A COMMON FIXED POINT THEOREM FOR FOUR MAPS SATISFYING GENERALIZED $\alpha-$ WEAKLY CONTRACTIVE CONDITION IN ORDERED PARTIAL METRIC SPACES

K. P. R. Rao and A. Sombabu

Abstract

In this paper we obtain a common fixed point theorem for four maps satisfying generalized α - weakly contractive condition and we give an example to illustrate our main theorem. Our result generalize and improve the theorem of Seonghoon Cho [9].

1. Introduction and Preliminaries

There are many generalizations of the concept of metric spaces in the literature. One of them is a partial metric space introduced by Matthews [18] as a part of study of denotational semantics of data flow networks.After that fixed and common fixed point results in partial metric spaces were studied by many other authors, for example $[\mathbf{2 6}, \mathbf{1 3}, \mathbf{1 4}, \mathbf{1 5}, \mathbf{6}, \mathbf{7}, \mathbf{2 2}, \mathbf{2 9}, \mathbf{1 2}, \mathbf{2 5}, 3]$.

Throughout this paper, \mathbb{R}^{+}and \mathbb{N} denote the set of all non-negative real numbers and the set of all positive integers respectively.

First we recall some basic definitions and lemmas which play crucial role in the theory of partial metric spaces .

Definition 1.1. ([18]) A partial metric on a non empty set X is a function $p: X \times X \rightarrow \mathbb{R}^{+}$such that for all $x, y, z \in X$,
$\left(p_{1}\right) x=y \Leftrightarrow p(x, x)=p(x, y)=p(y, y)$,
$\left(p_{2}\right) p(x, x) \leqslant p(x, y), p(y, y) \leqslant p(x, y)$,

[^0]$\left(p_{3}\right) p(x, y)=p(y, x)$,
$\left(p_{4}\right) p(x, y) \leqslant p(x, z)+p(z, y)-p(z, z)$.
The pair (X, p) is called a partial metric space(PMS).
If p is a partial metric on X, then the function $d_{p}: X \times X \rightarrow \mathbb{R}^{+}$given by
$$
d_{p}(x, y)=2 p(x, y)-p(x, x)-p(y, y)
$$
is a metric on X. It is clear that
(i) $p(x, y)=0 \Rightarrow x=y$,
(ii) $x \neq y \Rightarrow p(x, y)>0$ and
(iii) $p(x, x)$ may not be 0 .

Example 1.1. (See e.g. $[\mathbf{1 4}, \mathbf{1 8}, \mathbf{3}]$) Consider $X=\mathbb{R}^{+}$with $p(x, y)=$ $\max \{x, y\}$. Then (X, p) is a partial metric space. It is clear that p is not a (usual) metric. Note that in this case $d_{p}(x, y)=|x-y|$.

We now state some basic topological notations(such as convergence, completeness, continuity) on partial metric spaces (See e.g. $[\mathbf{1 4}, \mathbf{1 5}, \mathbf{6}, \mathbf{1 8}, \mathbf{3}]$).

Definition 1.2. Let (X, p) be a partial metric space.
(i) A sequence $\left\{x_{n}\right\}$ in (X, p) is said to be convergent to $x \in X$ if and only if $p(x, x)=\lim _{n \rightarrow \infty} p\left(x, x_{n}\right)$.
(ii) A sequence $\left\{x_{n}\right\}$ in (X, p) is said to be Cauchy sequence if $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)$ exists and is finite.
(iii) (X, p) is said to be complete if every Cauchy sequence $\left\{x_{n}\right\}$ in X converges with respect to τ_{p}, to a point $x \in X$ such that $p(x, x)=\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)$.

The following lemma is one of the basic results in $\operatorname{PMS}([\mathbf{1 4}, \mathbf{1 5}, \mathbf{6}, \mathbf{1 8}, \mathbf{3}])$
Lemma 1.1. Let (X, p) be a partial metric space.
(i) A sequence $\left\{x_{n}\right\}$ in (X, p) is said to be Cauchy sequence if and only if it is a Cauchy sequence in the metric space $\left(X, d_{p}\right)$.
(ii) (X, p) is complete if and only if the metric space $\left(X, d_{p}\right)$ is complete. Moreover $\lim _{n \rightarrow \infty} d_{p}\left(x, x_{n}\right)=0$ if and only if $p(x, x)=\lim _{n \rightarrow \infty} p\left(x, x_{n}\right)=$ $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)$.
Next we give a simple lemma which will be used in the proof of our main result. For the proof we refer to $[\mathbf{3}]$.

Lemma $1.2([\mathbf{3}])$. If $\left\{x_{n}\right\}$ converges to z in a partial metric space (X, p) and $p(z, z)=0$ then $\lim _{n \rightarrow \infty} p\left(x_{n}, y\right)=p(z, y)$ for all $y \in X$.

Samet et al. [27] introduced the notion of α-admissible mappings associated with a single map. Later Karapinar et al. [16], Shahi et al. [28], Abdeljawad [4] and Rao et al. [23] extended α - admissible mappings associated with two and four mappings and proved fixed and common fixed point theorems for mappings on various spaces.

Definition 1.3. Let X be a non empty set and $\alpha: X \times X \rightarrow \mathbb{R}^{+}$
(i) ([27]): A mapping of $T: X \rightarrow X$ is called α - admissible if $\alpha(x, y) \geqslant 1$ implies $\alpha(T x, T y) \geqslant 1$ for all $x, y \in X$.
(ii) ([16]): A mapping of $T: X \rightarrow X$ is called triangular α - admissible if $\alpha(x, y) \geqslant 1 \Rightarrow \alpha(T x, T y) \geqslant 1$ for all $x, y \in X$ and $\alpha(x, z) \geqslant 1$ and $\alpha(z, y) \geqslant 1 \Rightarrow \alpha(x, y) \geqslant 1$ for all $x, y, z \in X$.
(iii) ([28]): Let $f, g: X \rightarrow X$. Then f is said to be α - admissible with respect to g if $\alpha(g x, g y) \geqslant 1$ implies $\alpha(f x, f y) \geqslant 1$ for all $x, y \in X$.
(iv) ([4]): Let $f, g: X \rightarrow X$. Then the pair (f, g) is said to be α-admissible if $\alpha(x, y) \geqslant 1$ implies $\alpha(f x, g y) \geqslant 1$ and $\alpha(g x, f y) \geqslant 1$ for all $x, y \in X$.
(v) ([23]): Let $f, g, S, T: X \rightarrow X$. Then the pair (f, g) is said to be α admissible w.r.to the pair (S, T) if $\alpha(S x, T y) \geqslant 1$ implies $\alpha(f x, g y) \geqslant 1$ and $\alpha(T x, S y) \geqslant 1$ implies $\alpha(g x, f y) \geqslant 1$ for all $x, y \in X$.Furthermore, we say that the pair (f, g) is triangular α-admissible with respect to the pair (S, T) if (f, g) is α-admissible w.r.to the pair (S, T) and $\alpha(x, z) \geqslant$ $1, \alpha(z, y) \geqslant 1 \Rightarrow \alpha(x, y) \geqslant 1$ for all $x, y, z \in X$.

