RESTRAINED HUB NUMBER IN GRAPHS

Shadi Ibrahim Khalaf and Veena Mathad

Abstract

In this paper, we initiate the study of a variation of standard hub, we called restrained hub. Let G be a graph, a hub set H_{r} of G is a restrained hub set of G if for any two vertices $u, v \in V(G) \backslash H_{r}$, there is a path between them with all intermediate vertices in $V(G) \backslash H_{r}$, the minimum cardinality of H_{r} in G is called a restrained hub number and denoted by $h_{r}(G)$. In this article we determine the restrained hub number of some standard graphs. Also, we obtain bounds for $h_{r}(G)$. In addition we characterize the class of all (p, q) graphs for which $h_{r}(G)=p-2$.

1. Introduction

Let $G=(V, E)$ be a graph such that G is a finite and undirected graph without loops and multiple edges. A graph G with p vertices and q edges is called a (p, q) graph, the number p is referred to as the order of a graph G and q is referred to as the size of a graph G. In general, the degree of a vertex v in a graph G, denoted by $\operatorname{deg}(v)$ is the number of edges of G incident with v. Also $\delta(G), \Delta(G)$ denote the minimum, maximum degree among the vertices of G, respectively [5]. The set of all end vertices in a graph G is denoted by E_{n} and it's cardinality is denoted by e_{n}. Given any vertex $v \in V(G)$, the graph obtained from G by removing the vertex v and all of its incident edges is denoted by $G-v$. In a tree, a leaf is a vertex of degree one. See [5] for terminology and notations not defined here.

Introduced by Walsh [15], a hub set in a graph G is a set H of vertices in G such that any two vertices outside H are connected by a path whose all internal vertices lie in H. The hub number of G, denoted by $h(G)$, is the minimum size of a hub set in G. A connected hub set in G is a vertex set F such that F is hub set and the subgraph of G induced by F (denoted $G[F]$) is connected. The connected hub number of G, denoted $h_{c}(G)$, is the minimum size of a connected hub set in G

[^0][15]. For more details on the hub studies we refer to $[\mathbf{8}, \mathbf{1 0}, \mathbf{1 1}, \mathbf{1 2}]$. For graphs G_{1} and G_{2} having disjoint vertex sets V_{1} and V_{2} and edge sets E_{1} and E_{2} respectively, their union, $G(V, E)=G_{1} \cup G_{2}$ has, as expected, $V=V_{1} \cup V_{2}$ and $E=E_{1} \cup E_{2}$. Their join is denoted by $G_{1}+G_{2}$ and consists of $G_{1} \cup G_{2}$ and all edges joining V_{1} with $V_{2}[5]$.

A set D of vertices in a graph G is called dominating set of G if every vertex in $V(G) \backslash D$ is adjacent to some vertex in D, the minimum cardinality of a dominating set in G is called the domination number $\gamma(G)$ of a graph G, the dominating set D_{c} is connected if $G\left[D_{c}\right]$ is connected then the minimum cardinality of a connected dominating set is called connected domination number and denoted by $\gamma_{c}(G)[\mathbf{6}]$. A set $S \subseteq V(G)$ is a restrained dominating set if every vertex in $V(G) \backslash S$ is adjacent to a vertex in S and another vertex in $V(G) \backslash S$, the minimum cardinality of a restrained dominating set in G is called the restrained domination number $\gamma_{r}(G)$ of a graph $G[\mathbf{3}]$. Let v be a vertex in G, define the contraction of v in G (denoted by $G / v)$ as being the graph obtained by deleting v and putting a clique on the (open) neighbourhood of v. (Note that this operation does not create parallel edges, if two neighbours of v are already adjacent, then they remain simply adjacent). We call this operation vertex contraction by analogy with edge contraction [15].

A double star $S_{n, m}$ is the tree obtained from two disjoint stars $K_{1, n-1}$ and $K_{1, m-1}$ by connecting their centers [4]. The chromatic number $\chi(G)$ of a graph G is the minimum number of colors required to assign to the vertices of G in such a way that no two adjacent vertices of G receive the same color [5]. The following results will be useful in the proof of our results.

Theorem $1.1([\mathbf{1 5]})$. Let S be a subset of $V(G)$. Then G / S is complete if and only if S is a hub set of G.

