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EXISTENCE OF THREE SYMMETRIC POSITIVE

SOLUTIONS OF FOURTH ORDER BOUNDARY VALUE

PROBLEMS ON SYMMETRIC TIME-SCALES

Erbil Çetin and Fatma Serap Topal

Abstract. Let T ⊂ R be a symmetric bounded time-scale, with a = minT
and b = maxT.We consider the following fourth order boundary value problem

ϕ(−px△∇)△∇(t) + f(t, x(t)) = 0, t ∈ Tκ2

κ2 ,

x(a) = x(b) = 0, x△∇(σ(a)) = x△∇(ρ(b)) = 0

for a suitable function p and an increasing homeomorphism and homomor-
phism ϕ. By using the five-functionals fixed-point theorem, we present suf-
ficient conditions for the existence of three symmetric positive solutions of

the above problem on time-scales. As applications, an example is given to
illustrate the main results.

1. Introductin

In recent years, the conditions for the existence and multiplicity of symmetric
positive solutions to boundary value problems have been considered in many papers
[9, 5, 6] and the references therein. In 2011, Sun [21] obtained at least three
symmetric positive solutions to the second order nonlocal boundary value problem

u′′(t) + g(t)f(t, u(t)) = 0, t ∈ (0, 1),

u(0) = u(1) =

∫ 1

0

m(s)u(s)ds.

In 2013, Lin and Zhao [13] are concerned with the existence of symmetric
positive solutions for the 2n-order boundary value problems
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12 ÇETIN AND TOPAL

(−1)2nu(2n)(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u(2k)(0) = u(2n)(1) = 0, k = 0, 1, 2, ..., n− 1.

The theory of dynamic equations on times-scales was introduced by Stefan
Hilger in this Ph.D thesis in 1988 [10]. The time-scales approach, not only unifies
differential and difference equations, but also provides accurate information of phe-
nomena that manifest themselves partly in continuous time and partly in discrete
time. By using the theory of time-scales we can also study biological, heat transfer,
economic, stock market and epidemic models [3, 11, 19, 22]. Hence, the study of
dynamic equations on time-scales is worthwhile and has theoretical and practical
values. In the past few years, it is found that a considerable amount of interest and
research in this area is rapidly growing.

In this paper, we are concerned with the existence of symmetric positive solu-
tions of the following fourth order boundary value problem (FBVP)

ϕ(−px△∇)△∇(t) + f(t, x(t)) = 0, t ∈ Tκ2

κ2 ,(1.1)

x(a) = x(b) = 0, x△∇(σ(a)) = x△∇(ρ(b)) = 0(1.2)

where T is a symmetric time scale, i.e., b − t + a ∈ T for any given t ∈ T and
ϕ : R → R is an increasing homeomorphism and homomorphism and ϕ(0) = 0. A
projection ϕ : R → R, which generates the p-Laplacian operator ϕp(u) = |u|p−2u for
p > 1, is called an increasing homeomorphism and homomorphism if the following
conditions are satisfied.

(i) If x 6 y, then ϕ(x) 6 ϕ(y), for all x, y ∈ R.
(ii) ϕ is a continuous bijection and its inverse mapping is also continuous.

(iii) ϕ(xy) = ϕ(x)ϕ(y), for all x, y ∈ R.
Recently, for the existence problems of positive solutions of boundary value

problems on time-scales, some authors have obtained many results; for details,
see [1, 2, 16, 17, 20] and the references therein. However, they did not further
provide characteristic of positive solutions, such as symmetry that not only has its
theoretical value, such as in studying chemical structures [9, 13, 14, 21].

There is only a few work in the literature which discussed the fourth order
boundary value problem for an increasing homeomorphism and homomorphism on
symmetric time scales but in these studies, problems were given on symmetric time
scales which is subset of (0, 1). However, there are so many symmetric time scales
that such as Z, [−1, 0] ∪ [1, 2], {3− 1

n}n∈N ∪ {3} ∪ {3 + 1
n}n∈N, etc., the domain of

the unknown function for these problems is empty set. Therefore, we can not say
that these results yield a result for discrete equations and so on. So, our results in
this paper are new for the special cases of continuous and discrete equations, as in
the symmetric time-scale.

