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COMMON FIXED POINT THEOREMS IN GP -METRIC
SPACES AND APPLICATIONS

Anita Tomar, Ritu Sharma, Shivangi Upadhyay, and Said Beloul

Abstract. A generalized condition (B) is introduced in the context of GP -

metric spaces to establish coincidence and common fixed point of discontinuous
mappings and utilized to solve the integral equation and the functional equa-
tion arising in dynamic programming. Our results are absolutely novel and
provide a new dimension in fixed point theory and can not be attained from

the available results in the literature. Conclusively two explanatory examples
are also furnished for the sake of clarity.

1. Introduction

Motivated by the usefulness of the notion of a metric space introduced by
French mathematician Frèchet [13] in the natural development of mathematics in
general and to functional analysis in particular, numerous researchers tried different
generalizations of this notion in the recent past. One of such generalizations called
a generalized partial metric space (GP -metric space) is introduced by Zand and
Nezhad [23] by combining the notion of a generalized metric space (G-metric space)
due to Mustafa and Sims [18] and a partial metric space introduced by Matthews
[16]. Aydi et al. [7] gave first fixed point result in GP -metric spaces. On the other
hand Abbas et al. [3] introduced generalized condition (B) for a pair of mappings
in a metric space and recently Tomar et al. [21] introduced it in a quasi-partial
metric space.

Acknowledging the notions of Zand and Nezhad [23], Abbas et al. [3] and
Tomar et al. [21] we introduce generalized condition (B) in GP -metric spaces to
obtain coincidence and common fixed point of discontinuous mappings and provide
favourable answers to two open problems presented by Abbas et al. [1]. We compare
our results with many results existing in the literature ( [1], [3], [4–6,8], [10,11],
[14], [16,17] and so on) to elucidate the importance of generalized condition (B)
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in GP -metric spaces and apply them to solve integral equation and functional
equation arising in dynamic programming. Finally two explanatory examples are
furnished to illustrate the work.

2. Preliminaries

Definition 2.1. ( [23]) Let X be a nonempty set. A mapping Gp : X ×X ×
X → R+ is said to be a Gp-metric on X if it satisfies the following assumptions:

(1) x = y = z if Gp(x, y, z) = Gp(x, x, x) = Gp(y, y, y) = Gp(z, z, z);
(2) 0 6 Gp(x, x, x) 6 Gp(x, x, y) 6 Gp(x, y, z);
(3) Gp(x, y, z) = Gp(x, z, y) = Gp(y, z, x) = ...,(symmetry in all three vari-

ables);
(4) Gp(x, y, z) 6 Gp(x, a, a) +Gp(a, y, z)−Gp(a, a, a);

for all x, y, z, a ∈ X. Then the pair (X,Gp) is called a GP -metric space.

Example 2.1. Let X = [0,+∞) and let Gp : X×X×X → [0,+∞), be defined
by Gp(x, y, z) = d(x, y) + d(y, z) + d(z, x). Clearly, (X,Gp) is a GP -metric space
but not a G-metric space.

Example 2.2. Let X = {a, b, c} and Gp : X ×X ×X → [0,+∞), be defined
by Gp(x, y, z) = 1, if x = y = z; Gp(a, b, b) = Gp(b, a, a) = 10; Gp(a, c, c) =
Gp(c, a, a) = 15; Gp(b, c, c) = Gp(c, b, b) = 17 and Gp(a, b, c) = 20. Clearly, (X,Gp)
is a GP -metric space but not a G-metric space.

Example 2.3. Let X = [0,+∞) and Gp(x, y, z) = max{x, y, z}, for all x, y, z ∈
X. Then (X,Gp) is a GP -metric space. Clearly, dGp = |x − y| is a Gp metric on
X.

Proposition 2.1 ( [23]). Let (X,Gp) be a GP -metric space. The function
dGp : X ×X → R+, such that for all x, y ∈ X, we have:

dGp(x, y) = Gp(x, y, y) +Gp(y, x, x)−Gp(x, x, x)−Gp(y, y, y)

defines a metric on X.

Definition 2.2. ( [23]) Let (X,Gp) be a GP -metric space and let {xn} be a
sequence in X. A sequence {xn} is convergent to a point x ∈ X if

lim
n,m→∞

Gp(xn, xm, x) = Gp(x, x, x).

Proposition 2.2 ( [23]). Let (X,Gp) be a GP -metric space. For any sequence
{xn} in X and a point x ∈ X, the following assumptions are equivalent:

(1) {xn} is Gp-convergent to x.
(2) Gp(xn, xn, x) → Gp(x, x, x) as n → ∞.
(3) G(xn, x, x) → 0 as n → ∞.

Lemma 2.1 ( [7]). Let (X,Gp) be a GP -metric space. Then

• If Gp(x, y, z) = 0, then x = y = z.
• If x ̸= y, then Gp(x, y, y) > 0.
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Definition 2.3. ( [8]) A self mapping S of a metric space (X, d) satisfies the
condition (B) if there exist δ ∈ (0, 1), L > 0 and for all x, y ∈ X we have:

d(Sx, Sy) 6 δd(x, y) + Lmin(d(x, Sx), d(y, Sy), d(x, Sy), d(y, Sx)).

