle in Hilbert spaces to metric
spaces. Later many authors, for example, [10, 11, 8, 17, 20, 21, 19] obtained
generalizations and extensions of the weak contraction principle to obtain fixed,
common fixed, coupled and common coupled fixed point theorems in various spaces.

Definition 1.5. Let X be a non-empty set and f : X → R+. Then f is called
lower semi continuous at x ∈ X if f(x) 6 lim

n→∞
inf f(xn) whenever {xn} ⊂ X with

lim
n→∞

xn = x. Let

Ψ = {ψ : R+ → R+ such that ψ is continuous and ψ(t) = 0 ⇔ t = 0}, and

Φ =

{
ϕ : R+ → R+ such that ϕ is lower semi continuous and

ϕ(t) = 0 ⇔ t = 0

}
.

Recently Seonghoon Cho [9] proved the following theorem.

Theorem 1.1 (Theorem 2.1 of [9]). Let (X, d) be a complete metric space and
T : X → X be a mapping satisfying

ψ(d(Tx, Ty) + φ(Tx) + φ(Ty)) 6 ψ(m(x, y, d, T, φ))− ϕ(l(x, y, d, T, φ))
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for all x, y ∈ X, where ψ ∈ Ψ, ϕ ∈ Φ, φ : X → R+ is a lower semi continuous
function and

m(x, y, d, T, φ)) = max


d(x, y) + φ(x) + φ(y),
d(x, Tx) + φ(x) + φ(Tx),
d(y, Ty) + φ(y) + φ(Ty),

1
2

[
d(x, Ty) + φ(x) + φ(Ty)+
d(y, Tx) + φ(y) + φ(Tx)

]


and

l(x, y, d, T, φ) = max {d(x, y) + φ(x) + φ(y), d(y, Ty) + φ(y) + φ(Ty)} .

Then there exists a unique z ∈ X such that Tz = z and φ(z) = 0.

Using these concepts, we prove one common fixed point theorem for four maps
in partially ordered partial metric spaces. Our theorem generalize and extend
the Theorem 2.1 of Seonghoon Cho [9]. We also give an example to illustate
our theorem. We call the condition (2.1.3) as generalized α-weakly contractive
condition associated with four maps involved in it.
Now we give our main result.

2. The Main Result

Theorem 2.1. Let (X, p,≼) be a partially ordered partial metric space, α :
X × X → R+ be an admissible function and f, g, S, T : X → X be mappings
satisfying

(2.1.1) f and g are dominated and S, T are dominating mappings respectively,
(2.1.2) f(X) ⊆ T (X) and g(X) ⊆ S(X) ,
(2.1.3) α(Sx, Ty)ψ(p(fx, gy)+φ(fx)+φ(gy)) 6 ψ(M(x, y))−ϕ(M(x, y)) for all

comparable elements x, y ∈ X, where ψ ∈ Ψ, ϕ ∈ Φ,
φ : X → R+ is a lower semi continuous function and

M (x, y) = max


p(Sx, Ty) + φ(Sx) + φ(Ty),
p(Sx, fx) + φ(Sx) + φ(fx),
p(Ty, gy) + φ(Ty) + φ(gy),

1
2

[
p(Sx, gy) + φ(Sx) + φ(gy)+
p(Ty, fx) + φ(Ty) + φ(fx)

]


(2.1.4) the pair (f, g) is triangular α-admissible with respect to the pair (S, T ),
(2.1.5) α(Sx1, fx1) > 1 and α(fx1, Sx1) > 1 for some x1 ∈ X,
(2.1.6) If for a non-increasing sequence {xn} in X with yn ≼ xn for all n ∈ N

and yn → u for some u ∈ X implies u ≼ xn for all n ∈ N,
(2.1.7)(a) Suppose S(X) is a complete sub space of X. Further assume that

α(θ, y2n−1) > 1, for all n ∈ N and α(θ, θ) > 1 whenever there exists a
sequence {yn} in X such that α(yn, yn+1) > 1, α(yn+1, yn) > 1 for all
n ∈ N and yn → θ for some θ ∈ X.