Motivated by the references [14, 18, 20], we consider the FBVP for an increas-
ing homeomorphism and homomorphism (1.1)-(1.2) on symmetric time scales. By
using the symmetric technique and the five-functionals fixed-point theorem, we ob-
tain the existence of three symmetric positive solutions of problem (1.1)-(1.2). As
applications, an example is given to illustrate our main results.
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The rest of the paper is organized as follows. In this section, we give some
definitions. In section 2, we give the definition of cone and the five-functionals
fixed-point theorem. We present some lemmas which needed to prove main result.
In section 3, by using five-functionals fixed-point theorem, we obtain the existence
of three symmetric positive solutions of the problem (1.1)-(1.2) and also we present
an example to illustrate our main results.

We first briefly recall some basic definitions and results concerning time-scales.
Further general details can be found in [5, 6]. Hereafter, we use the notation [a, b]T
to indicate the time scale interval [a, b] ∩ T.

Let T ⊂ R be a bounded time-scale ( a non-empty closed subset of R), with
a = inf{s ∈ T}, b = sup{s ∈ T}. Define the jump operators σ, ρ : T → T by
σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t} where, in this definition, we
write inf ∅ = a, sup ∅ = b so that ρ(a) = a, σ(b) = b. A point t ∈ T is said to be
left dense, left scattered, right dense, right scattered if ρ(t) = t, ρ(t) < t, σ(t) =
t, σ(t) > t respectively. We endow T with the subspace topology inherited from R.

Now suppose that x : T → R. Continuity of x is defined in the usual manner,
while x is said to be ld-continuous on T if it is continuous at all left dense points
and has finite right sided limits at all right dense points of T. We let Cld(T) denote
the set of ld-continuous functions x : T → R, and let

∥x∥ := sup
t∈T

|x(t)|, x ∈ Cld(T).

With this norm Cld is a Banach space.
We assume throughout that ρ2(b) > σ2(a), where σ2(t) := σ(σ(t)) and ρ2(t) =

ρ(ρ(t)) so that T must contained at least 6 points. Now define the sets Tκ :=

T − [a, σ(a)), Tκ := T − (ρ(b), b], Tκ
κ
:= T − ([a, σ(a)) ∪ (ρ(b), b]) and Tκ2

κ2 :=

T − ([a, σ2(a)) ∪ (ρ2(b), b]). These sets are closed, so they are time-scales and we

can also define the above spaces and norms using Tκ
κ and Tκ2

κ2 instead of T.
A function x : T → R is delta differentiable at t ∈ Tκ if there exists a number

x∆(t) with the following property: for any ϵ > 0 there exists a δ > 0 such that

s ∈ T and |t− s| < δ ⇒ |x(σ(t))− x(s)− x∆(t)(σ(t)− s)| 6 ϵ|σ(t)− s|.

If x is delta differentiable at every t ∈ Tκ then x is said to be delta differentiable.
Similarly, a function x : T → R is nabla differentiable at t ∈ Tκ if there exists a
number x∇(t) with the following property: for any ϵ > 0 there exists a δ > 0 such
that

s ∈ T and |t− s| < δ ⇒ |x(ρ(t))− x(s)− x∇(t)(ρ(t)− s)| 6 ϵ|ρ(t)− s|.

If x is nabla differentiable at every t ∈ Tκ then x is said to be nabla differentiable.
A function F : T → R is called a delta antiderivative of f : T → R provided

F∆(t) = f(t) holds for all t ∈ Tκ. We then define the delta integral of f by∫ t

a

f(s)∆s = F (t)− F (a) for all a, t ∈ T.
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A function G : T → R is called a nabla antiderivative of f : T → R provided
G∇(t) = f(t) holds for all t ∈ Tκ. We then define the nabla integral of f by∫ t

a

f(s)∇s = G(t)−G(a) for all a, t ∈ T.

For convenience, we now present some symmetric definitions which can be
found in [11].

Definition 1.1. A time-scale T is said to be symmetric if for any given t ∈ T,
we have b− t+ a ∈ T.

We remark that since T is a symmetric time-scale, we have b− σ(a) + a = ρ(b)
and b− ρ(b) + a = σ(a).

Definition 1.2. A function x : T → R is said to be symmetric on T if for any
given t ∈ T, x(t) = x(b− t+ a).

Definition 1.3. We say x is a symmetric solution of FBVP (1.1)-(1.2) on T
provided x is a solution of FBVP (1.1)-(1.2) and is symmetric on T.