Proposition 1.1 ([8]). For any connected graph G,

$$
h(G) \leqslant h_{c}(G) \leqslant \gamma_{c}(G) \leqslant h(G)+1
$$

Theorem $1.2([\mathbf{9}])$. For any connected graph G,

$$
\gamma_{c}(G) \leqslant 2 q-p
$$

Theorem 1.3 ([14]). For any graph G,

$$
\left\lceil\frac{p}{\Delta(G)+1}\right\rceil \leqslant \gamma(G)
$$

where $\lceil x\rceil$ is a least integer not less than x.

2. Definition and values of some standard graphs

Definition 2.1. Let G be a graph, a restrained hub set H_{r} of G is a subset $H_{r} \subseteq V(G)$ with the property for any two vertices $u, v \in V(G) \backslash H_{r}$, there is a path between them with all intermediate vertices in H_{r} as well as another path with all intermediate vertices in $V(G) \backslash H_{r}$, the minimum cardinality of H_{r} in G is called a restrained hub number of G and denoted by $h_{r}(G)$.

It is obvious that $h_{r}(G) \geqslant h(G)$, since every restrained hub set is a hub set. If G is a disconnected graph then any restrained hub set must contain all of the vertices in all but one of the components, as well as a restrained hub set in the remaining component.

It is clear that $h_{r}(G)$ is well-defined for any graph G, since $V(G)$ is a restrained hub set.

A restrained hub set $H_{r} \subseteq V(G)$ is called a connected restrained hub set, if the subgraph $G\left[H_{r}\right]$ is connected. The minimum cardinality of a connected restrained hub set of G is called a connected restrained hub number and is denoted by $h_{r c}(G)$. The connected restrained hub number is well-defined for any connected graph G, since $V(G)$ is a connected restrained hub set. It is obvious that $h_{r}(G) \leqslant h_{r c}(G)$, since every connected restrained hub set is a restrained hub set.

In the following proposition we determine the restrained hub number and connected restrained hub number of some standard graphs.

Proposition 2.1. The following hold
(1) For any complete graph K_{p},

$$
h_{r}\left(K_{p}\right)=h_{r c}\left(K_{p}\right)=0 .
$$

(2) For any cycle C_{p},

$$
h_{r}\left(C_{p}\right)=h_{r c}\left(C_{p}\right)=p-3 .
$$

(3) For any path P_{p} with $p \geqslant 3$,

$$
h_{r}\left(P_{p}\right)=h_{r c}\left(P_{p}\right)=p-2
$$

(4) For the wheel graph $W_{1, p-1}$,

$$
h_{r}\left(W_{1, p-1}\right)=h_{r c}\left(W_{1, p-1}\right)=1
$$

(5) For the star $K_{1, p-1}, p \geqslant 4$,

$$
h_{r}\left(K_{1, p-1}\right)=p-2, \text { and } h_{r c}\left(K_{1, p-1}\right)=p-1
$$

(6) For the double star $S_{n, m}$,

$$
h_{r}\left(S_{n, m}\right)=p-2, \text { and } h_{r c}\left(S_{n, m}\right)=p-1
$$

(7) For the complete bipartite graph $K_{n, m}, m, n \geqslant 3$,

$$
h_{r}\left(K_{n, m}\right)=h_{r c}\left(K_{n, m}\right)=2 .
$$

Now we will check if the restrained hub parameters are suitable measures of stability?. We ask, do the restrained hub parameters discriminate between graphs?. There are many examples of graphs which prove that $h_{r}(G)$ and $h_{r c}(G)$ are suitable measures of stability which are able to discriminate between graphs. For example, consider the graphs G_{1}, G_{2} and G_{3} in Figure 1.

Figure 1
From Figure 1, it is clear that $h\left(G_{1}\right)=h\left(G_{2}\right)=h\left(G_{3}\right)=1$, also $\gamma\left(G_{1}\right)=$ $\gamma\left(G_{2}\right)=\gamma\left(G_{3}\right)=1$, then the hub number and the domination number do not discriminate between graphs G_{1}, G_{2} and G_{3}, but $h_{r}\left(G_{1}\right)=1, h_{r}\left(G_{2}\right)=3, h_{r}\left(G_{3}\right)=$ 4 , so $h_{r}\left(G_{1}\right) \neq h_{r}\left(G_{2}\right) \neq h_{r}\left(G_{3}\right)$, and $h_{r c}\left(G_{1}\right)=1, h_{r c}\left(G_{2}\right)=4, h_{r c}\left(G_{3}\right)=5$, then $h_{r c}\left(G_{1}\right) \neq h_{r c}\left(G_{2}\right) \neq h_{r c}\left(G_{3}\right)$, hence the restrained hub parameters discriminate between graphs G_{1}, G_{2} and G_{3}.

