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A COMMON FIXED POINT THEOREM
FOR FOUR MAPS SATISFYING GENERALIZED
a - WEAKLY CONTRACTIVE CONDITION
IN ORDERED PARTIAL METRIC SPACES

K. P. R. Rao and A. Sombabu

ABSTRACT. In this paper we obtain a common fixed point theorem for four
maps satisfying generalized « - weakly contractive condition and we give an
example to illustrate our main theorem. Our result generalize and improve
the theorem of Seonghoon Cho [9].

1. Introduction and Preliminaries

There are many generalizations of the concept of metric spaces in the literature.
One of them is a partial metric space introduced by Matthews [18] as a part of
study of denotational semantics of data flow networks.After that fixed and common
fixed point results in partial metric spaces were studied by many other authors, for
example [26, 13, 14, 15, 6, 7, 22, 29, 12, 25, 3].

Throughout this paper, RT and N denote the set of all non-negative real num-
bers and the set of all positive integers respectively.

First we recall some basic definitions and lemmas which play crucial role in the
theory of partial metric spaces .

DEFINITION 1.1. ([18]) A partial metric on a non empty set X is a function
p: X x X — R* such that for all z,y,z € X,

(p1) *=y & plx,z) =p(,y) = p(Y,y),
(pZ) p(x,x) gp(xay)ap(yvy) < p(aj,y)’
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(p3) p(z,y) = ply, @),
(pa) pla,y) < plz,2) +p(z,9) — p(2, 2).
The pair (X, p) is called a partial metric space(PMS).

If p is a partial metric on X, then the function dj, : X x X — R* given by

dp(z,y) = 2p(z,y) — p(z,2) — p(y, y)
is a metric on X. It is clear that
(i) p(z,y) =0=2z =y,
(ii) « #y = p(z,y) > 0 and
(iii) p(z, ) may not be 0.

ExAMPLE 1.1. (See e.g. [14, 18, 3|) Consider X = Rt with p(z,y) =
max{z,y}. Then (X,p) is a partial metric space. It is clear that p is not a (usual)
metric. Note that in this case dp(z,y) = |x — y|.

We now state some basic topological notations(such as convergence, com-
pleteness, continuity) on partial metric spaces (See e.g. [14, 15, 6, 18, 3]).

DEFINITION 1.2. Let (X, p) be a partial metric space.
(i) A sequence {z,} in (X, p) is said to be convergent to x € X if and only
if p(x,z) = lim p(z,x,).
n—oo
(#) A sequence {x,} in (X,p) is said to be Cauchy sequence if

lim p(x,,z,) exists and is finite.
n,Mm—00

(#i7) (X, p) is said to be complete if every Cauchy sequence {z,} in X converges
with respect to 7,, to a point x € X such that

plz,x) = ngrgoop(wn,mm).

The following lemma is one of the basic results in PMS ([14, 15, 6, 18, 3])

LEMMA 1.1. Let (X,p) be a partial metric space.
(1) A sequence {x,} in (X,p) is said to be Cauchy sequence if and only if it
is a Cauchy sequence in the metric space (X, d,).
(1) (X,p) is complete if and only if the metric space (X,d,) is complete.
Moreover HILH;O dy(z,2,) = 0 if and only if p(x,x) = Jirr;op(x,xn) =

lim  p(x,,xm).
n,m—00

Next we give a simple lemma which will be used in the proof of our main
result. For the proof we refer to [3].

LEmMA 1.2 ([3]). If {z,} converges to z in a partial metric space (X,p) and
p(z,2z) =0 then lim p(z,,y) =p(z,y) for aly € X.
n— oo

Samet et al. [27] introduced the notion of « - admissible mappings associated
with a single map. Later Karapinar et al. [16] , Shahi et al. [28], Abdeljawad
[4] and Rao et al. [23] extended « - admissible mappings associated with two and
four mappings and proved fixed and common fixed point theorems for mappings
on various spaces.
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DEFINITION 1.3. Let X be a non empty set and o : X x X — RT

(1) ([27]): A mapping of T : X — X is called « - admissible if a(x,y) > 1
implies a(Tz, Ty) > 1 for all z,y € X.