Throughout this paper, T is a symmetric bounded time-scale with a =
minT , b = maxT and we assume that

(H1) p ∈ Cld(T) and p is positive and symmetric on T, (H2) f : T × [0,∞) →
[0,∞) is ld-continuous, and does not vanish identically, in addition f(., x) is a
symmetric function on T, i.e., f(b− t+ a, x) = f(t, x) for all (t, x) ∈ T× [0,∞).

2. Preliminaries

In this section, we provide some background material from the theory of cones
in Banach spaces, and we then state Five-functionals fixed-point theorem for a
cone preserving operator. In the rest of this section, we present some lemmas and
completely continuous operator, which will be needed in the proof of the main
result. We provide some background material on the theory of cones in Banach
spaces [8], which will be used in the rest of the paper.

Definition 2.1. Let B be a real Banach space. A nonempty, closed, convex
set P ⊂ B is called a cone if it satisfies the following two conditions:

(i) x ∈ P, λ > 0 implies λx ∈ P ;

(ii) x ∈ P, −x ∈ P implies x = 0. Every cone P ⊂ B induces an ordering in B

given by x 6 y if and only if y − x ∈ P.

Definition 2.2. An operator is called completely continuous, if it is continuous
and maps bounded sets into precompact sets.

Definition 2.3. A map α is said to be a nonnegative, continuous, concave
functional on a cone P of a real Banach space B, if α : P → [0,∞) is continuous
and

α(tx+ (1− t)y) > tα(x) + (1− t)α(y) for all x, y ∈ P and t ∈ [0, 1].
Similarly, we say the map β is a nonnegative, continuous, convex functional on a
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cone P of a real Banach space B, if β : P → [0,∞) is continuous and
β(tx+ (1− t)y) 6 tβ(x) + (1− t)β(y) for all x, y ∈ P and t ∈ [0, 1].

Let γ, β, θ be nonnegative, continuous, convex functionals on P and α, ψ
be nonnegative, continuous, concave functionals on P . Then, for nonnegative real
numbers h, a, b, d and c, we define the convex sets,

P (γ, c) = {x ∈ P : γ(x) < c},
P (γ, α, a, c) = {x ∈ P : a 6 α(x), γ(x) 6 c},
Q(γ, β, d, c) = {x ∈ P : β(x) 6 d, γ(x) 6 c},
P (γ, θ, α, a, b, c) = {x ∈ P : a 6 α(x), θ(x) 6 b, γ(x) 6 c},
P (γ, β, ψ, h, d, c) = {x ∈ P : h 6 ψ(x), β(x) 6 d, γ(x) 6 c}.

To prove our main results, we need the following five-functionals fixed-point the-

orem [4], which is a generalization of the Leggett-Williams fixed point theorem
[12].

Theorem 2.1. Let P be a cone in a real Banach space B. Suppose there exist
positive numbers c and M , nonnegative, continuous, concave functions α and ψ on
P , and nonnegative continuous, convex functionals γ, β, and θ and P, with

α(x) 6 β(x) and ∥x∥ 6Mγ(x) for all x ∈ P (γ, c).

Suppose T : P (γ, c) → P (γ, c) is completely continuous and there exist nonnegative
numbers h, a, k, b, with 0 < a < b such that:
(i) {x ∈ P (γ, θ, α, b, k, c) : α(x) > b} ̸= ∅ and α(Tx) > b for x ∈ P (γ, θ, α, b, k, c);

(ii) {x ∈ Q(γ, β, ψ, h, a, c) : α(x) > b} ̸= ∅ and β(Tx) < a for x ∈ Q(γ, β, ψ, h, a, c);

(iii) α(Tx) > b for x ∈ P (γ, α, b, c) with θ(Tx) > k;

(iv) β(Tx) < a for x ∈ Q(γ, β, a, c) with ψ(Tx) < h.

Then T has at least three fixed points x1, x2, x3 ∈ P (γ, c) such that

β(x1) < a, b < α(x2), and a < β(x3) with α(x3) < b.

To obtain our main result, we will make use of the following lemmas. For their
proofs we refer the reader to [7].

Lemma 2.1. Assume that (H1) holds. Let y ∈ Cld(T) and y(t) ̸≡ 0. Then the
BVP

ϕ(−px△∇)(t)− y(t) = 0, t ∈ Tκ
κ,(2.1)

x(a) = x(b) = 0,(2.2)

has a unique solution

x(t) =

∫ b

a

G(t, s)
1

p(s)
ϕ−1(y(s))∇s(2.3)

where

G(t, s) =
1

b− a

{
(t− a)(b− s), t 6 s;
(s− a)(b− t), s 6 t.