(or)
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(2.1.7)(b) Suppose T (X) is a complete sub space of X. Further assume that
α(y2n, θ) > 1, for all n ∈ N and α(θ, θ) > 1 whenever there exists a
sequence {yn} in X such that α(yn, yn+1) > 1, α(yn+1, yn) > 1 for all
n ∈ N and yn → θ for some θ ∈ X.

Then f, g, S and T have a common fixed point in X.

Proof. From (2.1.5), there exists x1 ∈ X such that α(Sx1, fx1) > 1 and
α(fx1, Sx1) > 1. From (2.1.2), there exist sequences {xn} and {yn} in X such that
y2n+1 = fx2n+1 = Tx2n+2, n = 0, 1, 2, ... and y2n = gx2n = Sx2n+1, n = 1, 2, ... .

Now we have

α (Sx1, fx1) > 1 ⇒ α (Sx1, Tx2) > 1, from the definition of {yn}
⇒ α (fx1, gx2) > 1, from (2.1.4), i.e., α (y1, y2) > 1
⇒ α (Tx2, Sx3) > 1, from the definition of {yn}
⇒ α (gx2, fx3) > 1, from (2.1.4), i.e., α (y2, y3) > 1
⇒ α (Sx3, Tx4) > 1, from the definition of {yn}
⇒ α (fx3, gx4) > 1, from (2.1.4), i.e., α (y3, y4) > 1.

Continuing in this way, we have

(2.1) α(yn, yn+1) > 1,∀n ∈ N.

Similarly by using α(fx1, Sx1) > 1 we can show that

(2.2) α(yn+1, yn) > 1,∀n ∈ N.

From triangular α - admissible condition (2.1.4), we have

(2.3) α(ym, yn) > 1, ∀ m, n ∈ N, m > n

From (2.1.1), we have

x2n+1 ≼ Sx2n+1 = gx2n ≼ x2n ≼ Tx2n = fx2n−1 ≼ x2n−1

Thus

(2.4) xn+1 ≼ xn, ∀n ∈ N.

Case(i): Suppose p(yn, yn+1) + φ(yn) + φ(yn+1) = 0 for some n. Let n = 2m.
Then y2m = y2m+1 and φ(y2m) = φ(y2m+1) = 0. From (2.1.3) and (2.4) and (2.1),
we have

α(Sx2m+1, Tx2m+2) = α(y2m, y2m+1) > 1.

From (2.1.3) and (2.4), we have
(2.5)
ψ (p(y2m+1, y2m+2) + φ(y2m+1) + φ(y2m+2))

= ψ(p(fx2m+1, gx2m+2) + φ(fx2m+1) + φ(gx2m+2))
6 α(Sx2m+1, Tx2m+2)ψ(p(fx2m+1, gx2m+2) + φ(fx2m+1) + φ(gx2m+2))
6 ψ(M(x2m+1, x2m+2))− ϕ(M(x2m+1, x2m+2))
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where

M(x2m+1, x2m+2) = max


p(y2m, y2m+1) + φ(y2m) + φ(y2m+1),
p(y2m, y2m+1) + φ(y2m) + φ(y2m+1),
p(y2m+1, y2m+2) + φ(y2m+1) + φ(y2m+2),

1
2

[
p(y2m, y2m+2) + φ(y2m) + φ(y2m+2)+
p(y2m+1, y2m+1) + φ(y2m+1) + φ(y2m+1)

]


But

1
2

[
p(y2m, y2m+2) + φ(y2m) + φ(y2m+2)
p(y2m+1, y2m+1) + φ(y2m+1) + φ(y2m+1)

]
6 1

2

 p(y2m, y2m+1) + p(y2m+1, y2m+2) −
p(y2m+1, y2m+1) + φ(y2m) + φ(y2m+2) +
p(y2m+1, y2m+1) + φ(y2m+1) + φ(y2m+1)


6 max

{
p(y2m, y2m+1) + φ(y2m) + φ(y2m+1),
p(y2m+1, y2m+2) + φ(y2m+1) + φ(y2m+2)}

}
Thus

M(x2m+1, x2m+2) = max

{
p(y2m, y2m+1) + φ(y2m) + φ(y2m+1),
p(y2m+1, y2m+2) + φ(y2m+1) + φ(y2m+2)

}
.