(i4) ([16]): A mapping of T : X — X is called triangular o - admissible
if a(z,y) 2 1= oz, Ty) > 1 for all z,y € X and a(x,z) > 1 and
alz,y) 21 = a(x,y) > 1 for all z,y,z € X.

(7it) ([28]): Let f,g: X — X. Then f is said to be a- admissible with respect
to g if a(gx, gy) > 1 implies a(fz, fy) > 1 for all z,y € X.

(iv) ([4]): Let f,g: X — X. Then the pair (f,g) is said to be a-admissible if
a(z,y) = 1 implies a(fx,gy) = 1 and a(gz, fy) > 1 for all z,y € X.

(v) ([23]): Let f,g9,5,T : X — X. Then the pair (f,g) is said to be a-
admissible w.r.to the pair (S,T) if a(Sz,Ty) > 1 implies a(fz,gy) > 1
and «(Tz,Sy) > 1 implies a(gz, fy) > 1 for all z,y € X.Furthermore,
we say that the pair (f,g) is triangular a-admissible with respect to the
pair (S,T) if (f,g) is a- admissible w.r.to the pair (S,T) and a(z,z) >
La(z,y) 2 1= a(z,y) > 1 for all z,y,z € X.

Recently Abbas et al. [1, 2] introduced the new concepts in a partially ordered
set as follows.

DEFINITION 1.4. ([1, 2]) Let (X, <) be a partially ordered set and f : X — X.

(i) f is said to be a dominating map if z < fz, Vo € X.
(74) f is said to be dominated if fz < z,Vz € X.

In 1977, Alber et al. [5] generalized the Banach contraction principle by
introducing the concept weak contraction mappings in Hilbert space and proved
that every weak contraction mapping on a Hilbert space has a unique fixed point.

Rhodes [24] extended weak contraction principle in Hilbert spaces to metric
spaces. Later many authors, for example, [10, 11, 8, 17, 20, 21, 19] obtained
generalizations and extensions of the weak contraction principle to obtain fixed,
common fixed, coupled and common coupled fixed point theorems in various spaces.

DEFINITION 1.5. Let X be a non-empty set and f : X — R*. Then f is called
lower semi continuous at © € X if f(z) < lim inf f(x,) whenever {z,} C X with
n— oo

lim x, = x. Let
n—oo

U ={¢: R" = R such that ¢ is continuous and (t) =0 <t =0}, and
¢ : RT — R such that ¢ is lower semi continuous and
b = .
pt)=0&1t=0

Recently Seonghoon Cho [9] proved the following theorem.

THEOREM 1.1 (Theorem 2.1 of [9]). Let (X, d) be a complete metric space and
T: X — X be a mapping satisfying

Y(d(Tx, Ty) + p(Tx) + o(Ty)) < Y(m(z,y,d,T,¢)) — ¢(l(z,y,d,T,¢))
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for all x,y € X, where ) € ¥, ¢ € ®, ¢ : X — R is a lower semi continuous
function and

m(z,y,d,T,p)) =maxq d(y,Ty) + ¢

and

Wz, y,d, T, p) = max{d(z,y) + ¢(z) + ¢(y),d(y, Ty) + o (y) + ¢(Ty)} .
Then there exists a unique z € X such that Tz = z and ¢(z) = 0.

Using these concepts, we prove one common fixed point theorem for four maps
in partially ordered partial metric spaces. Our theorem generalize and extend
the Theorem 2.1 of Seonghoon Cho [9]. We also give an example to illustate
our theorem. We call the condition (2.1.3) as generalized a-weakly contractive
condition associated with four maps involved in it.

Now we give our main result.

