BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 8(2018), 553-559 DOI: 10.7251/BIMVI1803553J

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

λ_{μ} -CONNECTEDNESS IN GENERALIZED TOPOLOGICAL SPACES

Pon Jeyanthi, Periyadurai Nalayini, and Takashi Noiri

ABSTRACT. In this paper, we introduce the concept of λ_{μ} -connectedness in generalized topological spaces by means of λ_{μ} -open sets and investigate their properties.

1. Introduction

In 1997, Császár [2] introduced the concept of a generalization of topological spaces, which is a generalized topological space. A generalized topology (briefly GT) μ on a non-empty set X is a collection of subsets of X such that $\phi \in \mu$ and μ is closed under arbitrary union. Elements of μ are called μ -open sets. A set X with a GT μ is called a generalized topological space (briefly GTS), denoted by (X, μ) . If A is a subset of (X, μ) , then $c_{\mu}(A)$ is the smallest μ -closed set containing A and $i_{\mu}(A)$ is the largest μ -open set contained in A. Clearly, A is μ -open if and only if $A = i_{\mu}(A)$ and A is μ -closed if and only if $A = c_{\mu}(A)$ [4, 3]. A GTS (X, μ) is called a strong generalized topological space if $X \in \mu$. The concept of γ -connectedness was also introduced by Császár, further studied by several authors including Shen [10] and Baskaran et al. [1]. In this paper, we introduce the concept of $*\lambda_{\mu}$ -connectedness in generalized topological spaces and give some characterizations of these spaces.

DEFINITION 1.1. ([6]) Let (X, μ) be a GTS and $A \subseteq X$. Then the subsets $\wedge_{\mu}(A)$ and $\vee_{\mu}(A)$ are defined as follows:

 $\wedge_{\mu}(A) = \begin{cases} \cap \{G : A \subseteq G, G \in \mu\} & \text{if there exists } G \in \mu \text{ such that } A \subseteq G; \\ X & \text{otherwise.} \end{cases}$

²⁰¹⁰ Mathematics Subject Classification. Primary 54 A 05.

Key words and phrases. λ_{μ} -separateness, λ_{μ} -connectedness, λ_{μ} -closed, λ_{μ} -open.

and

$$\vee_{\mu}(A) = \begin{cases} \cup \{H : H \subseteq A, H^c \in \mu\} & \text{if there exists } H^c \in \mu \text{ such that } H \subseteq A; \\ \emptyset & \text{otherwise.} \end{cases}$$

DEFINITION 1.2. ([6]) In a GTS (X, μ) , a subset B is called a \wedge_{μ} -set (resp. \vee_{μ} -set) if $B = \wedge_{\mu}(B)$ (resp. $B = \vee_{\mu}(B)$).

DEFINITION 1.3. ([9]) A subset A of a GTS (X, μ) is said to be λ_{μ} -closed set if $A = T \cap C$, where T is a \wedge_{μ} -set and C is a μ -closed set. The complement of a λ_{μ} -closed set is called a λ_{μ} -open set.

For $A \subseteq X$, we denote by $c_{*\lambda_{\mu}}(A)$ the intersection of all $*\lambda_{\mu}$ -closed subsets of X containing A.

DEFINITION 1.4. ([8]) Let (X, μ) be a GTS. A subset A of X is called a \wedge_{μ} -set if $A = \wedge_{\mu} (A)$, where $\wedge_{\mu} (A) = \cap \{G : A \subset G, G \in \lambda_{\mu} O(X, \mu)\}.$

DEFINITION 1.5. A subset A of a GTS (X, μ) is called a λ_{μ} -closed set if $A = T \cap C$, where T is a λ_{μ} -set and C is λ_{μ} -closed. The complement of a λ_{μ} -closed set is called a λ_{μ} -open set.

We denote the collection of all λ_{μ} -open (resp. λ_{μ} -closed, $*\lambda_{\mu}$ -open. $*\lambda_{\mu}$ -closed) sets of X by $\lambda_{\mu}O(X,\mu)$ (resp. $\lambda_{\mu}C(X,\mu)$, $*\lambda_{\mu}O(X,\mu)$, $*\lambda_{\mu}C(X,\mu)$).