Recently Abbas et al. $[\mathbf{1}, \mathbf{2}]$ introduced the new concepts in a partially ordered set as follows.

Definition 1.4. ($[\mathbf{1}, \mathbf{2}])$ Let (X, \preceq) be a partially ordered set and $f: X \rightarrow X$.
(i) f is said to be a dominating map if $x \preceq f x, \forall x \in X$.
(ii) f is said to be dominated if $f x \preceq x, \forall x \in X$.

In 1977, Alber et al. [5] generalized the Banach contraction principle by introducing the concept weak contraction mappings in Hilbert space and proved that every weak contraction mapping on a Hilbert space has a unique fixed point.

Rhodes [24] extended weak contraction principle in Hilbert spaces to metric spaces. Later many authors, for example, $[\mathbf{1 0}, \mathbf{1 1}, \mathbf{8}, \mathbf{1 7}, \mathbf{2 0}, \mathbf{2 1}, \mathbf{1 9}]$ obtained generalizations and extensions of the weak contraction principle to obtain fixed, common fixed, coupled and common coupled fixed point theorems in various spaces.

Definition 1.5. Let X be a non-empty set and $f: X \rightarrow \mathbb{R}^{+}$. Then f is called lower semi continuous at $x \in X$ if $f(x) \leqslant \lim _{n \rightarrow \infty} \inf f\left(x_{n}\right)$ whenever $\left\{x_{n}\right\} \subset X$ with $\lim _{n \rightarrow \infty} x_{n}=x$. Let
$\Psi=\left\{\psi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}\right.$such that ψ is continuous and $\left.\psi(t)=0 \Leftrightarrow t=0\right\}$, and $\Phi=\left\{\phi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}\right.$such that ϕ is lower semi continuous and,$~ 子$.

Recently Seonghoon Cho [9] proved the following theorem.
Theorem 1.1 (Theorem 2.1 of [9]). Let (X, d) be a complete metric space and $T: X \rightarrow X$ be a mapping satisfying

$$
\psi(d(T x, T y)+\varphi(T x)+\varphi(T y)) \leqslant \psi(m(x, y, d, T, \varphi))-\phi(l(x, y, d, T, \varphi))
$$

for all $x, y \in X$, where $\psi \in \Psi, \phi \in \Phi, \varphi: X \rightarrow \mathbb{R}^{+}$is a lower semi continuous function and

$$
m(x, y, d, T, \varphi))=\max \left\{\begin{array}{l}
d(x, y)+\varphi(x)+\varphi(y) \\
d(x, T x)+\varphi(x)+\varphi(T x) \\
d(y, T y)+\varphi(y)+\varphi(T y) \\
\frac{1}{2}\left[\begin{array}{l}
d(x, T y)+\varphi(x)+\varphi(T y)+ \\
d(y, T x)+\varphi(y)+\varphi(T x)
\end{array}\right]
\end{array}\right\}
$$

and

$$
l(x, y, d, T, \varphi)=\max \{d(x, y)+\varphi(x)+\varphi(y), d(y, T y)+\varphi(y)+\varphi(T y)\}
$$

Then there exists a unique $z \in X$ such that $T z=z$ and $\varphi(z)=0$.
Using these concepts, we prove one common fixed point theorem for four maps in partially ordered partial metric spaces. Our theorem generalize and extend the Theorem 2.1 of Seonghoon Cho [$\mathbf{9}]$. We also give an example to illustate our theorem. We call the condition (2.1.3) as generalized α-weakly contractive condition associated with four maps involved in it.
Now we give our main result.

2. The Main Result

THEOREM 2.1. Let (X, p, \preceq) be a partially ordered partial metric space, α : $X \times X \rightarrow \mathbb{R}^{+}$be an admissible function and $f, g, S, T: X \rightarrow X$ be mappings satisfying
(2.1.1) f and g are dominated and S, T are dominating mappings respectively,
(2.1.2) $f(X) \subseteq T(X)$ and $g(X) \subseteq S(X)$,
(2.1.3) $\alpha(S x, T y) \psi(p(f x, g y)+\varphi(f x)+\varphi(g y)) \leqslant \psi(M(x, y))-\phi(M(x, y))$ for all comparable elements $x, y \in X$, where $\psi \in \Psi, \phi \in \Phi$,
$\varphi: X \rightarrow \mathbb{R}^{+}$is a lower semi continuous function and

$$
M(x, y)=\max \left\{\begin{array}{l}
p(S x, T y)+\varphi(S x)+\varphi(T y), \\
p(S x, f x)+\varphi(S x)+\varphi(f x), \\
p(T y, g y)+\varphi(T y)+\varphi(g y), \\
\frac{1}{2}\left[\begin{array}{l}
p(S x, g y)+\varphi(S x)+\varphi(g y)+ \\
p(T y, f x)+\varphi(T y)+\varphi(f x)
\end{array}\right]
\end{array}\right\}
$$

(2.1.4) the pair (f, g) is triangular α-admissible with respect to the pair (S, T),
(2.1.5) $\alpha\left(S x_{1}, f x_{1}\right) \geqslant 1$ and $\alpha\left(f x_{1}, S x_{1}\right) \geqslant 1$ for some $x_{1} \in X$,
(2.1.6) If for a non-increasing sequence $\left\{x_{n}\right\}$ in X with $y_{n} \preceq x_{n}$ for all $n \in \mathbb{N}$ and $y_{n} \rightarrow u$ for some $u \in X$ implies $u \preceq x_{n}$ for all $n \in \mathbb{N}$,
(2.1.7)(a) Suppose $S(X)$ is a complete sub space of X. Further assume that $\alpha\left(\theta, y_{2 n-1}\right) \geqslant 1$, for all $n \in \mathbb{N}$ and $\alpha(\theta, \theta) \geqslant 1$ whenever there exists a sequence $\left\{y_{n}\right\}$ in X such that $\alpha\left(y_{n}, y_{n+1}\right) \geqslant 1, \alpha\left(y_{n+1}, y_{n}\right) \geqslant 1$ for all $n \in \mathbb{N}$ and $y_{n} \rightarrow \theta$ for some $\theta \in X$.
(or)
(2.1.7)(b) Suppose $T(X)$ is a complete sub space of X. Further assume that $\alpha\left(y_{2 n}, \theta\right) \geqslant 1$, for all $n \in \mathbb{N}$ and $\alpha(\theta, \theta) \geqslant 1$ whenever there exists a sequence $\left\{y_{n}\right\}$ in X such that $\alpha\left(y_{n}, y_{n+1}\right) \geqslant 1, \alpha\left(y_{n+1}, y_{n}\right) \geqslant 1$ for all $n \in \mathbb{N}$ and $y_{n} \rightarrow \theta$ for some $\theta \in X$.