= p(y2m+1, y2m+2) + φ(y2m+1) + φ(y2m+2) from case (i).
Now (2.5) becomes

ψ

(
p(y2m+1, y2m+2)
φ(y2m+1) + φ(y2m+2)

)
6 ψ

(
p(y2m+1, y2m+2)
φ(y2m+1) + φ(y2m+2)

)
−ϕ
(
p(y2m+1, y2m+2)
φ(y2m+1) + φ(y2m+2)

)
which in turn yields that

ϕ(p(y2m+1, y2m+2) + φ(y2m+1) + φ(y2m+2)) = 0.

Hence
p(y2m+1, y2m+2) + φ(y2m+1) + φ(y2m+2) = 0.

Thus
y2m+1 = y2m+2, φ(y2m+1) = φ(y2m+2) = 0.

Continuing in this way, we get y2m = y2m+1 = y2m+2 = · · · . Thus {yn} is a
constant Cauchy sequence.

Case(ii): Assume that p(yn, yn+1) + φ(yn) + φ(yn+1) ̸= 0 for all n. Then as in
Case (i) and (2.5) we have

(2.6)
ψ
(
p(y2n+1, y2n+2) + φ(y2n+1) + φ(y2n+2)

)
6 ψ (M(x2n+1, x2n+2))−

ϕ (M(x2n+1, x2n+2))

where

M(x2n+1, x2n+2) = max

{
p(y2n, y2n+1) + φ(y2n) + φ(y2n+1),
p(y2n+1, y2n+2) + φ(y2n+1) + φ(y2n+2)

}
If

p(y2n, y2n+1) + φ(y2n) + φ(y2n+1) < p(y2n+1, y2n+2) + φ(y2n+1) + φ(y2n+2),
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then

M(x2n+1, x2n+2) = p(y2n+1, y2n+2) + φ(y2n+1) + φ(y2n+2)

Now (2.6) becomes

ψ

(
p(y2n+1, y2n+2) +
φ(y2n+1) + +φ(y2n+2)

)
6 ψ

(
p(y2n+1, y2n+2) +
φ(y2n+1) + φ(y2n+2)

)
−ϕ
(
p(y2n+1, y2n+2) +
φ(y2n+1) + φ(y2n+2)

)
which in turn yields that

ϕ(p(y2n+1, y2n+2) + φ(y2n+1) + φ(y2n+2)) = 0.

Thus

p(y2n+1, y2n+2) + φ(y2n+1) + φ(y2n+2) = 0

which is a contradiction to Case (ii). Hence

p(y2n+1, y2n+2) + φ(y2n+1) + φ(y2n+2) 6 p(y2n, y2n+1) + φ(y2n) + φ(y2n+1).

Similarly we can show that

p(y2n, y2n+1) + φ(y2n) + φ(y2n+1) 6 p(y2n−1, y2n) + φ(y2n−1) + φ(y2n).

Thus {p(yn, yn+1) + φ(yn) + φ(yn+1)} is non-increasing sequence of non-negative
real numbers and hence converges to r > 0.