DEFINITION 1.6. A GTS (X, μ) is μ -connected [10] (γ -connected [5]) if there are no non-empty disjoint sets $U, V \in \mu$ such that $U \cup V = X$.

DEFINITION 1.7. ([1]) Two subsets A and B in a GTS (X, μ) are said to be μ -separated if and only if $A \cap c_{\mu}(B) = \emptyset$ and $B \cap c_{\mu}(A) = \emptyset$.

DEFINITION 1.8. ([7]) If (X, μ) is a GTS and Y is a subset of X, then the collection $\mu|_Y = \{U \cap Y : U \in \mu\}$ is a GT on Y called the subspace generalized topology and $(Y, \mu|_Y)$ is the subspace of X.

2. $^*\lambda_{\mu}$ -Separateness

In this section, we introduce the notion of λ_{μ} -separated sets and discuss its properties.

DEFINITION 2.1. Two subsets A and B of a GTS (X, μ) are said to be λ_{μ} separated if and only if $A \cap c_{\lambda_{\mu}}(B) = \emptyset$ and $c_{\lambda_{\mu}}(A) \cap B = \emptyset$.

From the fact that $c_{*\lambda_{\mu}}(A) \subseteq c_{\mu}(A)$, for every subset A of (X,μ) , every μ -separated set is $*\lambda_{\mu}$ -separated. But the converse may not be true as shown in the following example.

EXAMPLE 2.1. Let X = R and $\mu = \{\emptyset, Q\}$, where R and Q denote the set of all real numbers and rational numbers, respectively. The family of all $*\lambda_{\mu}$ closed sets is $\{\emptyset, Q, R \setminus Q, R\}$. Then $Q \cap c_{*\lambda_{\mu}}(R \setminus Q) = c_{*\lambda_{\mu}}(Q) \cap (R \setminus Q) = \emptyset$ but $c_{\mu}(Q) \cap (R \setminus Q) \neq \emptyset$. Hence Q and $R \setminus Q$ are $*\lambda_{\mu}$ -separated but not μ -separated.

REMARK 2.1. Since $A \cap B \subseteq A \cap c_{*\lambda_{\mu}}(B)$, $*\lambda_{\mu}$ -separated sets are always disjoint. The converse may not be true in general. \Box

EXAMPLE 2.2. Let X = R and $\mu = \{\emptyset, Q\}$. The subsets $\{\sqrt{2}, \sqrt{3}\}, \{\sqrt{5}, \sqrt{7}\}$ are disjoint but not $*\lambda_{\mu}$ -separated.

THEOREM 2.1. Let A and B be non-empty subsets in a GTS (X, μ) . The following statements are hold:

(i) If A and B are $*\lambda_{\mu}$ -separated, $A_1 \subseteq A$ and $B_1 \subseteq B$, then A_1 and B_1 are also $*\lambda_{\mu}$ -separated.

(ii) If A and B are $^*\lambda_{\mu}$ -closed sets such that $A \cap B = \emptyset$, then A and B are $^*\lambda_{\mu}$ -separated.

(iii) If A and B are $^*\lambda_{\mu}$ -open, $H = A \cap (X \setminus B)$ and $G = B \cap (X \setminus A)$, then H and G are $^*\lambda_{\mu}$ -separated.

PROOF. (i) Since $A_1 \subseteq A$, $c_{*\lambda_{\mu}}(A_1) \subseteq c_{*\lambda_{\mu}}(A)$. Therefore $B \cap c_{*\lambda_{\mu}}(A) = \emptyset$ implies $B_1 \cap c_{*\lambda_{\mu}}(A) = \emptyset$ and $B_1 \cap c_{*\lambda_{\mu}}(A_1) = \emptyset$. Similarly $A_1 \cap c_{*\lambda_{\mu}}(B_1) = \emptyset$. Hence A_1 and B_1 are $*\lambda_{\mu}$ -separated.