Abbas et al. [1] extended the notion of condition (B) to a pair of mappings
as generalized condition (B) and Abbas and Ilic [2] independently extended it as
generalized almost S-contraction.

Definition 2.4. ( [1]) Let A and S be two self mappings of a metric space
(X, d). The mapping S satisfies generalized condition (B) associated with A if there
exist δ ∈ (0, 1) and L > 0 such that for all x, y ∈ X, we have:

d(Sx, Sy) 6 δ(M(x, y)) + Lmin{d(Ax, Sx), d(Ay, Sy), d(Ax, Sy), d(Ay, Sx)},
where

M(x, y) = max{d(Ax,Ay), d(Ax, Sx), d(Ay, Sy),
d(Ax, Sy) + d(Ay, Sx)

2
}.

Evidently, for A = I, generalized condition (B) reduces to condition (B).

Definition 2.5. ( [14]) Let X be a nonempty set. Two mappings A,S : X →
X, are said to be weakly compatible if they commute at their coincidence point,
i.e., if Au = Su for some u ∈ X, then ASu = SAu.

3. Main Result

Following Tomar et al. [21] first we introduce generalized condition (B) in a
GP -metric space for a pair and two pairs of self-mappings.

Definition 3.1. Let A and S be two self mappings of a GP -metric space
(X,Gp). The mapping S satisfies generalized condition (B) associated with A (S
is a generalized almost A-contraction) if there exist δ ∈ (0, 1) and L > 0 such that
for all x, y ∈ X:

(3.1) Gp(Sx, Sy, Sy) 6 δmax{Gp(Ax,Ay,Ay), Gp(Ax, Sx, Sx), Gp(Ay, Sy, Sy),

1

2
(Gp(Sx,Ay,Ay) +Gp(Ax, Sy, Sy))}+ Lmin{Gp(Ax, Sx, Sx), Gp(Ay, Sy, Sy),

Gp(Ax, Sy, Sy), Gp(Sx,Ay,Ay)}.

If A = idX , then S satisfies generalized condition (B) in a GP -metric space.

Example 3.1. Let X = [0,∞) and the Gp metric: Gp(x, y, z) = max{x, y, z}.
Let two self mappings A and S be defined as:

Sx =

{
x
6 , 0 6 x 6 1
0, x > 1,

Ax =

{
x
2 , 0 6 x 6 1
2, x > 1.

For x, y ∈ [0, 1]:

Gp(Sx, Sy, Sy) = max{x
6
,
y

6
,
y

6
} 6 1

2
max{x

2
,
y

2
,
y

2
}.



564 TOMAR, SHARMA, UPADHYAY, AND BELOUL

For x ∈ [0, 1] and y > 1:

Gp(Sx, Sy, Sy) =
x

6
6 1

2
max{x

2
, 2, 2}.

For x > 1 and y ∈ [0, 1]:

Gp(Sx, Sy, Sy) =
y

6
6 1

2
max{2, y

2
,
y

2
}.

Hence, S satisfies generalized condition (B) associated with A, for δ = 1
2 and L = 0.

Definition 3.2. Let A, B, S and T be four self mappings of a GP -metric space
(X,Gp). The pair of mappings (A,S) satisfies generalized condition (B) associated
with (B, T ) ((A,S) is a generalized almost (B, T )-contraction) if there exist δ ∈
(0, 1) and L > 0 such that for all x, y ∈ X :

(3.2) Gp(Sx, Ty, Ty) 6 δmax{Gp(Ax,By,By), Gp(Ax, Sx, Sx), Gp(By, Ty, Ty),

1

2
(Gp(Sx,By,By) +Gp(Ax, Ty, Ty))}+ Lmin{Gp(Ax, Sx, Sx), Gp(By, Ty, Ty),

Gp(Ax, Ty, Ty), Gp(Sx,By,By)}.

Theorem 3.1. Let A, B, S and T be self mappings of a GP -metric space
(X,Gp). If a pair (A,S) satisfies generalized condition (B) associated with (B, T )
such that for all x, y ∈ X:

(1) TX ⊂ AX and SX ⊂ BX,
(2) AX or BX is closed,
(3) δ + L < 1,

then (A,S) and (B, T ) have a coincidence point. Further, A, B, S and T have a

unique common fixed point provided that (A,S) and (B, T ) are weakly compatible.

Proof. Let x0 ∈ X. Since SX ⊂ BX there exists a point x1 ∈ X such that
y1 = Bx1 = Sx0. Let for this point y1 there exists a point y2 ∈ Tx1. Also since
TX ⊂ AX, there exists x2 ∈ X such that y2 = Ax2 = Tx1. Continuing in this
manner, we define a sequence {yn} in X as follows:{

y2n+1 = Bx2n+1 = Sx2n,
y2n+2 = Ax2n+2 = Tx2n+1.