2. The Main Result

THEOREM 2.1. Let (X,p, <) be a partially ordered partial metric space, o :
X x X — R be an admissible function and f,g,5,T : X — X be mappings
satisfying
(2.1.1) f and g are dominated and S, T are dominating mappings respectively,
(2.1.2) f(X)CT(X) and g(X) C S(X) ,
(2.1.3) a(Sz,Ty)v(p(fz, gy) +(fx) +¢(g9y)) < (M (z,y)) = ¢(M(z,y)) for all
comparable elements x,y € X, where ¢ € ¥, ¢ € ®,
0: X — R is a lower semi continuous function and

p(Sz, Ty) + o(Sz) + p(Ty),
p(Sz, fx) + o(Sz) + ¢(f),

M (z,y) = max ¢ p(Ty, gy) + o(Ty) + (gy),
1 | p(Sz,9y) + 0(S7) + (gy)+
2| p(Ty, fx) + o(Ty) + o(fx)

(2.1.4) the pair (f,g) is triangular a-admissible with respect to the pair (S,T),

(2.1.5) a(Sz1, fx1) 21 and o fz1,Sz1) > 1 for some x1 € X,

(2.1.6) If for a non-increasing sequence {x,} in X with y, <X z, for alln € N
and Yy, — u for some u € X implies u < x, for alln € N,

(2.1.7)(a) Suppose S(X) is a complete sub space of X. Further assume that
a(f,yan—1) = 1, for all n € N and «(6,0) > 1 whenever there exists a
sequence {yn}t in X such that a(yn,yn+1) = 1, @(Ynt1,yn) = 1 for all
n € N and y,, — 0 for some 0 € X.

(or)
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(2.1.7)(b) Suppose T(X) is a complete sub space of X. Further assume that
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a(yan,0) = 1, for all n € N and a(0,0) > 1 whenever there exists a
sequence {yn} in X such that a(yn,Ynt1) = 1, a(Ynt1,Yn) = 1 for all

n € N and y,, — 0 for some 0 € X.
Then f,g9,S and T have a common fized point in X.

PROOF. From (2.1.5), there exists ; € X such that «(Szq, fz1) > 1 and
afxy,Sz1) > 1. From (2.1.2), there exist sequences {x,} and {y,} in X such that
Yont1 = [Tont1 = Txonio, n=0,1,2,... and ya,, = gro, = Sxopny1, n=1,2,....

Now we have

a(Sz1, fr1) 2 1= a(Sz1,Txe) 2 1, from the definition of {yn}
= a(fr1,922) =1, from (2.1.4),i.e.,a(y1,y2) = 1
Txo,Sx3) > 1, from the definition of {yn}

gro, fxs) =1, from (2.1.4),i.e.,a(y2,y3) =1
Sxg,Txy) 2 1, from the definition of {yn}

= af
= af
= af
= af

Continuing in this way, we have

(2.1) (Y, Ynt1) = 1,¥Vn € N

Similarly by using a(fz1,S5z1) = 1 we can show that

(2.2) a(Ynt1,Yn) = 1,¥Vn € N.

From triangular « - admissible condition (2.1.4), we have

(2.3) a(Ymyyn) =1, Vm, n € N, m>=n

From (2.1.1), we have

Tont1 = STont1 = gTon = Ton X Ty = fTon—1 X Tap-1
Thus

(2.4) Tp+1 = Zp,Vn € N.

fxs,gxa) 21, from (2.1.4),i.e.,a(ys,ys) = 1.