(ii) Since A and B are ${}^*\lambda_{\mu}$ -closed, $A = c_{{}^*\lambda_{\mu}}(A)$ and $B = c_{{}^*\lambda_{\mu}}(B)$. Now $A \cap B = \emptyset$ implies $c_{{}^*\lambda_{\mu}}(A) \cap B = \emptyset$ and $c_{{}^*\lambda_{\mu}}(B) \cap A = \emptyset$. Hence A and B are ${}^*\lambda_{\mu}$ -separated.

(iii) Since $H \subseteq (X \setminus B)$, $c_{*\lambda_{\mu}}(H) \subseteq c_{*\lambda_{\mu}}(X \setminus B) = X \setminus B$ and hence $c_{*\lambda_{\mu}}(H) \cap B = \emptyset$. Also $G \subseteq B$ implies $c_{*\lambda_{\mu}}(H) \cap G = \emptyset$. Similarly, $H \cap c_{*\lambda_{\mu}}(G) = \emptyset$. Hence H and G are $*\lambda_{\mu}$ -separated.

COROLLARY 2.1. Let A and B be non-empty sets in a GTS (X, μ) . The following statements are hold:

(i) If A and B are $*\lambda_{\mu}$ -open sets such that $A \cap B = \emptyset$, then A and B are $*\lambda_{\mu}$ -separated.

(ii) If A and B are λ_{μ} -closed, $H = A \cap (X \setminus B)$ and $G = B \cap (X \setminus A)$, then H and G are λ_{μ} -separated.

THEOREM 2.2. The subsets A and B of a GTS (X, μ) are λ_{μ} -separated if and only if there exist $U, V \in \lambda_{\mu}O(X, \mu)$ such that $A \subseteq U, B \subseteq V$ and $A \cap V = \emptyset$, $B \cap U = \emptyset$.

PROOF. Let A and B be ${}^*\lambda_{\mu}$ -separated sets. Let $V = X \setminus c_{{}^*\lambda_{\mu}}(A)$ and $U = X \setminus c_{{}^*\lambda_{\mu}}(B)$. Then $U, V \in {}^*\lambda_{\mu}O(X, \mu)$ such that $A \subset U$, $B \subseteq V$ and $A \cap V = \emptyset$, $B \cap U = \emptyset$. On the other hand, let $U, V \in {}^*\lambda_{\mu}O(X, \mu)$ such that $A \subseteq U$, $B \subseteq V$ and $A \cap V = \emptyset$, $B \cap U = \emptyset$. Since $X \setminus V$ and $X \setminus U$ are ${}^*\lambda_{\mu}$ -closed, $c_{{}^*\lambda_{\mu}}(A) \subseteq c_{{}^*\lambda_{\mu}}(X \setminus V) = X \setminus V \subseteq X \setminus B$. Thus, $c_{{}^*\lambda_{\mu}}(A) \cap B = \emptyset$. Similarly, $A \cap c_{{}^*\lambda_{\mu}}(B) = \emptyset$. Hence A and B are ${}^*\lambda_{\mu}$ -separated sets.

3. $^*\lambda_{\mu}$ -Connectedness

In this section, we introduce the notion of λ_{μ} -connectedness and discuss their properties.

DEFINITION 3.1. A subset S of a GTS (X, μ) is said to be λ_{μ} -connected if there exist no λ_{μ} -separated subsets A and B and $S = A \cup B$. Otherwise S is said to be λ_{μ} -disconnected.

It is clear that each λ_{μ} -connected set is μ -connected. The converse may not be true in general as shown in the following example. In other world, each μ disconnected is λ_{μ} -disconnected.

EXAMPLE 3.1. Let X = [1,2] and $\mu = \{\emptyset, \{1\}, \{1,2\}\}$. The family of all $*\lambda_{\mu}$ -closed sets is $\{\emptyset, \{1\}, \{2\}, \{1,2\}, (1,2), (1,2), (1,2], [1,2]\}$. Thus, $\{1,2\}$ is μ -connected but not $*\lambda_{\mu}$ -separated.

THEOREM 3.1. A GTS (X, μ) is λ_{μ} -disconnected if and only if there exists a non-empty proper λ_{μ} -clopen subset.