Now
Gp(y2n+1, y2n+2, y2n+2) = Gp(Sx2n, Tx2n+1, Tx2n+1)
6 δmax{Gp(Ax2n, Bx2n+1, Bx2n+1), Gp(Ax2n, Sx2n, Sx2n),
Gp(Bx2n+1, Tx2n+1, Tx2n+1),

1
2 (Gp(Sx2n, Bx2n+1, Bx2n+1)

+Gp(Ax2n, Tx2n+1, Tx2n+1))}+ Lmin{Gp(Ax2n, Sx2n, Sx2n),
Gp(Bx2n+1, Tx2n+1, Tx2n+1), Gp(Ax2n, Tx2n+1, Tx2n+1),
Gp(Sx2n, Bx2n+1, Bx2n+1)}.

= δmax{Gp(y2n, y2n+1, y2n+1), Gp(y2n, y2n+1, y2n+1),
Gp(y2n+1, y2n+2, y2n+2),

1
2 (Gp(y2n+1, y2n+1, y2n+1) +Gp(y2n, y2n+2, y2n+2))}

+ Lmin{Gp(y2n, y2n+1, y2n+1), Gp(y2n+1, y2n+2, y2n+2), Gp(y2n, y2n+2, y2n+2),
Gp(y2n+1, y2n+1, y2n+1)}.
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6 δmax{Gp(y2n, y2n+1, y2n+1), Gp(y2n+1, y2n+2, y2n+2),
1
2 (Gp(y2n, y2n+1, y2n+1) +Gp(y2n+1, y2n+2, y2n+2))}
+ Lmin{Gp(y2n+1, y2n+1, y2n+1), Gp(y2n, y2n+2, y2n+2)}.

Now we have the following cases:

Case I: Let Gp(y2n, y2n+1, y2n+1) 6 Gp(y2n+1, y2n+2, y2n+2)
and Gp(y2n+1, y2n+1, y2n+1) 6 Gp(y2n, y2n+2, y2n+2). Then
Gp(y2n+1, y2n+2, y2n+2) 6 δGp(y2n+1, y2n+2, y2n+2) + LGp(y2n+1, y2n+1, y2n+1),
i.e.,Gp(y2n+1, y2n+2, y2n+2) 6 δGp(y2n+1, y2n+2, y2n+2)+LGp(y2n+1, y2n+2, y2n+2),
i.e., Gp(y2n+1, y2n+2, y2n+2) 6 (δ + L)Gp(y2n+1, y2n+2, y2n+2).
Since, δ + L < 1, Gp(y2n+1, y2n+2, y2n+2) < Gp(y2n+1, y2n+2, y2n+2), a contradic-
tion.

Case II: Let Gp(y2n, y2n+1, y2n+1) 6 Gp(y2n+1, y2n+2, y2n+2)
and Gp(y2n, y2n+2, y2n+2) 6 Gp(y2n+1, y2n+1, y2n+1).
Then
Gp(y2n+1, y2n+2, y2n+2) 6 δGp(y2n+1, y2n+2, y2n+2) + LGp(y2n, y2n+2, y2n+2),
i.e.,Gp(y2n+1, y2n+2, y2n+2) 6 δGp(y2n+1, y2n+2, y2n+2)+LGp(y2n+1, y2n+2, y2n+2),
i.e., Gp(y2n+1, y2n+2, y2n+2) 6 (δ + L)Gp(y2n+1, y2n+2, y2n+2).
Since, δ + L < 1, Gp(y2n+1, y2n+2, y2n+2) < Gp(y2n+1, y2n+2, y2n+2), a contradic-
tion.

Case III: Let Gp(y2n+1, y2n+2, y2n+2) 6 Gp(y2n, y2n+1, y2n+1)
and Gp(y2n, y2n+2, y2n+2) 6 Gp(y2n+1, y2n+1, y2n+1).
Then
Gp(y2n+1, y2n+2, y2n+2) 6 δGp(y2n, y2n+1, y2n+1) + LGp(y2n, y2n+2, y2n+2),
i.e.,Gp(y2n+1, y2n+2, y2n+2) 6 δGp(y2n+1, y2n+2, y2n+2)+LGp(y2n+1, y2n+2, y2n+2),
i.e., Gp(y2n+1, y2n+2, y2n+2) 6 (δ + L)Gp(y2n+1, y2n+2, y2n+2).
Since, δ + L < 1, Gp(y2n+1, y2n+2, y2n+2) < Gp(y2n+1, y2n+2, y2n+2), a contradic-
tion.

Case IV: Let Gp(y2n+1, y2n+2, y2n+2) 6 Gp(y2n, y2n+1, y2n+1)
and Gp(y2n+1, y2n+1, y2n+1) 6 Gp(y2n, y2n+2, y2n+2).
Then
Gp(y2n+1, y2n+2, y2n+2) 6 δGp(y2n, y2n+1, y2n+1) + LGp(y2n+1, y2n+1, y2n+1),
i.e., Gp(y2n+1, y2n+2, y2n+2) 6 δGp(y2n, y2n+1, y2n+1) + LGp(y2n, y2n+1, y2n+1),
i.e., Gp(y2n+1, y2n+2, y2n+2) 6 (δ + L)Gp(y2n, y2n+1, y2n+1).
6 (δ + L)2Gp(y2n−1, y2n, y2n) 6 ... 6 (δ + L)n+1Gp(y0, y1, y1) → 0 as n → ∞.
Therefore, {yn} is convergent and hence, its subsequences {y2n+2} = {Ax2n+2}
and {y2n+1} = {Bx2n+1} are also convergent to z. Since AX is closed, z ∈ AX,
i.e., there exists u ∈ X such that z = Au. We claim that z = Su. If not, by using
inequality (3.2), we get:
Gp(Su, Tx2n+1, Tx2n+1) 6 δmax{Gp(Au,Bx2n+1, Bx2n+1), Gp(Au, Su, Su),
Gp(Bx2n+1, Tx2n+1, Tx2n+1),