Then f, g, S and T have a common fixed point in X.
Proof. From (2.1.5), there exists $x_{1} \in X$ such that $\alpha\left(S x_{1}, f x_{1}\right) \geqslant 1$ and $\alpha\left(f x_{1}, S x_{1}\right) \geqslant 1$. From (2.1.2), there exist sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that $y_{2 n+1}=f x_{2 n+1}=T x_{2 n+2}, n=0,1,2, \ldots$ and $y_{2 n}=g x_{2 n}=S x_{2 n+1}, n=1,2, \ldots$.

Now we have

$$
\begin{aligned}
\alpha\left(S x_{1}, f x_{1}\right) \geqslant 1 \Rightarrow & \alpha\left(S x_{1}, T x_{2}\right) \geqslant 1, \text { from the definition of }\left\{y_{n}\right\} \\
& \Rightarrow \alpha\left(f x_{1}, g x_{2}\right) \geqslant 1, \text { from }(2.1 .4), \text {,.e., } \alpha\left(y_{1}, y_{2}\right) \geqslant 1 \\
& \Rightarrow \alpha\left(T x_{2}, S x_{3}\right) \geqslant 1, \text { from the definition of }\left\{y_{n}\right\} \\
& \Rightarrow \alpha\left(g x_{2}, f x_{3}\right) \geqslant 1, \text { from (2.1.4), i.e., } \alpha\left(y_{2}, y_{3}\right) \geqslant 1 \\
& \Rightarrow \alpha\left(S x_{3}, T x_{4}\right) \geqslant 1, \text { from the definition of }\left\{y_{n}\right\} \\
& \Rightarrow \alpha\left(f x_{3}, g x_{4}\right) \geqslant 1, \text { from }(2.1 .4), \text { i.e., } \alpha\left(y_{3}, y_{4}\right) \geqslant 1 .
\end{aligned}
$$

Continuing in this way, we have

$$
\begin{equation*}
\alpha\left(y_{n}, y_{n+1}\right) \geqslant 1, \forall n \in \mathbb{N} . \tag{2.1}
\end{equation*}
$$

Similarly by using $\alpha\left(f x_{1}, S x_{1}\right) \geqslant 1$ we can show that

$$
\begin{equation*}
\alpha\left(y_{n+1}, y_{n}\right) \geqslant 1, \forall n \in \mathbb{N} . \tag{2.2}
\end{equation*}
$$

From triangular α - admissible condition (2.1.4), we have

$$
\begin{equation*}
\alpha\left(y_{m}, y_{n}\right) \geqslant 1, \forall m, n \in \mathbb{N}, m \geqslant n \tag{2.3}
\end{equation*}
$$

From (2.1.1), we have

$$
x_{2 n+1} \preceq S x_{2 n+1}=g x_{2 n} \preceq x_{2 n} \preceq T x_{2 n}=f x_{2 n-1} \preceq x_{2 n-1}
$$

Thus

$$
\begin{equation*}
x_{n+1} \preceq x_{n}, \forall n \in \mathbb{N} . \tag{2.4}
\end{equation*}
$$

Case(i): Suppose $p\left(y_{n}, y_{n+1}\right)+\varphi\left(y_{n}\right)+\varphi\left(y_{n+1}\right)=0$ for some n. Let $n=2 m$. Then $y_{2 m}=y_{2 m+1}$ and $\varphi\left(y_{2 m}\right)=\varphi\left(y_{2 m+1}\right)=0$. From (2.1.3) and (2.4) and (2.1), we have

$$
\alpha\left(S x_{2 m+1}, T x_{2 m+2}\right)=\alpha\left(y_{2 m}, y_{2 m+1}\right) \geqslant 1 .
$$

From (2.1.3) and (2.4), we have

$$
\begin{align*}
& \psi\left(p\left(y_{2 m+1}, y_{2 m+2}\right)+\varphi\left(y_{2 m+1}\right)+\varphi\left(y_{2 m+2}\right)\right) \tag{2.5}\\
& \quad=\psi\left(p\left(f x_{2 m+1}, g x_{2 m+2}\right)+\varphi\left(f x_{2 m+1}\right)+\varphi\left(g x_{2 m+2}\right)\right) \\
& \quad \leqslant \alpha\left(S x_{2 m+1}, T x_{2 m+2}\right) \psi\left(p\left(f x_{2 m+1}, g x_{2 m+2}\right)+\varphi\left(f x_{2 m+1}\right)+\varphi\left(g x_{2 m+2}\right)\right) \\
& \quad \leqslant \psi\left(M\left(x_{2 m+1}, x_{2 m+2}\right)\right)-\phi\left(M\left(x_{2 m+1}, x_{2 m+2}\right)\right)
\end{align*}
$$

where

$$
M\left(x_{2 m+1}, x_{2 m+2}\right)=\max \left\{\begin{array}{l}
p\left(y_{2 m}, y_{2 m+1}\right)+\varphi\left(y_{2 m}\right)+\varphi\left(y_{2 m+1}\right), \\
p\left(y_{2 m}, y_{2 m+1}\right)+\varphi\left(y_{2 m}\right)+\varphi\left(y_{2 m+1}\right), \\
p\left(y_{2 m+1}, y_{2 m+2}\right)+\varphi\left(y_{2 m+1}\right)+\varphi\left(y_{2 m+2}\right), \\
\frac{1}{2}\left[\begin{array}{l}
p\left(y_{2 m}, y_{2 m+2}\right)+\varphi\left(y_{2 m}\right)+\varphi\left(y_{2 m+2}\right)+ \\
p\left(y_{2 m+1}, y_{2 m+1}\right)+\varphi\left(y_{2 m+1}\right)+\varphi\left(y_{2 m+1}\right)
\end{array}\right]
\end{array}\right\}
$$