Now from (2.6), we have

(2.7)
ψ

(
p(y2n+1, y2n+2) +
φ(y2n+1) + φ(y2n+2)

)
6 ψ (p(y2n, y2n+1) + φ(y2n) + φ(y2n+1))

−ϕ (p(y2n, y2n+1) + φ(y2n) + φ(y2n+1))

Assume r > 0.
Letting n → ∞ in (2.7) and using continuity of ψ and lower semi continuity

of ϕ, we get ψ(r) 6 ψ(r) − ϕ(r) which in turn yields that ϕ(r) = 0 so that r = 0.
Thus lim

n→∞
[p(yn, yn+1) + φ(yn) + φ(yn+1)] = 0. Hence

(2.8) lim
n→∞

p(yn, yn+1) = 0

and

(2.9) lim
n→∞

φ(yn) = 0

Now we prove that {y2n} is Cauchy. On contrary, suppose that {y2n} is not
Cauchy. Then there exist ϵ > 0 and monotone increasing sequences of natural
numbers {2m(k)} and {2n(k)} such that n(k) > m(k),

(2.10) dp(y2m(k), y2n(k)) > ϵ

and

(2.11) dp(y2m(k), y2n(k)−2) < ϵ
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From (2.10)

ϵ 6 dp(y2m(k), y2n(k))
6 dp(y2m(k), y2n(k)−2) + dp(y2n(k)−2, y2n(k)−1) + dp(y2n(k)−1, y2n(k))
< ϵ+ dp(y2n(k)−2, y2n(k)−1) + dp(y2n(k)−1, y2n(k)), from (2.11)

Letting k → ∞ and using (2.8), we have

lim
k→∞

dp(y2m(k), y2n(k)) = ϵ

From the definition of dp and (2.8), we have

(2.12) lim
k→∞

p(y2m(k), y2n(k)) =
ϵ

2

Letting k → ∞ and using (2.12) and (2.8) in
|dp(y2n(k)−1, y2m(k))− dp(y2m(k), y2n(k))| 6 dp(y2n(k)−1, y2n(k)),
we get

lim
k→∞

dp(y2n(k)−1, y2m(k)) = ϵ

From the definition of dp, we have

(2.13) lim
k→∞

d(y2n(k)−1, y2m(k)) =
ϵ

2

Letting k → ∞ and using (2.12) and (2.8) in
|dp(y2n(k), y2m(k)+1)− dp(y2n(k), y2m(k))| 6 dp(y2m(k)+1, y2m(k)),
we get

lim
k→∞

dp(y2n(k), y2m(k)+1) = ϵ

From the definition of dp, we have

(2.14) lim
k→∞

p(y2n(k), y2m(k)+1) =
ϵ

2

Letting k → ∞ and using (2.12) and (2.8) in∣∣dp(y2m(k)+1, y2n(k)−1)− dp(y2m(k), y2n(k))
∣∣ 6 ( dp(y2m(k)+1, y2m(k))

+dp(y2n(k)−1, y2n(k))

)
we get

lim
k→∞

dp(y2m(k)+1, y2n(k)−1) = ϵ

From the definition of dp, we have

(2.15) lim
k→∞

p(y2m(k)+1, y2n(k)−1) =
ϵ

2

α(Sx2m(k)+1, Tx2n(k)) = α(y2m(k), y2n(k)−1) > 1 from (2.3). Also from (2.4),
x2n(k) ≼ x2m(k)+1. From (2.1.3), we have
(2.16)

ψ

(
(p(y2m(k)+1, y2n(k)) +
φ(y2m(k)+1) + φ(y2n(k)))

)
= ψ

(
p(fx2m(k)+1, gx2n(k)) +
φ(fx2m(k)+1) + φ(gx2n(k))

)
6 α

(
Sx2m(k)+1, Tx2n(k)

)
ψ

(
p(fx2m(k)+1, gx2n(k)) +
φ(fx2m(k)+1) + φ(gx2n(k))

)
6 ψ

(
M(x2m(k)+1, x2n(k))

)
− ϕ

(
M(x2m(k)+1, x2n(k))

)
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where

M(x2m(k)+1, x2n(k)) = max



p(y2m(k), y2n(k)−1) + φ(y2m(k)) + φ(y2n(k)−1),

p(y2m(k), y2m(k)+1) + φ(y2m(k)) + φ(y2m(k)+1),

p(y2n(k)−1, y2n(k)) + φ(y2n(k)−1) + φ(y2n(k)),

1
2

 p(y2m(k), y2n(k)) + φ(y2m(k)) + φ(y2n(k))