1
2 (Gp(Su,Bx2n+1, Bx2n+1) +

Gp(Au, Tx2n+1, Tx2n+1))}+Lmin{Gp(Au, Su, Su), Gp(Bx2n+1, Tx2n+1, Tx2n+1),
Gp(Au, Tx2n+1, Tx2n+1), Gp(Su,Bx2n+1, Bx2n+1)}.
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Letting n → ∞,
Gp(Su, z, z) 6 δmax{Gp(z, z, z), Gp(z, Su, Su), Gp(z, z, z), 1

2 (Gp(Su, z, z)
+Gp(z, z, z))}+ Lmin{Gp(z, Su, Su), Gp(z, z, z), Gp(z, z, z), Gp(Su, z, z)},
i.e., Gp(Su, z, z) 6 δGp(Su, z, z) + LGp(z, z, z),
i.e., Gp(Su, z, z) 6 (δ + L)Gp(Su, z, z), a contradiction to (3).
Hence, G(Su, z, z) = 0, i.e., Su = z. So Au = Su, i.e., A and S have a coincidence
point.
Since SX ⊂ BX, there exists v ∈ X such z = Su = Bv.

We claim that Tv = z. If not, by using inequality (3.2) we get:
Gp(Su, Tv, Tv) 6 δmax{Gp(Au,Bv,Bv), Gp(Au, Su, Su), Gp(Bv, Tv, Tv),
1
2 (Gp(Su,Bv,Bv) +Gp(Au, Tv, Tv))}+ Lmin{Gp(Au, Su, Su), Gp(Bv, Tv, Tv),
Gp(Au, Tv, Tv), Gp(Su,Bv,Bv)},
i.e., Gp(z, Tv, Tv) 6 δmax{Gp(z, z, z), Gp(z, z, z), Gp(z, Tv, Tv),
1
2 (Gp(z, z, z) +Gp(z, Tv, Tv))}+ Lmin{Gp(z, z, z), Gp(z, Tv, Tv),
Gp(z, Tv, Tv), Gp(z, z, z)},
i.e., Gp(z, Tv, Tv) 6 δGp(z, Tv, Tv) + LGp(z, z, z),
i.e., Gp(z, Tv, Tv) 6 (δ + L)Gp(z, Tv, Tv), a contradiction to (3).
So, Gp(z, Tv, Tv) = 0, i.e., Tv = z. Hence, Bv = Tv, i.e., B and T have a
coincidence point. If we assume that BX is closed, then argument analogous to the
previous argument establishes that the pairs (A,S) and (B, T ) have a coincidence
point. Since, (A,S) and (B, T ) are weakly compatible, Az = ASu = SAu = Sz
and Bz = BTv = TBv = Tz.

Now we show that z = Az. If not, by using inequality (3.2) we get:
Gp(Sz, Tv, Tv) 6 δmax{Gp(Az,Bv,Bv), Gp(Az, Sz, Sz), Gp(Bv, Tv, Tv),
1
2 (Gp(Sz,Bv,Bv) +Gp(Az, Tv, Tv))}+ Lmin{Gp(Az, Sz, Sz), Gp(Bv, Tv, Tv),
Gp(Az, Tv, Tv), Gp(Sz,Bv,Bv)}. Letting n → ∞, we get
Gp(Az, z, z) 6 δmax{Gp(Az, z, z), Gp(z, z, z), 1

2 (Gp(Az, z, z) +Gp(Az, z, z))}+
Lmin{Gp(Sz, Sz, Sz), Gp(z, z, z), Gp(Az, z, z), Gp(Az, z, z)},
i.e., Gp(Az, z, z) 6 δGp(Az, z, z) + LGp(z, z, z),
i.e., Gp(Az, z, z) 6 (δ + L)Gp(Az, z, z), a contradiction to (3).
So, Gp(Az, z, z) = 0, i.e., z = Az. Similarly we can prove that z = Bz. Hence,
z = Az = Bz = Sz = Tz, i.e., z is a common fixed point for A, B, S and
T . Uniqueness of the common fixed point is an easy consequence of inequality
(3.2). �

Now we furnish example to demonstrate the validity of Theorem 3.1.

Example 3.2. Let X = [0, 2] and the Gp-metric: Gp(x, y, z) = max{x, y, z}.
Let self mappings A, B, S and T be defined by:

Ax =

{
x
2 , 0 6 x 6 1
5
4 , 1 < x 6 2,

Bx =

{
3x
2 , 0 6 x 6 1
3
2 , 1 < x 6 2,

Sx =

{
x
6 , 0 6 x 6 1
1
2 , 1 < x 6 2,

Tx =

{
x
4 , 0 6 x 6 1
1
4 , 1 < x 6 2.
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Clearly, AX = [0, 1
2 ] ∪ { 5

4}, BX = [0, 3
2 ], TX = [0, 1

4 ] ⊂ AX and SX =

[0, 1
6 ] ∪ { 1

2} ⊂ BX. The point 0 is a coincidence point of A,B, S and T. Also
AS0 = SA0 = 0 and TB0 = BT0 = 0, i.e., pairs (A,S) and (B, T ) are weakly
compatible.