But

$$
\left.\left.\begin{array}{rl}
\frac{1}{2}\left[\begin{array}{l}
p\left(y_{2 m}, y_{2 m+2}\right)+\varphi\left(y_{2 m}\right)+\varphi\left(y_{2 m+2}\right) \\
p\left(y_{2 m+1}, y_{2 m+1}\right)+
\end{array}\right) \\
& \leqslant\left(y_{2 m+1}\right)+\varphi\left(y_{2 m+1}\right)
\end{array}\right] \quad \begin{array}{l}
\frac{1}{2}\left[\begin{array}{l}
p\left(y_{2 m}, y_{2 m+1}\right)+p\left(y_{2 m+1}, y_{2 m+2}\right)- \\
p\left(y_{2 m+1}, y_{2 m+1}\right)+\varphi\left(y_{2 m}\right)+\varphi\left(y_{2 m+2}\right)+ \\
p\left(y_{2 m+1}, y_{2 m+1}\right)+\varphi\left(y_{2 m+1}\right)+\varphi\left(y_{2 m+1}\right)
\end{array}\right] \\
\end{array} \leqslant \max \left\{\begin{array}{l}
p\left(y_{2 m}, y_{2 m+1}\right)+\varphi\left(y_{2 m}\right)+\varphi\left(y_{2 m+1}\right), \\
\left.p\left(y_{2 m+1}, y_{2 m+2}\right)+\varphi\left(y_{2 m+1}\right)+\varphi\left(y_{2 m+2}\right)\right\}
\end{array}\right\}\right) ~ \$
$$

Thus

$$
\begin{aligned}
M\left(x_{2 m+1}, x_{2 m+2}\right) & =\max \left\{\begin{array}{l}
p\left(y_{2 m}, y_{2 m+1}\right)+\varphi\left(y_{2 m}\right)+\varphi\left(y_{2 m+1}\right) \\
p\left(y_{2 m+1}, y_{2 m+2}\right)+\varphi\left(y_{2 m+1}\right)+\varphi\left(y_{2 m+2}\right)
\end{array}\right\} \\
& =p\left(y_{2 m+1}, y_{2 m+2}\right)+\varphi\left(y_{2 m+1}\right)+\varphi\left(y_{2 m+2}\right) \text { from case (i) }
\end{aligned}
$$

Now (2.5) becomes

$$
\begin{aligned}
\psi\binom{p\left(y_{2 m+1}, y_{2 m+2}\right)}{\varphi\left(y_{2 m+1}\right)+\varphi\left(y_{2 m+2}\right)} \leqslant & \psi\binom{p\left(y_{2 m+1}, y_{2 m+2}\right)}{\varphi\left(y_{2 m+1}\right)+\varphi\left(y_{2 m+2}\right)} \\
& -\phi\binom{p\left(y_{2 m+1}, y_{2 m+2}\right)}{\varphi\left(y_{2 m+1}\right)+\varphi\left(y_{2 m+2}\right)}
\end{aligned}
$$

which in turn yields that

$$
\phi\left(p\left(y_{2 m+1}, y_{2 m+2}\right)+\varphi\left(y_{2 m+1}\right)+\varphi\left(y_{2 m+2}\right)\right)=0
$$

Hence

$$
p\left(y_{2 m+1}, y_{2 m+2}\right)+\varphi\left(y_{2 m+1}\right)+\varphi\left(y_{2 m+2}\right)=0
$$

Thus

$$
y_{2 m+1}=y_{2 m+2}, \quad \varphi\left(y_{2 m+1}\right)=\varphi\left(y_{2 m+2}\right)=0 .
$$

Continuing in this way, we get $y_{2 m}=y_{2 m+1}=y_{2 m+2}=\cdots$. Thus $\left\{y_{n}\right\}$ is a constant Cauchy sequence.
Case(ii): Assume that $p\left(y_{n}, y_{n+1}\right)+\varphi\left(y_{n}\right)+\varphi\left(y_{n+1}\right) \neq 0$ for all n. Then as in Case (i) and (2.5) we have

$$
\begin{array}{r}
\psi\left(p\left(y_{2 n+1}, y_{2 n+2}\right)+\varphi\left(y_{2 n+1}\right)+\varphi\left(y_{2 n+2}\right)\right) \leqslant \psi\left(M\left(x_{2 n+1}, x_{2 n+2}\right)\right)- \tag{2.6}\\
\phi\left(M\left(x_{2 n+1}, x_{2 n+2}\right)\right)
\end{array}
$$

where

$$
M\left(x_{2 n+1}, x_{2 n+2}\right)=\max \left\{\begin{array}{l}
p\left(y_{2 n}, y_{2 n+1}\right)+\varphi\left(y_{2 n}\right)+\varphi\left(y_{2 n+1}\right), \\
p\left(y_{2 n+1}, y_{2 n+2}\right)+\varphi\left(y_{2 n+1}\right)+\varphi\left(y_{2 n+2}\right)
\end{array}\right\}
$$

If

$$
p\left(y_{2 n}, y_{2 n+1}\right)+\varphi\left(y_{2 n}\right)+\varphi\left(y_{2 n+1}\right)<p\left(y_{2 n+1}, y_{2 n+2}\right)+\varphi\left(y_{2 n+1}\right)+\varphi\left(y_{2 n+2}\right)
$$

then

$$
M\left(x_{2 n+1}, x_{2 n+2}\right)=p\left(y_{2 n+1}, y_{2 n+2}\right)+\varphi\left(y_{2 n+1}\right)+\varphi\left(y_{2 n+2}\right)
$$

Now (2.6) becomes

$$
\begin{aligned}
\psi\binom{p\left(y_{2 n+1}, y_{2 n+2}\right)+}{\varphi\left(y_{2 n+1}\right)++\varphi\left(y_{2 n+2}\right)} \leqslant & \psi\binom{p\left(y_{2 n+1}, y_{2 n+2}\right)+}{\varphi\left(y_{2 n+1}\right)+\varphi\left(y_{2 n+2}\right)} \\
& -\phi\binom{p\left(y_{2 n+1}, y_{2 n+2}\right)+}{\varphi\left(y_{2 n+1}\right)+\varphi\left(y_{2 n+2}\right)}
\end{aligned}
$$

which in turn yields that

$$
\phi\left(p\left(y_{2 n+1}, y_{2 n+2}\right)+\varphi\left(y_{2 n+1}\right)+\varphi\left(y_{2 n+2}\right)\right)=0 .
$$

Thus

$$
p\left(y_{2 n+1}, y_{2 n+2}\right)+\varphi\left(y_{2 n+1}\right)+\varphi\left(y_{2 n+2}\right)=0
$$

which is a contradiction to Case (ii). Hence

$$
p\left(y_{2 n+1}, y_{2 n+2}\right)+\varphi\left(y_{2 n+1}\right)+\varphi\left(y_{2 n+2}\right) \leqslant p\left(y_{2 n}, y_{2 n+1}\right)+\varphi\left(y_{2 n}\right)+\varphi\left(y_{2 n+1}\right) .
$$

Similarly we can show that

$$
p\left(y_{2 n}, y_{2 n+1}\right)+\varphi\left(y_{2 n}\right)+\varphi\left(y_{2 n+1}\right) \leqslant p\left(y_{2 n-1}, y_{2 n}\right)+\varphi\left(y_{2 n-1}\right)+\varphi\left(y_{2 n}\right) .
$$

Thus $\left\{p\left(y_{n}, y_{n+1}\right)+\varphi\left(y_{n}\right)+\varphi\left(y_{n+1}\right)\right\}$ is non-increasing sequence of non-negative real numbers and hence converges to $r \geqslant 0$.