Case(i): Suppose p(Yn,Yn+1) + @(Yn) + ©(Yn+1) = 0 for some n. Let n = 2m.
Then yom = Y2m+1 and ©(yYam) = ©(Yam+1) = 0. From (2.1.3) and (2.4) and (2.1),

we have

a(Srami1, TToms2) = (Y2m, Yom+1) = 1.
From (2.1.3) and (2.4), we have
(2.5)

Y (P(Y2m+1, Y2m+2) + P(Y2m+1) + ©(Y2m+2))
= Y(p(fr2m+1, 9T2m+2) + @(fr2m11) + ©(9T2m+2))

< a(S2om41, Txom42)V(P(fT2ms1, 9T2m+2) + ©(fTom+1) + ©(922m2))

< Y(M(z2m+1, Tamt2)) — O(M (T2m+1, T2m+2))
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where

P(Y2m; Y2m+1) + @(Y2m) + @(Y2m+1),
P(Y2m, Yom+1) + @(Y2m) + @(Y2m+1),
M (x2m i1, Tamr2) = maz § p(Yam+1, Y2m+2) + @ (Yam+1) + P(Y2m+2),
1 | P(Y2ms Yam+2) + @(Y2m) + @(Y2m+2)+
2| p(y2m+1,Y2m+1) + @(Y2mt1) + @(Y2m+1)

But
1 | P(W2m, Yam+2) + ©(Yom) + P(y2m+2) ]
P(Y2m+1,Y2m+1) + @(Y2m+1) + ©(Y2m+1)
P(Y2ms Y2m+1) + D(Y2ma1, Y2mi2) —
g % p(y2m+17 y2m+1) + @(me) + (p(y2m+2) +
P(Y2m+1, Y2m+1) + @ (Yam+1) + P(Y2m+1)
< max 4 PW2msY2mi1) + 0(2m) + ©(Y2m1),
~
P(Y2m+1,Y2m+2) + @(Y2mt1) + @(Yam+2)}
Thus

PY2m, Yom+1) + ©(Yom) + ©(Y2m+1), }
P(Y2m+1,Y2m+2) + @(Y2m+1) + ©(Yam+2)

= p(Yam+1,Y2m+2) + P(Y2m+1) + @(Y2m2) from case (i).

M(z2mi1, Tams2) = max{

Now (2.5) becomes
w ( p(y27n+1ay27n+2) ) < w ( p(y27n+17y27n+2) )

o(Yam+1) + P(Y2m+2) o(Yam+1) + ¢(Yam+2)
_ P(Y2m+1, Y2m+2)
o]
o(y2m+1) + ©(Y2m2)

which in turn yields that

o(p(Y2m+1, Y2m+2) + @ (Yam+1) + P(Y2m+2)) = 0.
Hence
P(Y2m+1, Y2m+2) + P(Y2m+1) + @(Y2m+2) = 0.
Thus
Yom+1 = Yom+2, P(Y2ms1) = P(Yamy2) = 0.
Continuing in this way, we get Yo, = Yom+1 = Yomaz = ---. Thus {y,} is a
constant Cauchy sequence.

Case(ii): Assume that p(yn,Ynt1) + ©(YUn) + @(Yns1) # 0 for all n. Then as in
Case (i) and (2.5) we have
(2.6) (0 ( P(Y2nt1, Yant2) + @ (Y2nt1) + ©(Y2ni2) ) <Y (M(z2n41, Tong2)) —

¢ (M($2n+1, $2n+2))
where

P(Y2n, Yont1) + ©(Y2n) + ©(Y2n+1), }

M(x , T = max
(@an+1, B2nt2) { P(Y2n+1, Y2nt2) + P(Y2n+1) + @(Y2n+2)

If
P(Y2n, Y2nt1) + (Y2n) + 0(Y2nt1) < P(Y2nt1, Yont2) + ©(Yont1) + ©(Yant2),
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then
M(x2p41, Zant2) = P(Y2n+1, Yont2) + P(Y2n+1) + ©(Y2nt2)
Now (2.6) becomes
p(y2n+17 y2n+2) + < p(y2n+1a y2n+2) +
(0 <Y
P(Y2n+1) + +¢(Y2n+2) o(Y2n+1) + (Y2n+2)

o PYan+1,Y2n42) +
0
o(Y2n+1) + P (y2n+2)