Case 1. For x, y ∈ [0, 1]: Gp(Sx, Ty, Ty) = max{x
6 ,

y
4 ,

y
4}

6 1
2 max{Gp(x2 ,

3y
2 , 3y

2 ), Gp(x2 ,
x
6 ,

x
6 ), Gp( 3y2 , y

4 ,
y
4 ),

1
2 (Gp(x2 ,

x
4 ,

x
4 ) +Gp( 3y2 , 3y

2 , x
6 ))},

i.e.,

Gp(Sx, Ty, Ty) =
y

4
6 1

2
Gp(

x

2
,
3y

2
,
3y

2
).

Case 2. For x ∈ [0, 1] and y ∈ (1, 2]: Gp(Sx, Ty, Ty) = max{x
6 ,

1
4 ,

1
4}

6 1
2 max{Gp(x2 ,

3
2 ,

3
2 ), Gp(x2 ,

x
6 ,

x
6 ), Gp( 32 ,

1
4 ,

1
4 ),

1
2 (Gp(x2 ,

1
4 ,

1
4 ) +Gp( 32 ,

3
2 ,

x
6 ))},

i.e.,

Gp(Sx, Ty, Ty) =
1

4
6 1

2
Gp(

x

2
,
3

2
,
3

2
).

Case 3. For x ∈ (1, 2] and y ∈ [0, 1]: Gp(Sx, Ty, Ty) = max{ 1
2 ,

y
4 ,

y
4}

6 1
2 max{Gp( 54 ,

3y
2 , 3y

2 ), Gp( 54 ,
1
2 ,

1
2 ), Gp( 3y2 , y

4 ,
y
4 ),

1
2 (Gp( 54 ,

y
4 ,

y
4 ) +Gp( 3y4 , 3y

4 , 1
2 ))},

i.e.,

Gp(Sx, Ty, Ty) =
1

2
6 1

2
Gp(

5

4
,
3y

2
,
3y

2
).

Case 4. For x, y ∈ (1, 2]: Gp(Sx, Ty, Ty) = max{1
2 ,

1
4 ,

1
4}

6 1
2 max{Gp( 54 ,

3
2 ,

3
2 ), Gp( 54 ,

1
2 ,

1
2 ), Gp( 32 ,

1
4 ,

1
4 ),

1
2 (Gp( 54 ,

1
4 ,

1
4 ) +Gp( 32 ,

3
2 ,

1
2 ))},

i.e.,

Gp(Sx, Ty, Ty) =
1

2
6 1

2
Gp(

5

4
,
3

2
,
3

2
).

Hence, all the hypotheses of Theorem 3.1 are satisfied (for δ = 1
2 and L = 0)

and 0 is the unique common fixed point of A, B, S and T . One may notice that
the mappings AX and SX are discontinuous.

Since Banach contraction [9], Chatterjea contraction [11], Kannan contraction

[15], Zamfirescu contraction [22], quasi-contractions (C̀iric̀ [12]) are all contained in
generalized condition (B), Theorem 3.1 extends, generalizes and improves existing
results ( [1], [3], [8, 9], [11, 12], [15], [22] and references there in) in GP -metric
spaces using more natural condition of closedness of range spaces and demonstrate
the significance of generalized condition (B), in the existence of coincidence and
common fixed points.

For A = B and S = T , we get the following Corollary:

Corollary 3.1. Let A and T be self mappings of a GP -metric space (X,Gp).
If A satisfies generalized condition (B) associated with T such that for all x, y ∈ X:

(1) TX ⊂ AX,
(2) AX is closed,
(3) δ + L < 1,
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then A and T have a coincidence point. Further, A and T have a unique common
fixed point provided that the pair (A, T ) is weakly compatible.

Substituting L = 0 in Theorem 3.1 we get the following Corollary:

Corollary 3.2. Let A, B, S and T be self mappings of a GP -metric space
(X,Gp). If the pairs (A,S) and (B, T ) satisfy
Gp(Sx, Ty, Ty) 6 δmax{Gp(Ax,By,By), Gp(Ax, Sx, Sx), Gp(By, Ty, Ty),
1
2 (Gp(Sx,By,By) +Gp(Ax, Ty, Ty))}, δ ∈ (0, 1)
such that for all x, y ∈ X:

(1) TX ⊂ AX and SX ⊂ BX,
(2) AX or BX is closed,

then the pairs (A,S) and (B, T ) have a coincidence point. Further, A, B, S and
T have a unique common fixed point provided that the pairs (A,S) and (B, T ) are
weakly compatible.