Now from (2.6), we have

$$
\begin{align*}
& \psi\binom{p\left(y_{2 n+1}, y_{2 n+2}\right)+}{\varphi\left(y_{2 n+1}\right)+\varphi\left(y_{2 n+2}\right)} \leqslant \psi\left(p\left(y_{2 n}, y_{2 n+1}\right)+\varphi\left(y_{2 n}\right)+\varphi\left(y_{2 n+1}\right)\right) \tag{2.7}\\
&-\phi\left(p\left(y_{2 n}, y_{2 n+1}\right)+\varphi\left(y_{2 n}\right)+\varphi\left(y_{2 n+1}\right)\right)
\end{align*}
$$

Assume $r>0$.
Letting $n \rightarrow \infty$ in (2.7) and using continuity of ψ and lower semi continuity of ϕ, we get $\psi(r) \leqslant \psi(r)-\phi(r)$ which in turn yields that $\phi(r)=0$ so that $r=0$. Thus $\lim _{n \rightarrow \infty}\left[p\left(y_{n}, y_{n+1}\right)+\varphi\left(y_{n}\right)+\varphi\left(y_{n+1}\right)\right]=0$. Hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p\left(y_{n}, y_{n+1}\right)=0 \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \varphi\left(y_{n}\right)=0 \tag{2.9}
\end{equation*}
$$

Now we prove that $\left\{y_{2 n}\right\}$ is Cauchy. On contrary, suppose that $\left\{y_{2 n}\right\}$ is not Cauchy. Then there exist $\epsilon>0$ and monotone increasing sequences of natural numbers $\{2 m(k)\}$ and $\{2 n(k)\}$ such that $n(k)>m(k)$,

$$
\begin{equation*}
d_{p}\left(y_{2 m(k)}, y_{2 n(k)}\right) \geqslant \epsilon \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{p}\left(y_{2 m(k)}, y_{2 n(k)-2}\right)<\epsilon \tag{2.11}
\end{equation*}
$$

From (2.10)
$\epsilon \leqslant d_{p}\left(y_{2 m(k)}, y_{2 n(k)}\right)$
$\leqslant d_{p}\left(y_{2 m(k)}, y_{2 n(k)-2}\right)+d_{p}\left(y_{2 n(k)-2}, y_{2 n(k)-1}\right)+d_{p}\left(y_{2 n(k)-1}, y_{2 n(k)}\right)$
$<\epsilon+d_{p}\left(y_{2 n(k)-2}, y_{2 n(k)-1}\right)+d_{p}\left(y_{2 n(k)-1}, y_{2 n(k)}\right)$, from (2.11)
Letting $k \rightarrow \infty$ and using (2.8), we have

$$
\lim _{k \rightarrow \infty} d_{p}\left(y_{2 m(k)}, y_{2 n(k)}\right)=\epsilon
$$

From the definition of d_{p} and (2.8), we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} p\left(y_{2 m(k)}, y_{2 n(k)}\right)=\frac{\epsilon}{2} \tag{2.12}
\end{equation*}
$$

Letting $k \rightarrow \infty$ and using (2.12) and (2.8) in
$\left|d_{p}\left(y_{2 n(k)-1}, y_{2 m(k)}\right)-d_{p}\left(y_{2 m(k)}, y_{2 n(k)}\right)\right| \leqslant d_{p}\left(y_{2 n(k)-1}, y_{2 n(k)}\right)$, we get

$$
\lim _{k \rightarrow \infty} d_{p}\left(y_{2 n(k)-1}, y_{2 m(k)}\right)=\epsilon
$$

From the definition of d_{p}, we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(y_{2 n(k)-1}, y_{2 m(k)}\right)=\frac{\epsilon}{2} \tag{2.13}
\end{equation*}
$$

Letting $k \rightarrow \infty$ and using (2.12) and (2.8) in
$\left|d_{p}\left(y_{2 n(k)}, y_{2 m(k)+1}\right)-d_{p}\left(y_{2 n(k)}, y_{2 m(k)}\right)\right| \leqslant d_{p}\left(y_{2 m(k)+1}, y_{2 m(k)}\right)$,
we get

$$
\lim _{k \rightarrow \infty} d_{p}\left(y_{2 n(k)}, y_{2 m(k)+1}\right)=\epsilon
$$

From the definition of d_{p}, we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} p\left(y_{2 n(k)}, y_{2 m(k)+1}\right)=\frac{\epsilon}{2} \tag{2.14}
\end{equation*}
$$

Letting $k \rightarrow \infty$ and using (2.12) and (2.8) in

$$
\left|d_{p}\left(y_{2 m(k)+1}, y_{2 n(k)-1}\right)-d_{p}\left(y_{2 m(k)}, y_{2 n(k)}\right)\right| \leqslant\binom{ d_{p}\left(y_{2 m(k)+1}, y_{2 m(k)}\right)}{+d_{p}\left(y_{2 n(k)-1}, y_{2 n(k)}\right)}
$$

we get

$$
\lim _{k \rightarrow \infty} d_{p}\left(y_{2 m(k)+1}, y_{2 n(k)-1}\right)=\epsilon
$$

From the definition of d_{p}, we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} p\left(y_{2 m(k)+1}, y_{2 n(k)-1}\right)=\frac{\epsilon}{2} \tag{2.15}
\end{equation*}
$$