+p(y2n(k)−1, y2m(k)+1)
+φ(y2n(k)−1) + φ(y2m(k)+1)




→ max{ ϵ

2 , 0, 0,
1
2 (

ϵ
2 + ϵ

2 )} = ϵ
2

from (2.8),(2.9),(2.12),(2.13) and (2.15)
Letting n → ∞ in (2.16) and using (2.14), we get ψ( ϵ2 ) 6 ψ( ϵ2 ) − ϕ( ϵ2 ) which

in turn yields that ϕ( ϵ2 ) = 0. Hence ϵ = 0. It is a contradiction. Hence {y2n} is
Cauchy.

Letting n,m→ ∞ in

|dp(y2n+1, y2m+1)− dp(y2n, y2m)| 6 dp(y2n+1, y2n) + dp(y2m, y2m+1),

we get

lim
n,m→∞

dp(y2n+1, y2m+1) = 0.

Hence {y2n+1} is Cauchy. Thus {yn} is a Cauchy sequence in (X, dp). Hence, we
have lim

n,m→∞
dp(yn, ym) = 0. Now from the definition of dp, we have

(2.17) lim
n,m→∞

p(yn, ym) = 0

Suppose (2.1.7)(a) holds. Since {y2n} = {Sx2n+1} ⊆ S(X) and S(X) is a complete
sub space of X, there exists z ∈ S(X) such that {y2n} converges to z. There exists
u ∈ X such that z = Su. Since {yn} is a Cauchy and {y2n} converges to z, it
follows that {y2n+1} also converges to z.

From Lemma 1.1(ii), we have

p(z, z) = lim
n→∞

p(y2n+1, z) = lim
n→∞

p(y2n, z) = lim
n,m→∞

p(yn, ym).

p(z, z) = lim
n→∞

p(y2n+1, z) = lim
n→∞

p(y2n, z) = 0, from(2.17)

Since φ is lower semi continuous, we have

φ(z) 6 lim
n→∞

inf φ(yn) 6 lim
n→∞

φ(yn) = 0,

from (2.9). Hence

(2.18) φ(z) = 0.

and α(Su, Tx2n) = α(z, y2n−1) > 1, from (2.1.7)(a). Since S is dominating map,
we have u ≼ Su = z. Since gx2n ≼ x2n and gx2n → z, by (2.1.6), we have z ≼ x2n.
Thus u ≼ x2n.
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Now from(2.1.3), we have

(2.19)

ψ(p(fu, y2n) + φ(fu) + φ(fy2n)) = ψ(p(fu, gx2n) + φ(fu) + φ(gx2n))

6 α(Su, Tx2n)ψ

(
p(fu, gx2n) +

φ(fu) + φ(gx2n)

)
6 ψ(M(u, x2n))− ϕ(M(u, x2n))

where

M(u, x2n) = max



p(z, y2n−1) + φ(z) + φ(y2n−1),

p(z, fu) + φ(z) + φ(fu),

p(y2n−1, y2n) + φ(y2n−1) + φ(y2n),

1
2

[
p(z, y2n) + φ(z) + φ(y2n)+

p(y2n−1, fu) + φ(y2n−1) + φ(fu)

]


→ max{0, p(z, fu) + φ(fu), 0, 12 [p(z, fu) + φ(fu)]}
from (2.8), (2.9), (2.18) and Lemma 1.2.

Letting n→ ∞ in (2.19), we get

ψ (p(fu, z) + φ(fu)) 6 ψ (p(z, fu) + φ(fu))− ϕ (p(z, fu) + φ(fu))

which in turn yields that ϕ(p(z, fu) + φ(fu)) = 0. Hence p(z, fu) + φ(fu) = 0.
Thus fu = z. Hence Su = z = fu. Since f is dominated and S is dominating
maps, we have z = fu ≼ u and u ≼ Su = z. Thus u = z. Hence

(2.20) Sz = z = fz.