(2.4)
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Lemma 2.2. Assume that (H2) holds. Then for x ∈ Cld(T), the BVP

−y△∇(t) = f(t, x(t)), t ∈ Tκ2

κ2 ,(2.5)

y(σ(a)) = y(ρ(b)) = 0,(2.6)

has a unique solution

y(t) =

∫ ρ(b)

σ(a)

H(t, s)f(t, x(t))∇s(2.7)

where

H(t, s) =
1

ρ(b)− σ(a)

{
(t− σ(a))(ρ(b)− s), t 6 s;
(s− σ(a))(ρ(b)− t), s 6 t.

(2.8)

Assume that x is a solution of problem (1.1)-(1.2). From Lemma 2.1, we have

x(t) =

∫ b

a

G(t, s)
1

p(s)
ϕ−1(y(s))∇s

and then from Lemma 2.2, we have

x(t) =

∫ b

a

G(t, s)
1

p(s)
ϕ−1

(∫ ρ(b)

σ(a)

H(s, τ)f(τ, x(τ))∇τ

)
∇s.

Lemma 2.3. The following is valid
(i) For t, s ∈ T, we have G(t, s) > 0 and G(t, s) 6 G(s, s),
(ii) For t, s ∈ Tκ

κ , we have H(t, s) > 0 and H(t, s) 6 H(s, s).

Lemma 2.4. Let δ ∈
(
0,

1

2

)
be a given constant, then we have

(i) G(t, s) > δ

b− a
G(s, s), t ∈ [q1, q2]T, s ∈ T(2.9)

where q1 := min{t ∈ T : a+ δ 6 t} and q2 := max{t ∈ T : t 6 b− δ},

(ii) H(t, s) > δ

ρ(b)− σ(a)
H(s, s), t ∈ [q∗1 , q

∗
2 ]T, s ∈ Tκ

κ(2.10)

where q∗1 := min{t ∈ T : σ(a) + δ 6 t} and q∗2 := max{t ∈ T : t 6 ρ(b)− δ}.

Lemma 2.5. The following is valid
(i) G(b− t+ a, b− s+ a) = G(t, s) for all t, s ∈ T,
(ii) H(b− t+ a, b− s+ a) = H(t, s) for all t, s ∈ Tκ

κ.

Now, we let B = Cld(T) then B is a Banach space with the ∥x∥ = max
t∈T

|x(t)|,

and define a cone P ⊂ B by P = {x ∈ B : x(t) > 0, for t ∈ T, x△∇(t) 6 0, for t ∈

Tκ
κ, x(t) is symmetric on T and x(t) > Λ∥x∥} where Λ :=

δ

b− a
ϕ−1

(
δ

ρ(b)− σ(a)

)
.

Remark 2.1. For x ∈ P , since x△∇(t) 6 0 for t ∈ Tκ
κ and x is symmetric then

x has a maximum such that max
t∈T

|x(t)| = x(ξ) where ξ = max{t ∈ T : t 6 b− a

2
}.



THREE SYMMETRIC SOLUTIONS OF FOURTH ORDER PROBLEMS 17

Secondly, we define the integral operator T : P → B by

Tx(t) =

∫ b

a

G(t, s)
1

p(s)
ϕ−1

(∫ ρ(b)

σ(a)

H(s, τ)f(τ, x(τ))∇τ

)
∇s.(2.11)

So, we have

T∆x(t) =
1

b− a

∫ t

a

(a− s)
1

p(s)
ϕ−1

(∫ ρ(b)

σ(a)

H(s, τ)f(τ, x(τ))∇τ

)
∇s

+
1

b− a

∫ b

t

(b− s)
1

p(s)
ϕ−1

(∫ ρ(b)

σ(a)

H(s, τ)f(τ, x(τ))∇τ

)
∇s,

T∆∇x(t) = − 1

p(t)
ϕ−1

(∫ ρ(b)

σ(a)

H(t, s)f(s, x(s))∇s

)
.

Hence, for x ∈ P , Tx(t) > 0 on T and T∆∇x(t) 6 0 on Tκ
κ.