Substituting L = 0, A = B and S = T in Theorem 3.1 we get the following
Corollary:

Corollary 3.3. Let A and T be self mappings of a GP -metric space (X,Gp).
If the pair (A, T ) satisfies
Gp(Tx, Ty, Ty) 6 δmax{Gp(Ax,Ay,Ay), Gp(Ax, Tx, Tx), Gp(Ay, Ty, Ty),
1
2 (Gp(Tx,Ay,Ay) +Gp(Ax, Ty, Ty))}, δ ∈ (0, 1)
such that for all x, y ∈ X:

(1) TX ⊂ AX,
(2) AX is closed,

then the pair (A, T ) has a coincidence point. Further, A and T have a unique
common fixed point provided that the pair (A, T ) is weakly compatible.

Corollary 3.4. Let A and T be self mappings of a GP -metric space (X,Gp).
If the pair (A, T ) satisfies
Gp(Tx, Ty, Ty) 6 δGp(Ax,Ay,Ay), δ ∈ (0, 1)
such that for all x, y ∈ X:

(1) TX ⊂ AX,
(2) AX is closed,

then the pair (A, T ) has a coincidence point. Further, A and T have a unique
common fixed point provided that the pairs (A, T ) is weakly compatible.

Instead of assuming range space AX or BX to be closed, if we consider closures
of range space TX or SX, we get slightly more interesting result.

Theorem 3.2. Let A, B, S and T be self mappings of a GP -metric space
(X,Gp). If there exist δ ∈ (0, 1), L > 0 and pairs of mappings (A,S) and (B, T )
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satisfy

(3.3) Gp(Sx, Ty, Ty) 6 δmax{Gp(Ax,By,By), Gp(Ax, Sx, Sx), Gp(By, Ty, Ty),

Gp(Ax, Ty, Ty), Gp(Sx,By,By)}+ Lmin{Gp(Ax, Sx, Sx),

Gp(By, Ty, Ty), Gp(Ax, Ty, Ty), Gp(Sx,By,By)}
such that for all x, y ∈ X:

(1) TX ⊂ AX or SX ⊂ BX,
(2) δ + L < 1,

then the pairs (A,S) and (B, T ) have a coincidence point. Further, A, B, S and
T have a unique common fixed point provided that the pairs (A,S) and (B, T ) are
weakly compatible.

Proof. It can also be proved following the similar arguments to those given
in the proof of Theorem 3.1. �

Example 3.3. Let X = [0,∞) and the Gp metric: Gp(x, y, z) = max{x, y, z}.
Let A, B, S and T be mappings defined by:

Ax =

{
2x, 0 6 x 6 1
4, x > 1,

Bx =

{
3
2x, 0 6 x 6 1
2, x > 1,

Sx =

{
x
2 , 0 6 x 6 1
1
4 , x > 1,

Tx =

{
0, 0 6 x 6 1
1
2 , x > 1.

Clearly, SX = [0, 1
2 ] ⊂ [0, 3

2 ] ∪ {2} = BX and TX = {0, 1
2} ⊂ [0, 4] = AX. The

point 0 is a coincidence point of A,B, S and T . Further, AS0 = SA0 = 0 and
TB0 = BT0 = 0, i.e., pairs (A,S) and (B, T ) are weakly compatible.

Case 1. For x, y ∈ [0, 1]: Gp(Sx, Ty, Ty) = max{x
2 , 0, 0} 6

4x
3 = 2

3 max{Gp(2x, 3y
2 , 3y

2 ), Gp(2x, y
2 ,

y
2 ), Gp( 3x2 , 0, 0), Gp(2x, 0, 0), Gp(x2 ,

3y
2 , 3y

2 )}
or

Gp(Sx, Ty, Ty) =
x

2
6 4x

3
=

2

3
{Gp(2x,

3y

2
,
3y

2
)}.

Case 2. For x ∈ [0, 1] and y > 1: Gp(Sx, Ty, Ty) = max{x
2 ,

1
2 ,

1
2} 6

4x
3 = 2

3 max{Gp(2x, 2, 2), Gp(2x, 3y
2 , 3y

2 ), Gp(2, 1
2 ,

1
2 ), Gp(2x, 1

2 ,
1
2 ), Gp( 3x2 , 2, 2)}

or

Gp(Sx, Ty, Ty) =
x

2
6 4x

3
=

2

3
{Gp(2x, 2, 2)}.

Case 3. For x > 1 and y ∈ [0, 1]: Gp(Sx, Ty, Ty) = max{ 1
4 , 0, 0} 6

8
3 = 2

3 max{Gp(4, 3y
2 , 3y

2 ), Gp(4, 1
4 ,

1
4 ), Gp( 3y2 , 0, 0), Gp(4, 0, 0), Gp( 14 ,

3y
2 , 3y

2 )}
or

Gp(Sx, Ty, Ty) =
1

4
6 8

3
=

2

3
{Gp(4,

3y

2
,
3y

2
)}.

Case 4. For x, y ∈ (1,∞): Gp(Sx, Ty, Ty) = max{1
4 ,

1
2 ,

1
2} 6

4
3 = 2

3 max{Gp(4, 2, 2), Gp(4, 1
4 ,

1
4 ), Gp(2, 1

2 ,
1
2 ), Gp(4, T y, Ty), Gp(Sx, 2, 2)}

or

Gp(Sx, Ty, Ty) =
1

2
6 4

3
=

2

3
{Gp(4, 2, 2)}.
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Hence, all hypotheses of Theorem 3.2 are satisfied (for δ = 2
3 and L = 0) and

0 is the unique common fixed point of A, B, S and T . One may notice that all the
mappings are discontinuous.