which in turn yields that

d(P(Y2n+1,Y2nt2) + ©(Y2nt1) + ©(Y2nt2)) = 0.
Thus
P(Y2n+1, Yont2) + ©(Y2n+1) + @ (Y2n42) =0

which is a contradiction to Case (ii). Hence

P(Y2nt1:Y2n+2) + @ (Y2n+1) + ©(Y2n+2) < P(Y2n, Yont1) + ©(Y2n) + ©(Y2n41)-

Similarly we can show that

P(Y2n, Yant1) + (Y2n) + @(Y2n+1) < P(Y2n—1,Y2n) + ©(Y2n—1) + ¢(y2n)-

Thus {p(Yn, Yn+1) + ©(Yn) + ©(yn+1)} is non-increasing sequence of non-negative
real numbers and hence converges to r > 0.
Now from (2.6), we have

P(Y2n+1, Yant2) +
0 () Y < ) + 9lm) + )

= (P(Y2n, Yan+1) + ©(Yan) + ¢(Y2n+1))

Assume r > 0.

Letting n — oo in (2.7) and using continuity of ¢ and lower semi continuity
of ¢, we get ¥(r) < (r) — ¢(r) which in turn yields that ¢(r) = 0 so that » = 0.
Thus lim [p(yn, yn+1) + ¢ (Yn) + @(ynt1)] = 0. Hence

(28) nh_{r;op(yn7 yn+1> =0
and
(2.9) Jim o(yn) =0

Now we prove that {ys,} is Cauchy. On contrary, suppose that {ya,} is not
Cauchy. Then there exist ¢ > 0 and monotone increasing sequences of natural
numbers {2m(k)} and {2n(k)} such that n(k) > m(k),

(210) dp(y2m(k)7y2n(k)) 2 €

and

(2.11) dp(Y2m (k) Yon(k)—2) < €
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From (2.10)

€ < dp(Yam(k)s Yon(k))
< dp(Yam(k) Yan(k)—2) + dp(Yon(k)—25 Y2nk)—1) + dp(Y2n(k)—1> Y2n(k))
< e+ dp(Yon(k)—2> Yon(k)—1) + dp(Y2n(k) =1, Yon(k) ), from (2.11)

Letting k — oo and using (2.8), we have
Jm dp (Yom(k)» Yon(k)) = €

From the definition of d,, and (2.8), we have
€
2.12 I =<
(2.12) . p(yam k) Yan(r)) = 5

Letting k£ — oo and using (2.12) and (2.8) in

dp (Y2n (k) =15 Y2mk)) = dp(Y2m(k)s Y2n k)| < dp(Y2n(k)—15 Yon(k))s
we get

I =
. dp(Yon k)1, Y2m(k)) = €

From the definition of d,, we have

. €
(2.13) m d(Yan(k)-1,Y2m(k)) = 5

k—o0
Letting k — oo and using (2.12) and (2.8) in

|dp (Yan(k)s Yomk)+1) — dp(Y2n(k)s Y2m )| < dp(Y2m k) +1> Y2m (k)
we get

]}ggo dp(an(k)v y2m(k)+1) =¢€

From the definition of d,, we have

DO

(2.14) klggop(an(k)7y2m(k)+l) =
Letting k& — oo and using (2.12) and (2.8) in

d (yz E)+1s Y2m(k )
d m ) n — _d m ) n g P m(k)+1> m(k)
’ p(yz (k)41 Y2n(k) 1) p(yz (k)» Y2 (k:))| ( +dp(y2n(k)—1;y2n(k))

we get
lim d ) =
kl p(y2m(k)+17 Yon(k) 1) €

From the definition of d,, we have
€

(2.15) kILH;op(yzm(k)+17y2n(k)—1) =5

a(STomr)+1, TZank)) = a(Yom(k)s Yonk)—1) = 1 from (2.3). Also from (2.4),
Ton(k) = Tom(k)4+1- From (213), we have
(2.16)
( (P(Y2m(k)+1> Y2n(k)) + ) _ ( P(fTam(k)+15 9%2n(k)) + )
(0 =1
©(Yam(k)+1) + P(Y2n(r))) o(frammy+1) + 9(9T2n(x))
P(fTom(k)+15 9T2n(k)) + >
O(fTomk)+1) + ©(9T2n k)
(0 (M(x2m(k)+17 xQn(k:))) —¢ (M('r2m(k)+17 x?n(k))