Since f(X) ⊆ T (X), there exists v ∈ X such that z = fz = Tv. Since T is
dominating map, we have v ≼ Tv = z. From (2.1.7)(a) α(Sz, Tv) = α(z, z) > 1.
(2.21)

ψ(p(z, gv) + φ(z) + φ(gv)) = ψ(p(fz, gv) + φ(fz) + φ(gv))

6 α(Sz, Tv) ψ(p(fz, gv) + φ(fz) + φ(gv))

6 ψ(M(z, v))− ϕ(M(z, v))

where

M(z, v) = max



p(z, z) + φ(z) + φ(z),

p(z, z) + φ(z) + φ(z),

p(z, gv) + φ(z) + φ(gv),

1
2

[
p(z, gv) + φ(z) + φ(gv)

+p(z, z) + φ(z) + φ(z)

]


= p(z, gv) + φ(gv), from (2.18).
Now (2.21) becomes

ψ(p(z, gv) + φ(gv)) 6 ψ(p(z, gv) + φ(gv))− ϕ(p(z, gv) + φ(gv))

which in turn yields that ϕ(p(z, gv) + φ(gv)) = 0. Thus gv = z and φ(gv) = 0.
Hence gv = z = Tv. Since g is dominated and T is dominating maps, we have
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z = gv ≼ v and v ≼ Tv = z. Thus v = z. Hence

(2.22) gz = z = Tz.

From (2.20) and (2.22), it follows that z is a common fixed point of f, g, S and T .
Similarly, we can prove this theorem when (2.1.7)(b) holds. �

Now we give an example to illustrate our main Theorem 2.1.

Example 2.1. Let X = [0,∞) and p(x, y) = max{x, y}, ∀ x, y ∈ X. Let ≼ be
the ordinary 6 . Let f, g, S, T : X → X be defined by fx = x

2 , gx = x
3 , Sx = 6x

and Tx = 4x. Let ψ, ϕ, φ : R+ → R+ be defined by ψ(t) = t, ϕ(t) = 5t
6 , φ(t) = t,

for all t ∈ R+. Define

α : X ×X → R+ by α(x, y) =

{
1, if x, y ∈ [0, 1],
2, otherwise.

We have fx = x
2 6 x, gx = x

3 6 x. Also x 6 6x = Sx, x 6 4x = Tx.

Now we will verify the condition (2.1.3). If x > 1
6 and y ∈ X or x ∈ X and

y > 1
4 , then α(Sx, Ty) = α(6x, 4y) = 2.

α(Sx, Ty)[d(fx, gy) + φ(fx) + φ(gy)] = 2[max{x
2 ,

y
3}+

x
2 + y

3 ]

= 1
6 [max{6x, 4y}+ 6x+ 4y]

= 1
6 [p(Sx, Ty) + φ(Sx) + φ(Ty)].

If x 6 1
6 and y 6 1

4 , then α(Sx, Ty) = 1.

α(Sx, Ty)[d(fx, gy) + φ(fx) + φ(gy)] = max{x
2 ,

y
3}+

x
2 + y

3

= 1
12 [max{6x, 4y}+ 6x+ 4y]

< 1
6 [p(Sx, Ty) + φ(Sx) + φ(Ty)].

Thus the condition (2.1.3)

α(Sx, Ty)[p(fx, gy) + φ(fx) + φ(gy)]

6 1
6 max


p(Sx, Ty) + φ(Sx) + φ(Ty),p(Sx, fx) + φ(Sx) + φ(fx),

p(Ty, gy) + φ(Ty) + φ(gy),
1
2 [p(Sx, gy) + φ(Sx) + φ(gy) + p(Ty, fx) + φ(Ty) + φ(fx)]


for all x, y ∈ X is satisfied. One can easily verify the remaining conditions of
Theorem 2.1. Clearly 0 is a common fixed point of f, g, S and T .
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