For A = B and S = T, Theorem 3.2 reduces to the following Corollary.

Corollary 3.5. Let A and T be self mappings of a GP -metric space (X,Gp).
If A satisfies generalized condition (B) associated with T, such that for all x, y ∈ X:

(1) TX ⊆ AX,
(2) δ + L < 1,

then the pair (A, T ) has a coincidence point. Further, A and T have a unique
common fixed point provided that the pair (A, T ) is weakly compatible.

Abbas et al. [1] presented two open problems:

I. Is Theorem 3.1 [1] valid for 1
2 6 δ < 1?

We provide two favourable answers in a non-complete GP -metric space assuming
(1) TX ⊂ AX,SX ⊂ BX, AX or BX to be closed and the pairs (A,S) and

(B, T ) to be weakly compatible. It is also demonstrated by an illustrative Example
3.1 that Theorem 3.1 is valid for δ = 1/2.

(2) the closure of range space TX or SX (TX ⊂ AX or SX ⊂ BX) and the
pairs (A,S) and (B, T ) to be weakly compatible. It is also demonstrated by an
illustrative Example 3.2 that Theorem 3.2 is valid for δ = 2/3.

II. Under what additional assumptions (Theorem 3.3, Berinde [10]), either on
f and T or on the domain of f and T, do the mappings f and T have common
fixed points ?
In a non-complete GP -metric space assuming

(1) TX ⊂ AX, AX to be closed and δ + L < 1, the weakly compatible pair
(A, T ) of self mappings has a unique common fixed point (taking f = A in Corollary
3.1).

(2) the closure of range space TX (TX ⊂ AX) and δ + L < 1, the weakly
compatible pair (A, T ) of self mappings has a unique common fixed point (taking
f = A in Corollary 3.5).

Hence, our both the Theorems 3.1 and 3.2 (Corollaries 3.1 and 3.5) extends the
results of Berinde [10] to two pairs (a pair) of self mappings in GP -metric spaces.

Remark 3.1. (i) Coincidence and unique common fixed point theorems have
been established for two pairs of self mappings satisfying generalized condition
(B) in a non-complete GP -metric space (X,Gp) without utilizing the notion of
continuity or its variants (Tomar and Karapinar [20]). However, a more natural
condition of closedness of the range space is assumed.

(ii) Generalized condition (B) does not reduce any metric condition as Gp is not
a metric. Consequently, our results also do not reduce to the existing coincidence
and common fixed point theorems in metric spaces.



COMMON FIXED POINT THEOREMS... 571

4. Application to Integral Equations

Now we solve following integral equation using Corollary 3.4:

(4.1) u(l) =

l∫
0

K(l, s, u(s))ds+ g(l),

where l ∈ [0, L], L > 0, K : [0, L]× [0, L]×R → R and g : R → R. Let X = [0, L].

Define Gp : X ×X ×X → R+ by

Gp(x, y, z) = supl∈[0,L]|x(l)− y(l)|+ supl∈[0,L]|y(l)− z(l)|+ supl∈[0,L]|z(l)− x(l)|.

Then (X,Gp) is a GP -metric space.

Theorem 4.1. Let T, A : [0, L] → [0, L] be self mappings of a GP -metric space
(X,Gp) such that:

(1) K1,K2 : [0, L]× [0, L]× R → R and g : R → R,
(2) there exists a function G : [0, L]× [0, L] → [0,+∞], such that

|K1(l, s, u(l))−K1(l, s, v(l)| 6 G(l, s)|Au−Av|,

for each u, v ∈ R and each l, s ∈ [0, L],

(3) supl∈[0,L]

l∫
0

G(l, s)ds 6 δ for some δ ∈ [0, 1),

(4) TX ⊂ AX and AX is closed,
(5) ATh = TAh, whenever Ah = Th for some h ∈ [0, L].

Then the integral equation (4.1) has a unique solution u ∈ [0, L].

Proof. Define T, A : X → X by

Tx(l) =

l∫
0

K1(l, s, x(s))ds+ g(l) and Ax(l) =

l∫
0

K2(l, s, x(s))ds+ g(l), l ∈ [0, L],

such that TX ⊂ AX and AX is closed. So,

Gp(Tx, Ty, Ty) = supl∈[0,L]|Tx(l)− Ty(l)|+ supl∈[0,L]|Tx(l)− Ty(l)|
= 2supl∈[0,L]|Tx(l)− Ty(l)|

= 2|
l∫

0

K1(l, s, x(s))ds−
l∫

0

K1(l, s, y(s))ds|

6 2

l∫
0

|K1(l, s, x(s))−K1(l, s, y(s))|ds

6 2

l∫
0

G(l, s)|Ax(s)−Ay(s)|ds
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6 2(supl∈[0,L]|Ax(s)−Ay(s)|)supl∈[0,L]

l∫
0

G(l, s)ds

= Gp(Ax,Ay,Ay)supl∈[0,L]

l∫
0

G(l, s)ds.