$\alpha\left(S x_{2 m(k)+1}, T x_{2 n(k)}\right)=\alpha\left(y_{2 m(k)}, y_{2 n(k)-1}\right) \geqslant 1$ from (2.3). Also from (2.4), $x_{2 n(k)} \preceq x_{2 m(k)+1}$. From (2.1.3), we have

$$
\begin{array}{r}
\psi\binom{\left(p\left(y_{2 m(k)+1}, y_{2 n(k)}\right)+\right.}{\left.\varphi\left(y_{2 m(k)+1}\right)+\varphi\left(y_{2 n(k)}\right)\right)}=\psi\binom{p\left(f x_{2 m(k)+1}, g x_{2 n(k)}\right)+}{\varphi\left(f x_{2 m(k)+1}\right)+\varphi\left(g x_{2 n(k)}\right)} \tag{2.16}\\
\leqslant \alpha\left(S x_{2 m(k)+1}, T x_{2 n(k)}\right) \psi\binom{p\left(f x_{2 m(k)+1}, g x_{2 n(k)}\right)+}{\varphi\left(f x_{2 m(k)+1}\right)+\varphi\left(g x_{2 n(k)}\right)} \\
\leqslant \psi\left(M\left(x_{2 m(k)+1}, x_{2 n(k)}\right)\right)-\phi\left(M\left(x_{2 m(k)+1}, x_{2 n(k)}\right)\right)
\end{array}
$$

where

$$
\begin{aligned}
M\left(x_{2 m(k)+1}, x_{2 n(k)}\right)=\max
\end{aligned}\left\{\begin{array}{l}
p\left(y_{2 m(k)}, y_{2 n(k)-1}\right)+\varphi\left(y_{2 m(k)}\right)+\varphi\left(y_{2 n(k)-1}\right), \\
p\left(y_{2 m(k)}, y_{2 m(k)+1}\right)+\varphi\left(y_{2 m(k)}\right)+\varphi\left(y_{2 m(k)+1}\right), \\
p\left(y_{2 n(k)-1}, y_{2 n(k)}\right)+\varphi\left(y_{2 n(k)-1}\right)+\varphi\left(y_{2 n(k)}\right), \\
\\
\frac{1}{2}\left[\begin{array}{l}
p\left(y_{2 m(k)}, y_{2 n(k)}\right)+\varphi\left(y_{2 m(k)}\right)+\varphi\left(y_{2 n(k)}\right) \\
+p\left(y_{2 n(k)-1}, y_{2 m(k)+1}\right) \\
+\varphi\left(y_{2 n(k)-1}\right)+\varphi\left(y_{2 m(k)+1}\right)
\end{array}\right\}
\end{array}\right\},
$$

from (2.8),(2.9),(2.12),(2.13) and (2.15)
Letting $n \rightarrow \infty$ in (2.16) and using (2.14), we get $\psi\left(\frac{\epsilon}{2}\right) \leqslant \psi\left(\frac{\epsilon}{2}\right)-\phi\left(\frac{\epsilon}{2}\right)$ which in turn yields that $\phi\left(\frac{\epsilon}{2}\right)=0$. Hence $\epsilon=0$. It is a contradiction. Hence $\left\{y_{2 n}\right\}$ is Cauchy.

Letting $n, m \rightarrow \infty$ in

$$
\left|d_{p}\left(y_{2 n+1}, y_{2 m+1}\right)-d_{p}\left(y_{2 n}, y_{2 m}\right)\right| \leqslant d_{p}\left(y_{2 n+1}, y_{2 n}\right)+d_{p}\left(y_{2 m}, y_{2 m+1}\right)
$$

we get

$$
\lim _{n, m \rightarrow \infty} d_{p}\left(y_{2 n+1}, y_{2 m+1}\right)=0 .
$$

Hence $\left\{y_{2 n+1}\right\}$ is Cauchy. Thus $\left\{y_{n}\right\}$ is a Cauchy sequence in $\left(X, d_{p}\right)$. Hence, we have $\lim _{n, m \rightarrow \infty} d_{p}\left(y_{n}, y_{m}\right)=0$. Now from the definition of d_{p}, we have

$$
\begin{equation*}
\lim _{n, m \rightarrow \infty} p\left(y_{n}, y_{m}\right)=0 \tag{2.17}
\end{equation*}
$$

Suppose (2.1.7)(a) holds. Since $\left\{y_{2 n}\right\}=\left\{S x_{2 n+1}\right\} \subseteq S(X)$ and $S(X)$ is a complete sub space of X, there exists $z \in S(X)$ such that $\left\{y_{2 n}\right\}$ converges to z. There exists $u \in X$ such that $z=S u$. Since $\left\{y_{n}\right\}$ is a Cauchy and $\left\{y_{2 n}\right\}$ converges to z, it follows that $\left\{y_{2 n+1}\right\}$ also converges to z.

From Lemma 1.1(ii), we have

$$
\begin{gathered}
p(z, z)=\lim _{n \rightarrow \infty} p\left(y_{2 n+1}, z\right)=\lim _{n \rightarrow \infty} p\left(y_{2 n}, z\right)=\lim _{n, m \rightarrow \infty} p\left(y_{n}, y_{m}\right) . \\
p(z, z)=\lim _{n \rightarrow \infty} p\left(y_{2 n+1}, z\right)=\lim _{n \rightarrow \infty} p\left(y_{2 n}, z\right)=0, \operatorname{from}(2.17)
\end{gathered}
$$

Since φ is lower semi continuous, we have

$$
\varphi(z) \leqslant \lim _{n \rightarrow \infty} \inf \varphi\left(y_{n}\right) \leqslant \lim _{n \rightarrow \infty} \varphi\left(y_{n}\right)=0
$$

from (2.9). Hence

$$
\begin{equation*}
\varphi(z)=0 . \tag{2.18}
\end{equation*}
$$

and $\alpha\left(S u, T x_{2 n}\right)=\alpha\left(z, y_{2 n-1}\right) \geqslant 1$, from (2.1.7)(a). Since S is dominating map, we have $u \preceq S u=z$. Since $g x_{2 n} \preceq x_{2 n}$ and $g x_{2 n} \rightarrow z$, by (2.1.6), we have $z \preceq x_{2 n}$. Thus $u \preceq x_{2 n}$.