3. Some properties of restrained hub number

Proposition 3.1. For any connected graph G, $\gamma_{c}(G) \leqslant h_{r}(G)+1$.
Proof. It is obvious that $h_{r}(G) \geqslant h(G)$, and by Proposition 1.1, the proof is done.

Corollary 3.1. Let G be a (p, q) graph, then $h_{r}(G) \geqslant\left\lceil\frac{p}{\Delta(G)+1}\right\rceil-1$.
Proof. By Theorem 1.3, and the previous Proposition we get the result.
If we take a graph $G \cong K_{1, p-1}$, then $h_{r}(G)-h(G)=1$ when $p=4$, and $h_{r}(G)-h(G)=k$, if $p=k+3$ for any $k \geqslant 1$. Then we have

Proposition 3.2. There exists a graph G for which $h_{r}(G)-h(G)$ can be made arbitrarily large.

Remark 3.1. Let F be a subgraph of G, then need not hold true $h_{r}(F) \leqslant$ $h_{r}(G)$. For example, $G \cong W_{1, p-1}$, and $F \cong K_{1, p-1}, h_{r}(G)=1$ and $h_{r}(F)=p-2$, then $h_{r}(F) \not \leq h_{r}(G)$.

Lemma 3.1. For any nontrivial graph $G, h_{r}(G) \leqslant p-2$.
Proof. Let G be any nontrivial graph, so we can fined two vertices u, v such that v is adjacent to u, then clearly that $V(G) \backslash\{u, v\}$ is a restrained hub set of a graph G.

Theorem 3.1. Let G be a graph, the subset A of $V(G)$ is a restrained hub set of G if and only if G / A is a complete and $G-A$ is connected.

Proof. Suppose that A is a restrained hub set of G, then A is a hub set of G, so G / A is complete by Theorem1.1. Now let u, v be any two vertices in $G-A$, since A is a restrained hub set, then there exist a path between u and v with all internal
vertices in $V(G) \backslash A$. Therefore by the definition of a connected graph we get that $[G-A]$ is connected. Conversely, since G / A is complete, then by Theorem1.1, A is a hub set of G, now let $u, v \in G-A$, since $G-A$ is connected then there is $u-v$ path with all internal vertices in $G-A$. Hence A is a restrained hub set of G.

Theorem 3.2. For any graph $G, \gamma_{r}(G) \leqslant h_{r}(G)+1$.
Proof. Let H_{r} be a restrained hub set in G, and let Q be the set of vertices which are not adjacent to anything in H_{r} (nor in H_{r} themselves). By the definition of H_{r} the only H_{r}-paths between the vertices in Q must be trivial, then $G[Q]$ is complete and every vertex in Q is adjacent to every vertex in $V(G) \backslash\left(H_{r} \cup Q\right)$. Let $B=V(G) \backslash\left(H_{r} \cup Q\right)$, by the previous Theorem $G[B \cup Q]$ is connected. Now we discuss the following cases:
Case 1: B and Q are nonempty. Let b be any vertex in B, since b is adjacent to all vertices in Q, and by definition of B its a neighborhood of H_{r}, so $H_{r} \cup\{b\}$ is a dominating set of G, and by definition of Q, any vertex $q \in Q$ is adjacent to all vertices in $V(G) \backslash\left(V\left(H_{r}\right) \cup\{b\}\right)$. Therefore $H_{r} \cup\{b\}$ is a restrained dominating set of G.
Case 2: B is nonempty and Q is empty. Since B is connected and B its a neighborhood of H_{r}, then H_{r} is a restrained dominating set of G.
Case 3: B is empty. If Q is empty, then $H_{r}=V(G)$. If Q is not empty, then $H_{r} \cup\{q\}$ is a restrained dominating set of G for any $q \in Q$, since $G[Q]$ is complete and $G[Q \backslash\{q\}]$ is connected. From all of the above cases we get that $\gamma_{r}(G) \leqslant h_{r}(G)+1$.