By hypotheses (3), we have Gp(Tx, Ty, Ty) 6 δGp(Ax,Ay,Ay). Also (A, T ) is
weakly compatible by (5). Thus, all the hypotheses of Corollary 3.4 are satisfied
and hence, there exists a unique common fixed point u ∈ [0, L] of A and T, i.e.,
there exists a unique solution u ∈ X of the integral equation (4.1). �

5. Application to Functional Equations Arising in Dynamic
Programming Problem

Let U and V be Banach spaces, W ⊂ U be a state space, D ⊂ V be a decision
space and R be the field of real numbers. Let X = B(W ) denotes the set of all
closed and bounded real valued functions on W. Consider the following functional
equation

(5.1) p(x) = supy∈D{g(x, y) +M(x, y, p(τ(x, y)))}, x ∈ W

where g : W × D → R and M : W × D × R → R are bounded functions. τ :
W × D → W represents transformation of the process and p(x) represents the
optimal return function with initial state x. Also, (B(W ), ∥.∥) is a Banach space
wherein convergence is uniform.

Define Gp : X × X × X → R+ by Gp(x, y, z) = max{d(x, y), d(y, z), d(z, x)},
where d : X ×X → R+ is defined as d(x, y) = supt∈W (|x(t)− y(t)|), then (X,Gp)
are GP -metric spaces.

Now we prove the existence and uniqueness of the solution of the functional
equation (5.1) in a GP -metric space using Corollary 3.4.

Theorem 5.1. Let T,A : B(W ) → B(W ) be self mappings of a GP -metric
space (B(W ), Gp). If there exists a δ ∈ [0, 1) such that for every (x, y) ∈ W ×D,
Ah1, Ah2 ∈ B(W ) and t ∈ W :

(1) |M(x, y,Ah1(t))−M(x, y,Ah2(t))| 6 δ|Ah1(t)−Ah2(t)| holds,
(2) g : W ×D → R and M : W ×D × R → R are bounded functions,
(3) ATh = TAh, whenever Ah = Th, for some h ∈ B(W ),
(4) T{B(W )} ⊂ A{B(W )} and A{B(W )} is closed,

then the functional equation

(5.2) Thi(x) = sup
y∈D

{g(x, y) +M(x, y,Ahi(τ(x, y)))}, x, y ∈ W, i = 1, 2

has a unique bounded solution in B(W ).

Proof. By hypothesis (3), the pair (A, T ) is weakly compatible. Let λ be
an arbitrary positive real number and Ah1, Ah2 ∈ B(W ). For x ∈ W, we choose
y1, y2 ∈ D so that

(5.3) T (h1(x)) < g(x, y1) +M(x, y1, Ah1(τ1)) + λ,
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(5.4) T (h2(x)) < g(x, y2) +M(x, y2, Ah2(τ2)) + λ,

where τ1 = τ(x, y1) and τ2 = τ(x, y2). From the definition of the mapping T, we
have

(5.5) T (h1(x)) > g(x, y2) +M(x, y2, Ah1(τ2)),

(5.6) T (h2(x)) > g(x, y1) +M(x, y1, Ah2(τ1)).

Now, from (5.3) and (5.6), we obtain

T (h1(x))− T (h2(x)) < M(x, y1, Ah1(τ1))−M(x, y1, Ah2(τ1)) + λ

6 |M(x, y1, Ah1(τ1))−M(x, y1, Ah2(τ1))|+ λ

6 δ|Ah1(x)−Ah2(x)|+ λ.

Similarly, from (5.4) and (5.5), we obtain

T (h2(x))− T (h1(x)) 6 δ|Ah1(x)−Ah2(x)|+ λ.

Hence, we have

(5.7) |T (h1(x))− T (h2(x))| 6 δ|Ah1(x)−Ah2(x)|+ λ.

Since the inequality (5.7) is true for all x ∈ W and arbitrary λ > 0, then we have

Gp(Th1, Th2, Th2) 6 δGp(Ah1, Ah2, Ah2).

Thus, using (4) all the conditions of Corollary 3.4 are satisfied and hence, the
mappings, A and T have a unique common fixed point, i.e., the functional equation
(5.1) has a unique bounded solution. �

Conclusion. In GP -metric spaces, the generalized condition (B) is introduced
to establish coincidence and common fixed point for two discontinuous weakly com-
patible pairs using more natural condition of closedness of the range space. It
is worth mentioning here that weak compatibility is still the minimal and most
widely used notion among all weaker modifications of commutativity (Singh and
Tomar [19]). Further, we postulated two more favorable answers to each of the two
open problems presented by Abbas et al. [1] regarding the existence of common
fixed point. In the end obtained results are exploited to establish the existence and
uniqueness of a solution of the integral equation and the functional equation.
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[2] M. Abbas and D. Ilić. Common fixed points of generalized almost nonexpansive mappings.
Filomat, 24(3)(2010), 11–18.

[3] M. Abbas, T. Nazir and P. Vetro. Common fixed point results for three maps in G-metric
spaces. Filomat, 25(4)(2011), 1–17.

[4] H. Aydi, N. Bilgili and E. Karapinar. Common fixed point results from quasi-metric spaces
to G-metric spaces. J. Egyptian Math. Soc., 23(2015), 356–361.



574 TOMAR, SHARMA, UPADHYAY, AND BELOUL
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