Now from(2.1.3), we have

$$
\begin{aligned}
\psi\left(p\left(f u, y_{2 n}\right)+\varphi(f u)+\varphi\left(f y_{2 n}\right)\right) & =\psi\left(p\left(f u, g x_{2 n}\right)+\varphi(f u)+\varphi\left(g x_{2 n}\right)\right) \\
& \leqslant \alpha\left(S u, T x_{2 n}\right) \psi\binom{p\left(f u, g x_{2 n}\right)+}{\varphi(f u)+\varphi\left(g x_{2 n}\right)} \\
& \leqslant \psi\left(M\left(u, x_{2 n}\right)\right)-\phi\left(M\left(u, x_{2 n}\right)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& M\left(u, x_{2 n}\right)=\max \left\{\begin{array}{l}
p\left(z, y_{2 n-1}\right)+\varphi(z)+\varphi\left(y_{2 n-1}\right), \\
p(z, f u)+\varphi(z)+\varphi(f u), \\
p\left(y_{2 n-1}, y_{2 n}\right)+\varphi\left(y_{2 n-1}\right)+\varphi\left(y_{2 n}\right), \\
\frac{1}{2}\left[\begin{array}{l}
p\left(z, y_{2 n}\right)+\varphi(z)+\varphi\left(y_{2 n}\right)+ \\
p\left(y_{2 n-1}, f u\right)+\varphi\left(y_{2 n-1}\right)+\varphi(f u)
\end{array}\right]
\end{array}\right\} \\
& \rightarrow \max \left\{0, p(z, f u)+\varphi(f u), 0, \frac{1}{2}[p(z, f u)+\varphi(f u)]\right\}
\end{aligned}
$$

from (2.8), (2.9), (2.18) and Lemma 1.2.
Letting $n \rightarrow \infty$ in (2.19), we get

$$
\psi(p(f u, z)+\varphi(f u)) \leqslant \psi(p(z, f u)+\varphi(f u))-\phi(p(z, f u)+\varphi(f u))
$$

which in turn yields that $\phi(p(z, f u)+\varphi(f u))=0$. Hence $p(z, f u)+\varphi(f u)=0$. Thus $f u=z$. Hence $S u=z=f u$. Since f is dominated and S is dominating maps, we have $z=f u \preceq u$ and $u \preceq S u=z$. Thus $u=z$. Hence

$$
\begin{equation*}
S z=z=f z . \tag{2.20}
\end{equation*}
$$

Since $f(X) \subseteq T(X)$, there exists $v \in X$ such that $z=f z=T v$. Since T is dominating map, we have $v \preceq T v=z$. From (2.1.7)(a) $\alpha(S z, T v)=\alpha(z, z) \geqslant 1$. (2.21)

$$
\begin{aligned}
\psi(p(z, g v)+\varphi(z)+\varphi(g v))=\psi & (p(f z, g v)+\varphi(f z)+\varphi(g v)) \\
& \leqslant \alpha(S z, T v) \psi(p(f z, g v)+\varphi(f z)+\varphi(g v)) \\
& \leqslant \psi(M(z, v))-\phi(M(z, v))
\end{aligned}
$$

where

$$
M(z, v)=\max \left\{\begin{array}{l}
p(z, z)+\varphi(z)+\varphi(z), \\
p(z, z)+\varphi(z)+\varphi(z), \\
p(z, g v)+\varphi(z)+\varphi(g v), \\
\frac{1}{2}\left[\begin{array}{c}
p(z, g v)+\varphi(z)+\varphi(g v) \\
+p(z, z)+\varphi(z)+\varphi(z)
\end{array}\right]
\end{array}\right\}
$$

$$
=p(z, g v)+\varphi(g v), \text { from }(2.18) .
$$

Now (2.21) becomes

$$
\psi(p(z, g v)+\varphi(g v)) \leqslant \psi(p(z, g v)+\varphi(g v))-\phi(p(z, g v)+\varphi(g v))
$$

which in turn yields that $\phi(p(z, g v)+\varphi(g v))=0$. Thus $g v=z$ and $\varphi(g v)=0$. Hence $g v=z=T v$. Since g is dominated and T is dominating maps, we have
$z=g v \preceq v$ and $v \preceq T v=z$. Thus $v=z$. Hence

$$
\begin{equation*}
g z=z=T z . \tag{2.22}
\end{equation*}
$$

From (2.20) and (2.22), it follows that z is a common fixed point of f, g, S and T. Similarly, we can prove this theorem when $(2.1 .7)(b)$ holds.

Now we give an example to illustrate our main Theorem 2.1.
Example 2.1. Let $X=[0, \infty)$ and $p(x, y)=\max \{x, y\}, \forall x, y \in X$. Let \preceq be the ordinary \leqslant. Let $f, g, S, T: X \rightarrow X$ be defined by $f x=\frac{x}{2}, g x=\frac{x}{3}, S x=6 x$ and $T x=4 x$. Let $\psi, \phi, \varphi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be defined by $\psi(t)=t, \phi(t)=\frac{5 t}{6}, \varphi(t)=t$, for all $t \in \mathbb{R}^{+}$. Define

$$
\alpha: X \times X \rightarrow \mathbb{R}^{+} \text {by } \alpha(x, y)=\left\{\begin{array}{lc}
1, & \text { if } x, y \in[0,1] \\
2, & \text { otherwise }
\end{array}\right.
$$

We have $f x=\frac{x}{2} \leqslant x, g x=\frac{x}{3} \leqslant x$. Also $x \leqslant 6 x=S x, x \leqslant 4 x=T x$.
Now we will verify the condition (2.1.3). If $x>\frac{1}{6}$ and $y \in X$ or $x \in X$ and $y>\frac{1}{4}$, then $\alpha(S x, T y)=\alpha(6 x, 4 y)=2$.

$$
\begin{aligned}
\alpha(S x, T y)[d(f x, g y)+\varphi(f x)+\varphi(g y)] & =2\left[\max \left\{\frac{x}{2}, \frac{y}{3}\right\}+\frac{x}{2}+\frac{y}{3}\right] \\
& =\frac{1}{6}[\max \{6 x, 4 y\}+6 x+4 y] \\
& =\frac{1}{6}[p(S x, T y)+\varphi(S x)+\varphi(T y)]
\end{aligned}
$$

If $x \leqslant \frac{1}{6}$ and $y \leqslant \frac{1}{4}$, then $\alpha(S x, T y)=1$.

$$
\begin{aligned}
\alpha(S x, T y)[d(f x, g y)+\varphi(f x)+\varphi(g y)] & =\max \left\{\frac{x}{2}, \frac{y}{3}\right\}+\frac{x}{2}+\frac{y}{3} \\
& =\frac{1}{12}[\max \{6 x, 4 y\}+6 x+4 y] \\
& <\frac{1}{6}[p(S x, T y)+\varphi(S x)+\varphi(T y)]
\end{aligned}
$$

Thus the condition (2.1.3)

$$
\begin{aligned}
& \alpha(S x, T y)[p(f x, g y)+\varphi(f x)+\varphi(g y)] \\
& \leqslant \frac{1}{6} \max \left\{\begin{array}{c}
p(S x, T y)+\varphi(S x)+\varphi(T y), p(S x, f x)+\varphi(S x)+\varphi(f x), \\
p(T y, g y)+\varphi(T y)+\varphi(g y), \\
\frac{1}{2}[p(S x, g y)+\varphi(S x)+\varphi(g y)+p(T y, f x)+\varphi(T y)+\varphi(f x)]
\end{array}\right\}
\end{aligned}
$$

for all $x, y \in X$ is satisfied. One can easily verify the remaining conditions of Theorem 2.1. Clearly 0 is a common fixed point of f, g, S and T.