<« (S.Tgm(k)Jrl, Tiﬁzn(k)) (0
<
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where

P(Y2m k) Yank)—1) T P(Y2mm)) + € (Wanm)—1),

PY2m (k) Y2m k) +1) + P(Y2mk)) + P (Y2mk)+1);

P(Y2n(k)—15 Y2n(k)) T PW2nm)—1) + 0 (Y2nm)),
P(Y2m(k)s Y2n(k)) + PYam)) + P (Y2n(k))

2 | +PWonk) -1, Y2m(k)+1)
+o(Yonk)—1) + L (Y2m(k)+1)

M (Zom(k)+15 Toan(k)) = Max

— max{§,0,0,2(£+ £)} =%
from (2.8),(2.9),(2.12),(2.13) and (2.15)

Letting n — oo in (2.16) and using (2.14), we get ¥(5) < ¢(5) — ¢(5) which
in turn yields that ¢(5) = 0. Hence € = 0. It is a contradiction. Hence {y2,} is
Cauchy.

Letting n,m — oo in

|dp(92n+17 me+1) - dp(y2na y2m)‘ < dp(y2n+17 an) + dp(y2m7 y2m+1)7

we get

lim  dp(y2nt1, Y2m+1) = 0.

n,Mm—00

Hence {y2n,+1} is Cauchy. Thus {y,} is a Cauchy sequence in (X,d,). Hence, we
have lim dp(Yn,ym) = 0. Now from the definition of d,, we have
n,m—00

(2.17) lm  p(Yn,ym) =0

n,m—00

Suppose (2.1.7)(a) holds. Since {y2n} = {Sz2n+1} C S(X) and S(X) is a complete
sub space of X, there exists z € S(X) such that {y2,} converges to z. There exists
u € X such that z = Su. Since {y,} is a Cauchy and {ys2,} converges to z, it
follows that {yan41} also converges to z.

From Lemma 1.1(ii), we have

p(z,2) = lim p(yani1,2) = lim p(yan, 2) = lim  p(yn, Ym)-
n—oo n—oo

n,m— 00
p(Z, Z) = nlirgop(y%b‘rlv Z) = Ji”;bop(ymm Z) =0, from(217)
Since ¢ is lower semi continuous, we have
< Tim < 1 _
p(2) < lim inf o(ya) < lim @(y) =0,
from (2.9). Hence

(2.18) o(z) =0.

and a(Su, Txa,) = a(z,y2n—1) = 1, from (2.1.7)(a). Since S is dominating map,
we have u < Su = z. Since gza, < 2, and gz, — 2, by (2.1.6), we have z < x4,
Thus v < x2,.
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Now from(2.1.3), we have

Y(p(fu,y2n) + o(fu) + ©(fyzn)) = ¥(p(fu, gran) + w(fU) + ¢(g72n))

)
(fU) + ¢(9720)
<YM (u, 29,)) — (M (u, 22,))

(2.19) < a(Su, Twon )t

where
(2, Y2n-1) + 0(2) + ¢(y2n-1),
p(z, fu) +¢(2) + o(fu),
M (u, z2,) = max { P(Y2n—1,Y2n) + 9(Y2n—1) + ©(Y2n),
1| P(zy20) + 0(2) + (yan)+ ]
2| p(yan—1, fu) + @(y2n—1) + ¢(fu)

— maz{0,p(z, fu) + o(fu), 0, 3[p(z, fu) + (fu)]}
from (2.8), (2.9), (2.18) and Lemma 1.2.
Letting n — oo in (2.19), we get
¥ (p(fu, 2) + (fu)) < ¢ (p(z, fu) + @(fu)) = ¢ (p(z, fu) + ¢(fu))
which in turn yields that ¢(p(z, fu) + ¢(fu)) = 0. Hence p(z, fu) + ¢(fu) = 0.
Thus fu = 2. Hence Su = z = fu. Since f is dominated and S is dominating
maps, we have z = fu X u and u < Su = z. Thus u = z. Hence
(2.20) Sz=2z= fz.