Using that p(t), x(t) and f(t, x(t)) are symmetric on T, we have

Tx(b− t+ a) =∫ b

a

G(b− t+ a, s)
1

p(s)
ϕ−1

(∫ ρ(b)

σ(a)

H(b− s+ a, τ)f(τ, x(τ))∇τ

)
∇s =

∫ a

b

G(b− t+ a, b− s+ a)
1

p(b− s+ a)
ϕ−1

(∫ ρ(b)

σ(a)

H(b− s+ a, τ)f(τ, x(τ))∇τ

)
∇(b− s+ a)

=∫ b

a

G(t, s)
1

p(s)
ϕ−1

(∫ ρ(b)

σ(a)

H(b− s+ a, τ)f(τ, x(τ))∇τ

)
∇s =

∫ b

a

G(t, s)
1

p(s)
ϕ−1

(∫ σ(a)

ρ(b)

H(b− s+ a, b− τ + a)f(b− τ + a, x(b− τ + a))∇(b− τ + a)

)
∇s

=∫ b

a

G(t, s)
1

p(s)
ϕ−1

(∫ ρ(b)

σ(a)

H(s, τ)f(τ, x(τ))∇τ

)
∇s =

Tx(t)

for every t ∈ T. This implies that Tx(t) is symmetric on T. It is easy to verify
that Tx(t) > Λ∥Tx∥. So, T : P → P.

Lemma 2.6. Assume (H1) and (H2) hold. Then x ∈ B is a solution of FBVP
(1.1)- (1.2) if and only if x is a fixed point of the operator T .

Lemma 2.7. Assume (H1) and (H2) hold. Then, the operator T : P → P is
completely continuous.
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Proof. Suppose that K ⊂ P is a bounded set. Let M > 0 be such that
∥x∥ 6M for x ∈ K, we have

|Tx(t)| =

∣∣∣∣∣
∫ b

a

G(t, s)
1

p(s)
ϕ−1

(∫ ρ(b)

σ(a)

H(s, τ)f(τ, x(τ))∇τ

)
∇s

∣∣∣∣∣
6
∫ b

a

G(s, s)
1

p(s)
ϕ−1

(∫ ρ(b)

σ(a)

H(τ, τ)f(τ, x(τ))∇τ

)
∇s

6
{∫ b

a

G(s, s)
1

p(s)
ϕ−1

(∫ ρ(b)

σ(a)

H(τ, τ)f(τ, x(τ))∇τ

)
∇s

}
ϕ−1( sup

x∈K, t∈T
f(t, x(t)))

for every t ∈ T. This implies that T (K) is bounded. By the Arzela-Ascoli theorem
and the Lebesgue dominated convergent theorem on time-scales, we can easily seen
that T is a completely continuous operator. �

3. Existence of three symmetric positive solutions

In this section, we consider the existence of three positive symmetric solutions
of the FBVP (1.1)- (1.2). Let us define the nonnegative, continuous, concave func-
tionals α,ψ, and the nonnegative, continuous, convex functionals β, θ, γ on the cone
P by:

γ(x) = θ(x) := max
t∈T

x(t) = x(ξ),

β(x) := max
t∈[q∗1 ,q

∗
2 ]T
x(t) = x(ξ),

α(x) = ψ(x) := min
t∈[q∗1 ,q

∗
2 ]T
x(t) = x(q∗1).

We see that, for each x ∈ P, α(x) = x(q∗1) 6 x(ξ) = β(x). In addition, for each

x ∈ P, ∥x∥ 6 1

Λ
x(t) for t ∈ [q∗1 , q

∗
2 ]T so ∥x∥ 6 1

Λ
x(q∗1) = γ(x). That is ∥x∥ 6 1

Λ
γ(x)

for all x ∈ P. For convenience, we denote

m :=

∫ b

a

G(s, s)
1

p(s)
ϕ−1

(∫ ρ(b)

σ(a)

H(τ, τ)∇τ

)
∇s,

M :=

∫ q∗2

q∗1

G(s, s)
1

p(s)
ϕ−1

(∫ q∗2

q∗1

H(τ, τ)∇τ

)
∇s,

M∗ :=

∫ q∗2

q∗1

G(q∗1 , s)
1

p(s)
ϕ−1

(
1

ρ(b)− σ(a)

∫ q∗2

q∗1

H(τ, τ)∇τ

)
∇s,

M∗ :=

∫ b

a

G(ξ, s)
1

p(s)
ϕ−1

(∫ ρ(b)

σ(a)

H(τ, τ)∇τ

)
∇s,

satisfy the inequality M∗ > ΛM∗.