Proposition 3.3. For any graph G, ifv is an end vertex and H_{r} is a restrained hub set, then either $v \in H_{r}$ or $\left|H_{r}\right|=p-2$.

Proof. Suppose that v is an end vertex in a graph G and H_{r} is a restrained hub set. Let $w \in V(G)$ such that $v w \in E$, clearly w is a cut vertex, if $w \in H_{r}$ then there is a vertex u such that w is any $u v-$ path, so $v \in H_{r}$ or $A=V(G) \backslash\{v, w\} \subseteq H_{r}$, therefore either $v \in H_{r}$ or $\left|H_{r}\right| \geqslant p-2$, since $\left|H_{r}\right| \leqslant p-2$ we get $\left|H_{r}\right|=p-2$.

Corollary 3.2. Let G be a graph, H_{r} is a restrained hub set, then any H_{r} contains all end vertices or all of end vertices except one.

REMARK 3.2. $h_{r}(G) \geqslant e_{n}-1$, and it is sharp on the star.
Theorem 3.3. Let G be a graph with at least one end vertex, $h_{r}(G)=p-2$ if and only if there exists minimum restrained hub set not containing an end vertex.

Proof. Suppose that there exists minimum restrained hub set not containing an end vertex, then by Proposition 2.4, $h_{r}(G)=p-2$. Conversely let $H_{r}(G)=p-2$, and let u be an end vertex, take w such that $u w \in E$, then clearly $V(G) \backslash\{u, w\}$ is a restrained hub set, and it has $p-2$ vertices. Since $h_{r}(G)=p-2, V(G) \backslash\{u, w\}$ is a minimum restrained hub set not containing end vertex.

Observation 3.1. If G has at least two internal vertices, then there exists minimum H_{r} such that it contains all end vertices.

Theorem 3.4. Let G be a graph with at least two internal vertices, then $h_{r}(G)=e_{n}$ if and only if $G-E_{n}$ is complete graph.

Proof. Suppose that $G-E_{n}$ is complete graph, clearly E_{n} is a restrained hub set by Theorem 2.2, then clearly by Observation 2.1, E_{n} is minimum restrained hub set. Conversely let $h_{r}(G)=e_{n}$, since $h_{r}(G)=e_{n}, H_{r}$ does not contain any vertex from $G-E_{n}$, suppose that $G-E_{n}$ is not complete graph, let $u, v \in G-E_{n}$ such that $u v \notin E$, since H_{r} is a set of all end vertices, then there is no $u v$-path with all internal vertices in H_{r}, which is contradiction, therefore $G-E_{n}$ is complete graph.

Proposition 3.4. If a graph G has two vertices with degree $p-1$ and $G \neq K_{p}$, then $h(G)=h_{c}(G)=h_{r}(G)=\gamma(G)=\gamma_{c}(G)=\gamma_{r}(G)=1$.

Proof. Suppose that u, v are the two vertices with degree $p-1$, let $A=\{v\}$, clearly G / A is complete, and as $\operatorname{deg}(u)=p-1$, then clearly $G-A$ is connected, hence A is a restrained hub set, so $h(G)=h_{c}(G)=h_{r}(G)=1$. Since v is adjacent to every vertex in G we get $\gamma(G)=\gamma_{c}(G)=1$, and since u is also adjacent to every vertex in G and $u \notin A$, then A is a restrained dominating set, so $\gamma_{r}(G)=1$.

Theorem 3.5. Let G, F be any two non trivial graphs, with orders p_{1}, p_{2}, respectively. Then

$$
h_{r}(G+F)=\left\{\begin{array}{l}
0, \text { if } G, F \text { are complete } ; \\
1, \text { if }\left\{\Delta(G)=p_{1}-1, \text { or } \Delta(F)=p_{2}-1\right\} \text { and } \\
G \neq K_{p_{1}} \text { or } F \neq K_{p_{2}} \\
2, \text { otherwise. }
\end{array}\right.
$$