Since f(X) C T(X), there exists v € X such that z = fz = Tv. Since T is
dominating map, we have v < Tv = z. From (2.1.7)(a) a(Sz,Tv) = a(z,z) > 1.
(2.21)
P(p(z, 9v) + @(2) + ¢(gv) = V(p(f2, 9v) + o (f2) + ¢ (gv))
< a(Sz,Tv) Y(p(fz, 9v) + (f2) + ¢(gv))
S P(M(2,0)) = ¢(M(z,v))
where
p(2,2) + ¢(2) + ¢(2),
p(z,2) + ¢(2) + 9(2),
M(z,v) = max{ P(z,9v) +¢(z) + ¢(gv),
1 | plz,gv) +0(z) + @(gv)
+0(2,2) +¢(2) + 0(2)
= p(z, gv) + ¢(gv), from (2.18).
Now (2.21) becomes
Y(p(z, gv) + ¢(gv)) < P(p(z, gv) + (gv)) — ¢(p(z, gv) + (gv))

which in turn yields that ¢(p(z, gv) + ¢(gv)) = 0. Thus gv = z and ¢(gv) = 0.
Hence gv = z = Tw. Since g is dominated and T is dominating maps, we have
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z=gv =vand v XTv =z Thus v = 2. Hence

(2.22) gz=z="Txz.
From (2.20) and (2.22), it follows that z is a common fixed point of f,g,S and T.
Similarly, we can prove this theorem when (2.1.7)(b) holds. O

Now we give an example to illustrate our main Theorem 2.1.

EXAMPLE 2.1. Let X = [0,00) and p(z,y) = maz{z,y}, V 2,y € X. Let < be
the ordinary < . Let f,9,5,7 : X — X be defined by fz = 5, gz = 5, Sz = 6x
and Tz = 4x. Let ¢, ¢, : RT — RT be defined by ¢(t) =t, ¢(t) = 3, o(t) = t,
for all t € RT. Define

a: X x X =Rt by a(z,y) = { ;: lf(?ferew[igé'”’
Wehavefxz%<x,gxz§<x. Also x < 6x = Sz, z < 4x =Tux.
Now we will verify the condition (2.1.3). If z > } and y € X or # € X and

y > i, then a(Sz,Ty) = a(6zx,4y) = 2.
a(Sz, Ty)ld(fz, gy) + ¢(fx) + o(gy)] = 2[maz{3, §} + 5 + §]
= ¢[maz{6z,4y} + 6z + 4y]
= §[p(S2,Ty) + ¢(Sz) + ¢(Ty)].
and y < i, then a(Sz,Ty) = 1.
a(Sz, Ty)ld(fz, gy) + o(fx) + o(gy)] = maz{3, §} + 5 + §
= 5 [maz{6z, 4y} + 6z + 4y
< §lp(Sz, Ty) + ¢(S) + (Ty)].
Thus the condition (2.1.3)

a(Sz, Ty)[p(fz, gy) + »(fz) + ¢(g9y)]
p(Sz, Ty) + o(Sz) + p(Ty),p(Sz, fr) + @(Sz) + P(fT),
1 max p(Ty, gy) + ¢(Ty) + ¢(gy),
3 [p(Sz, gy) + ©(Sz) + (gy) + p(Ty, fz) + ©(Ty) + o(fz)]

for all x,y € X is satisfied. One can easily verify the remaining conditions of
Theorem 2.1. Clearly 0 is a common fixed point of f,g,S and T'.

<
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