Theorem 3.1. Assume that (H1) and (H2) are satisfied. Suppose that there

exist positive number u < y <
y

Λ
< z with

z

M∗ >
y

ΛM∗
such that the function f

satisfies the following conditions:
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(i)f(t, x) < ϕ
( z

M∗

)
for all (t, x) ∈ T× [0, z];

(ii)f(t, x) > ϕ

(
b

ΛM∗

)
for all (t, x) ∈ [q∗1 , q

∗
2 ]T × [y,

y

Λ
];

(iii) f(t, x) < ϕ
( a

M∗

)
for all (t, x) ∈ [q∗1 , q

∗
2 ]T × [Λu, u].

Then there exist at least three positive symmetric solutions x1, x2, x3 of the FBVP
(1.1)-(1.2) such that

max
t∈[q∗1 ,q

∗
2 ]T
x1(t) < a < max

t∈[q∗1 ,q
∗
2 ]T
x3(t) and min

t∈[q∗1 ,q
∗
2 ]T
x3(t) < b < min

t∈[q∗1 ,q
∗
2 ]T
x2(t)

Proof. By the definition of completely continuous operator T and its proper-
ties, it suffices to show that all the conditions of the Theorem 2.1 hold with respect
to T . First we show that T maps P (γ, z) into itself. In fact, for each x ∈ P (γ, z),

from γ(x) = ∥x∥ = max
t∈T

6 z and the condition (i), it follows that f(t, x) < ϕ
( z

M∗

)
for all (t, x) ∈ T× [0, z].

Applying this together with Tx ∈ P, we have the following estimate

∥Tx∥ = sup
t∈T

|Tx(t)|

=

∫ b

a

G(ξ, s)
1

p(s)
ϕ−1

(∫ ρ(b)

σ(a)

H(s, τ)f(τ, x(τ))∇τ

)
∇s

<
z

M∗

∫ b

a

G(ξ, s)
1

p(s)
ϕ−1

(∫ ρ(b)

σ(a)

H(τ, τ)∇τ

)
∇s = z.

Hence, T : P (γ, z) −→ P (γ, z).

Next, let N :=
M∗ + ΛM∗

2
. Thus M∗ > N > ΛM∗, and if we define

xP (t) =
y

N

∫ b

a

G(t, s)
1

p(s)
ϕ−1

(∫ ρ(b)

σ(a)

H(s, τ)∇τ

)
∇s and

xQ(t) =
Λu

N

∫ b

a

G(t, s)
1

p(s)
ϕ−1

(∫ ρ(b)

σ(a)

H(s, τ)∇τ

)
∇s

then, clearly xp, xQ ∈ P. Furthermore,

α(xP ) = xP (q
∗
1) =

y

N

∫ b

a

G(q∗1 , s)
1

p(s)
ϕ−1

(∫ ρ(b)

σ(a)

H(s, τ)∇τ

)
∇s

> y

N

∫ q∗2

q∗1

G(q∗1 , s)
1

p(s)
ϕ−1

(
1

ρ(b)− σ(a)

∫ q∗2

q∗1

H(τ, τ)∇τ

)
∇s

=
y

N
M∗ > y
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and

θ(xP ) = xP (ξ) =
y

N

∫ b

a

G(ξ, s)
1

p(s)
ϕ−1

(∫ ρ(b)

σ(a)

H(s, τ)∇τ

)
∇s

6 y

N
M∗ <

y

Λ
as well as

ψ(xQ) = xQ(q
∗
1) =

Λu

N

∫ b

a

G(q∗1 , s)
1

p(s)
ϕ−1

(∫ ρ(b)

σ(a)

H(s, τ)∇τ

)
∇s

> Λu

N

∫ q∗2

q∗1

G(q∗1 , s)
1

p(s)
ϕ−1

(
1

ρ(b)− σ(a)

∫ q∗2

q∗1

H(τ, τ)∇τ

)
∇s

=
Λu

N
M∗ > Λu

and

β(xQ) = xQ(ξ) =
Λu

N

∫ b

a

G(q∗1 , s)
1

p(s)
ϕ−1

(∫ ρ(b)

σ(a)

H(s, τ)∇τ

)
∇s

6 Λu

N
M∗ < u.

Therefore, xp ∈ {x ∈ P (γ, θ, α, y,
y

Λ
, z) : α(x) > y} and

xQ ∈ {x ∈ Q(γ, β, ψ,Λu, u, z) : β(x) < u}.
Hence, these sets are nonempty.