References

[1] M. Abbas, N. Talat Nazir and S. Radenović. Common fixed points of four maps in partially ordered metric spaces. Appl. Math. Lett., 24(9)(2011), 1520-1526.
[2] M. Abbas, Y. J. Cho and T. Nazir. Common fixed points of Ćirić-type contractive mappings in two ordered generalized metric spaces. Fixed Point Theory Appl., 2012(2012:139), 17 pages.
[3] T. Abdeljawad, E. Karapinar and K. Tas. Existance and uniqueness of a common fixed point on partial metric spaces. Appl. Math. Lett., 24(11)(2011), 1900-1904.
[4] T. Abdeljawad. Meier-Keeler α-contractive fixed and common fixed point theorem. Fixed Point Theory Appl., 2013(2013:19), 10 pages.
[5] Y. I. Alber and S. Guerre-Delabriere. Principle of weakly contractive maps in Hilbert spaces. In: Gohberg I., Lyubich Y. (eds) New Results in Operator Theory and Its Applications. Operator Theory: Advances and Applications (vol 98, 7-22). Birkhuser, Basel 1997.
[6] I. Altun, F.Sola and H. Simsek. Generalized contractions on partial metric spaces. Topology Appl., 157(18)(2010), 2778-2785.
[7] I. Altun and A. Erduran. Fixed point theorems for monotone mappings on partial metric spaces. Fixed Point theory Appl., 2011(2011), Article ID 736063, 9 pages.
[8] H. Aydi. On common fixed point theorems for (ψ, φ)-generalized f-weakly contractive mappings. Miskolc Math. Notes, 14(1)(2013), 19-30.
[9] S. Cho. Fixed point theorems for generalized weakly contractive mappings in metric spaces with applications. Fixed Point Theory Appl., 2018(3)(2018), Article 18 pages.
[10] B. S. Choudhury, P. Konar, B. E. Rhoades and N. Metiya. Fixed point theorems for generalized weakly contractive mappings. Nonlinear Analysis: Theory, Methods and Applications., 74(6)(2011), 2116-2126.
[11] D. Djorić. Common fixed point for generalized (ψ, φ)-weak contractions. Appl. Math. Lett., 22(12)(2009), 1896-1900.
[12] R. Heckmann. Approximation of metric spaces by partial metric spaces. Applied Categorical Structures, 7(1-2)(1999), 71-83.
[13] D. Ilić, V. Pavlović and V. Rakočević. Some new extensions of Banach's contraction principle to partial metric spaces. Appl. Math. Lett., 24(8)(2011), 1326-1330.
[14] E. Karapinar and I. M. Erhan. Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett., 24(11)(2011), 1894-1899.
[15] E. Karapinar. Generalizations of Caristi Kirk's theorem on partial metric spaces. Fixed Point theory Appl., 2011(2011:4), 7 pages.
[16] E. Karapinar, P. Kumam and P. Salimi. On $\alpha-\psi$-Meier-Keeler contractive mappings. Fixed Point Theory Appl., 2013(2013:94), 12 pages.
[17] H. Lakzian and B. Samet. Fixed points for (ψ, φ)-weakly contractive mappings in generalized metric spaces. Appl. Math. Lett., 25(5)(2012), 902-906.
[18] S. G. Matthews. Partial metric topology. in: S. Andima et.al. (eds.)Proc. of the 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., 728(1994), 183-197.
[19] S. Moradi and A. Farajzadeh. On fixed point of (ψ, φ)-weakly and generalized (ψ, φ)-weak contraction mappings. Appl. Math. Lett., 25(10)(2012), 1257-1262.
[20] M. Musraleen, S. A. Mohouddine and R. P. Agarwal. Coupled fixed point theorems for α, ψ contractive type mappings in partially ordered metric spaces. Fixed Point Theory and Appl., $2012(2012: 228)$, 11 pages.
[21] O. Popescu. Fixed points for (ψ, ϕ)-weak contractions. Appl. Math. Lett., 24(1)(2011), 1-4.
[22] K. P. R. Rao and G. N. V. Kishore. A unique common fixed point theorem for four maps under $\psi-\phi$ - contractive condition in partial metric spaces. Bull. Math. Anal. Appl., 3(3)(2011), 56-63.
[23] K. P. R. Rao, P. Ranga Swamy and M. Imdad. Suzuki type unique common fixed point theorems for four maps using α-admissible functions in ordered partial metric spaces. J. Adv. Math. Stud., 9(2)(2016), 266-278.
[24] B. E. Rhoades. Some theorems on weakly contractive maps. Nonlinear Analysis: Theory, Methods and Applications., 47(4)(2001), 2683-2693.
[25] S. Romaguera. A Kirk type characterization of completeness for partial metric spaces. Fixed Point Theory and Applications, 2010(2009), Article ID 493298, 6 pages.
[26] B. Samet, M. Rojović, Rede Lazović and Rade Stojiljković. Common fixed point results for non linear contractions in ordered partial metric spaces. Fixed Point Theory Appl., 2011(2011:71), 14 pages.
[27] B. Samet, C. Vetro, P. Vetro. Fixed point theorems for $\alpha-\psi$ contractive type mappings. Nonlinear Analysis: Theory, Methods and Applications, 75(4)(2012), 2154-2165.
[28] P. Shahi, J. Kumar and S. S. Bhatia. Coincidence and common fixed point results for generalized $\alpha-\psi$ - contractive type mappings with applications. Bull. Belg. Math. Soc. Simon Stevin, 22(2)(2015), 299-318.
[29] O. Valero. On Banach fixed point theorems for partial metric spaces. Applied General Topology, $\mathbf{6}(2)(2005), 229-240$.

Receibed by editors 23.05.2018; Revised version 15.11.2018; Available online 26.11.2018.
K.P.R.RaO: Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar - 522 510, A.P., INDIA.

E-mail address: kprrao2004@yahoo.com
A.Sombabu: Department of Mathematics, NRI Institute of technology, Agiripalli521211, A.P., INDIA.

E-mail address: somu.mphil@gmail.com

[^0]: 2010 Mathematics Subject Classification. 54H25, 47H10.
 Key words and phrases. Partial metric space, α - admissible function, dominated and dominating maps.

 Supported by Acharya Nagarjuna University .