Proof. Let G, F be non trivial graphs, with orders p_{1}, p_{2}, respectively. We have the following cases:
Case 1: G, F are complete graphs, then $G+F=K_{p_{1}+p_{2}}$, so $h_{r}(G+F)=0$.
Case 2: Without loss of generality let $v \in G$, and $\operatorname{deg}(v)=p_{1}-1$. In $G+F$ $\operatorname{deg}(v)=p_{1}+p_{2}-1$, therefore $(G+F) / v$ is complete and $(G+F)-v$ is connected, so $\{v\}$ is a restrained hub set of $(G+F)$ and it is minimum since at least G or F is not complete, then $h_{r}(G+F)=1$.
Case 3: Let v be any vertex in G or F with $\operatorname{deg}(v) \leqslant p_{1}-2$ or $\operatorname{deg}(v) \leqslant p_{2}-2$. Then in $G+F \operatorname{deg}(v) \leqslant p_{1}+p_{2}-2$, hence $(G+F) / v$ is not complete, then $h_{r}(G+F) \geqslant 2$. By Proposition 2.1 we get $h_{r}(G+F)=2$.

Corollary 3.3. Let G, F be any two non trivial graphs, then $h_{r}(G+F)=$ $h(G+F)=h_{c}(G+F)$.

Proof. Let H be any minimum hub set of $G+F$, then $(G+F)-H$ is connected, therefore H is a restrained hub set, thus we get the result.

Theorem 3.6. Let G ba a (p, q) graph, then $h_{r}(G) \leqslant 2 q-\gamma_{c}(G)-2$.
Proof. By Theorem 1.4, we get $p-2 \leqslant 2 q-\gamma_{c}(G)-2$, and by Lemma 2.1, we get the result.

References

[1] J. A. Bondy and U. S. R. Murty. Graph Theory With Applications. The Macmillan Press Ltd, 1976.
[2] R. L. Brooks. On colouring the nodes of a network. Proc. Cambridge Phil. Soc., 37(2)(1941), 194-197.
[3] G. S. Domke, J. H. Hattingh, S. T. Hedetniemi, R. C. Laskar and L. R. Markus. Restrained domination in graphs. Discrete Math., 203(1-3)(1999), 61-69.
[4] J. W. Grossman, F. Harary and M. Klawe. Generalized ramsey theorem for graphs, X: double stars. Discrete Math., 28(3)(1979), 247-254.
[5] F. Harary, Graph Theory, Addison Wesley, Reading Mass, 1969.
[6] T. W. Haynes, S. T. Hedetniemi and P. J. Slater. Fundamentals Of Domination in Graphs. Marcel Dekker, Inc, 1998.
[7] S. R. Jayaram. Line domination in graphs. Graphs and Combinatorics, 3(1)(1987), 357-363.
[8] P. Johnson, P. Slater and M. Walsh. The connected hub number and the connected domination number. Networks, an International Journal, 58(3)(2011), 232-237.
[9] E. Sampathkumar and H. B. Walikar. The connected domination number of a graph. J. Math. Phys. Sci., 13(6)(1979), 607-613.
[10] S. I. Khalaf, V. Mathad and S. S. Mahde. Hubtic number in graphs. Opuscula Math. $38(6)(2018), 841-847$.
[11] S. I. Khalaf, V. M. and S. S. Mahde. Edge Hubtic Number in Graphs. International J. Math. Combin., 3(2018), 140-145.
[12] S. S. Mahde and V. Mathad. Some results on the edge hub-integrity of graphs. Asia Pacific J. Math., 3(2)(2016), 173-185.
[13] V. Mathad, A. M. Sahal and S. Kiran. The total hub number of graphs. Bull. Int. Math. Virtual Inst., 4(1)(2014), 61-67.
[14] H. B. Walikar, B. D. Acharya and E. Sampathkumar. Recent development in the theory of domination in graphs. Volume 1 of MRI Lecture Notes in mathematics, 1997.
[15] M. Walsh. The hub number of a graph. Intl. J. Math. Comp. Sci., 1(2006), 117-124.
Receibed by editors 04.03.2018; Revised version 15.11.2018; Available online 26.11.2018.
Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysuru - 570 006, INDIA

E-mail address: shadikhalaf1989@hotmail.com
Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysuru - 570 006, INDIA

E-mail address: veena_mathad@rediffmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 05C40; Secondary 05C99.
 Key words and phrases. Restrained hub number, Restrained hub set, Hub number.