If x ∈ P (γ, θ, α, y,
y

Λ
, z), then y 6 x(t) 6 y

Λ
for all t ∈ [q∗1 , q

∗
2 ]T and by condition

(ii) of this theorem

α(Tx) = Tx(q∗1) =

∫ b

a

G(q∗1 , s)
1

p(s)
ϕ−1

(∫ ρ(b)

σ(a)

H(s, τ)f(τ, x(τ))∇τ

)
∇s

>
∫ q∗2

q∗1

G(q∗1 , s)
1

p(s)
ϕ−1

(∫ q∗2

q∗1

H(s, τ)f(τ, x(τ))∇τ

)
∇s

>
∫ q∗2

q∗1

G(q∗1 , s)
1

p(s)
ϕ−1

(∫ q∗2

q∗1

δ

ρ(b)− σ(a)
H(τ, τ)f(τ, x(τ))∇τ

)
∇s

> y

M∗

∫ q∗2

q∗1

G(q∗1 , s)
1

p(s)
ϕ−1

(∫ q∗2

q∗1

δ

ρ(b)− σ(a)
H(τ, τ)∇τ

)
∇s

=
y

M∗
M∗ = y.

Hence, condition (i) of the five-functionals fixed-point theorem is satisfied.

If x ∈ P (γ, α, y, z) with θ(Tx) >
y

Λ
, then we have

α(Tx) = Tx(q∗1) > Λθ(Tx) > y.
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Thus, condition (ii) of the five-functionals fixed-point theorem is satisfied.
If x ∈ Q(γ, β, ψ,Λu, u, z) then Λu 6 ψ(x) 6 a for all t ∈ [q∗1 , q

∗
2 ]. Thus by

condition (iii) of this theorem

β(Tx) = Tx(ξ) =

∫ b

a

G(ξ, s)
1

p(s)
ϕ−1

(∫ ρ(b)

σ(a)

H(s, τ)f(τ, x(τ))∇τ

)
∇s

6 u

M∗

∫ b

a

G(ξ, s)
1

p(s)
ϕ−1

(∫ ρ(b)

σ(a)

H(τ, τ)∇τ

)
∇s = u.

Hence, condition (iii) of the five-functionals fixed-point theorem is satisfied.
If x ∈ Q(γ, β, u, z) with ψ(Tx) < Λu, then we have

β(Tx) = Tx(ξ) 6 1

Λ
Tx(q∗1) =

1

Λ
ψ(Tx) < u.

Consequently, condition (iv) of the five-functionals fixed-point theorem is also sat-
isfied. Therefore, the hypotheses of the five-functionals fixed-point Theorem 2.1
are satisfied, and there exist at least three positive symmetric solutions x1, x2, x3
of the FBVP (1.1)-(1.2) such that

max
t∈[q∗1 ,q

∗
2 ]T
x1(t) < a < max

t∈[q∗1 ,q
∗
2 ]T
x3(t) and min

t∈[q∗1 ,q
∗
2 ]T
x3(t) < b < min

t∈[q∗1 ,q
∗
2 ]T
x2(t).

�

Now, we present a simple example to illustrate our result.

Example 3.1. Let T = {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5} be a bounded sym-
metric time-scale. We consider the following problem:

ϕ((t2 + 5)x△∇)△∇(t) + f(t, x(t)) = 0, t ∈ Tκ2

κ2 ,(3.1)

x(−5) = x(5) = 0, x△∇(−4) = x△∇(4) = 0(3.2)

where ϕ(x) = x2 and

f(t, x(t)) =

 2 + cost+ x(t), (t, x) ∈ T]× [0, 100];
102 + cost+ (x(t)− 100)4, (t, x) ∈ T× [100, 64× 104];
102 + cost+ (64× 104 − 100)4, (t, x) ∈ T× [64× 104,∞).

We notice that a = −5, b = 5, σ(a) = −4, ρ(b) = 4 and p(t) = t2 + 5 is
symmetric on [−5, 5]. It is obvious f : T× [0,+∞] → [0,+∞] is ld-continuous and

symmetric on T. Let δ =
1

4
∈ (0,

1

2
), then q∗1 = min{t ∈ T : −4 + δ 6 t} = −3

and q∗2 = max{t ∈ T : t 6 4 − δ} = 3. Then by calculations, we can obtain that
Λ = 1

640 ,M∗ ∼= 0, 4 and M∗ ∼= 5, 4. If we choose u = 100, y = 106 and z = 1016,

then we have f(t, x(t)) < ϕ
(

z
M∗

)
= ϕ

(
1016

5,4

)
= 12× 1029 for (t, x) ∈ T× [0, 1016],

f(t, x(t)) > ϕ
(

y
ϵM∗

)
= ϕ

(
640×106

0,4

)
= 256× 1016 for (t, x) ∈ [−4, 4]T × [106, 640×

106], and f(t, x(t)) < ϕ
(

u
M∗

)
= ϕ

(
100
5,4

)
= 120 for (t, x) ∈ [−4, 4]T × [ 1064 , 100]. By
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Theorem 3.1 the FBVP (3.1)-(3.2) has at least three positive symmetric solutions
x1, x2 and x3 such that

x1(0) < 100 < x3(0) andx3(0) < 106 < x2(−3).
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[7] E. Çetin and F.S. Topal. Symmetric positive solutions of fourth order boundary value prob-

lems for an increasing homeomorphism and homomorphism on time-scales. Comp. Math.
Appl., 63(3)(2012), 669–678.

[8] D. Guo and V. Lakshmikantham. Nonlinear Problems in Abstract Cones, Academic Press,
San Diego, 1988.

[9] J. Henderson and H. B. Thompson. Multiple symmetric positive solutions for a second order
boundary value problem. Proc. Amer. Math. Soc., 128(2000), 2373-2379.

[10] S. Hilger. Ein Masskettenkalkl mit Anwendug auf zentrumsmanningfaltigkeiten, Phd Thesis,
Universitat Würzburg, 1988.

[11] M. A. Jones, B. Song and D. M. Thomas. Controlling wound healing through debridement.
Math. Comput. Modelling, 40(2004), 1057–1064.

[12] R. W. Leggett and L. R. Williams. Multiple positive fixed points of nonlinear operators on

ordered Banach spaces. Indiana Univ. Math. J., 28(1979), 673–688.
[13] X. Lin and Z. Zhao. Existence and uniqueness of symmetric positive solutions of 2n-order

nonlinear singular boundary value problems. Appl. Math. Lett., 26(2013), 692-698.
[14] Y. Luo and Z. Luo. Symmetric positive solutions for nonlinear boundary value problems with

ϕ-Laplacian operator. Appl. Math. Lett., 23(2010), 657–664.
[15] Y. Luo and Z. Luo. A necessary and sufficient condition for the existence of symmetric positive

solution of higher-order boundary value problems. Appl. Math. Lett., 25(2012), 86-868.
[16] F. Merdivenci Atici and G. Sh. Guseinov. On Green’s functions and positive solutions for

boundary value problems on time scales. J. Comput. Appl. Math., 141(1-2)(2002), 75–99.
[17] F. Merdivenci Atici and S. Gulsan Topal. Nonlinear three point boundary value problems on

time scales. Dynamic Systems and Appl., 13(2004), 327-337.
[18] M. Pei and S. K. Chang. Monotone iterative technique and symmetric positive solutions for

a fourt-order boundary value problem. Math. Comput. Modelling, 51(2010), 1260–1267.
[19] V. Spedding. Taming nature’s numbers. New Scientist, 179(2003), 28–32.
[20] Y. H. Su, W. T. Li and H. R. Sun. Triple positive pseudo-symmetric solutions of three-point

BVPs for p−Laplacian dynamic equations on time scales. Nonlinear Analysis, 68(2008),
1442–1452.

[21] Y. Sun. Three symmetric positive solutions for second order nonlocal boundary value prob-
lems. Acta Math. Appl. Sinica, English series, 27(2011), 233–242.

[22] D. M. Thomas, L. Vandemuelebroeke and K. Yamaguchi. A mathematical evolution model
for phytoremediation of metals. Discrete Contin. Dyn. Syst. Ser. B, 5(2005), 411–422.

Received by editors 26.10.2017; Revised version 26.10.2018; Available online 05.11.2018.



THREE SYMMETRIC SOLUTIONS OF FOURTH ORDER PROBLEMS 23

Department of Mathematics, Ege University,, 35100 Bornova-Izmir, Turkey
E-mail address: erbil.cetin@ege.edu.tr

Department of Mathematics, Ege University,, 35100 Bornova-Izmir, Turkey
E-mail address: f.serap.topal@ege.edu.tr