PROOF. Assume that (X, μ) is $*\lambda_{\mu}$ -disconnected. There exist $*\lambda_{\mu}$ -separated sets A and B such that $A \cup B = X$, $A \cap B = \emptyset$. Hence $A = X \setminus B$ and $B = X \setminus A$. Since $A \cup B = X$ and $B \subseteq c_{*\lambda_{\mu}}(B)$, $X \subseteq A \cup c_{*\lambda_{\mu}}(B)$. But $A \cup c_{*\lambda_{\mu}}(B) \subseteq X$. Thus, $A \cup c_{*\lambda_{\mu}}(B) = X$. We have $A \cap c_{*\lambda_{\mu}}(B) = \emptyset$ and $B \cap c_{*\lambda_{\mu}}(A) = \emptyset$ which implies $A = X \setminus c_{*\lambda_{\mu}}(B)$ and $B = X \setminus c_{*\lambda_{\mu}}(A)$. Since $c_{*\lambda_{\mu}}(A)$ and $c_{*\lambda_{\mu}}(B)$ are $*\lambda_{\mu}$ -closed, $X \setminus c_{*\lambda_{\mu}}(A)$ and $X \setminus c_{*\lambda_{\mu}}(B)$ are $*\lambda_{\mu}$ -open. Thus, A and B are $*\lambda_{\mu}$ -open. Since $A = X \setminus B$ and $B = X \setminus A$, A and B are $*\lambda_{\mu}$ -closed. Conversely, assume that there exists non-empty proper $*\lambda_{\mu}$ -clopen subset A of X. Let $B = X \setminus A$. Then $A \cap B = \emptyset$ and $A \cup B = X$. Since $A \cap B = \emptyset$, $c_{*\lambda_{\mu}}(A) \cap B = \emptyset$ and $A \cap c_{*\lambda_{\mu}}(B) = \emptyset$. Thus, A and B are $*\lambda_{\mu}$ -separated. Hence (X, μ) is $*\lambda_{\mu}$ -disconnected. \Box

THEOREM 3.2. A GTS (X, μ) is λ_{μ} -disconnected if and only if any one of the following statements holds:

(i) X is the union of two non-empty disjoint λ_{μ} -open sets.

(ii) X is the union of two non-empty disjoint λ_{μ} -closed sets.

PROOF. Assume that (X, μ) is λ_{μ} -disconnected. By Theorem 3.1, there exists a non-empty proper λ_{μ} -clopen subset A of X. Also, $A \cup (X \setminus A) = X$. Hence Aand $X \setminus A$ satisfy the conditions (i) and (ii). Conversely, assume that $A \cup B = X$ and $A \cap B = \emptyset$, where A and B are non-empty λ_{μ} -open sets. Then $A = X \setminus B$ is λ_{μ} -closed. Since B is non-empty, A is a proper subset of X. Thus, A is a nonempty proper λ_{μ} -clopen subset of X. By Theorem 3.1, X is λ_{μ} -disconnected. Let $X = C \cup D$ and $C \cap D = \emptyset$, where C and D are non-empty λ_{μ} -closed sets. Then $C = X \setminus D$ so that C is λ_{μ} -open. Since D is non-empty, C is a proper λ_{μ} -clopen subset of X. By Theorem 3.1, X is λ_{μ} -disconnected.

THEOREM 3.3. If E is a ${}^*\lambda_{\mu}$ -connected subset of a GTS (X, μ) such that $E \subseteq A \cup B$, where A and B are ${}^*\lambda_{\mu}$ -separated sets, then either $E \subseteq A$ or $E \subseteq B$.

PROOF. Since A and B are λ_{μ} -separated sets, $A \cap c_{*\lambda_{\mu}}(B) = \emptyset$ and $B \cap c_{*\lambda_{\mu}}(A) = \emptyset$. $E \subseteq A \cup B$ implies $E = E \cap (A \cup B) = (E \cap A) \cup (E \cap B)$. Suppose $E \cap A \neq \emptyset$ and $E \cap B \neq \emptyset$. Then $(E \cap A) \cap c_{*\lambda_{\mu}}(E \cap B) \subseteq (E \cap A) \cap (c_{*\lambda_{\mu}}(E) \cap c_{*\lambda_{\mu}}(B)) = (E \cap c_{*\lambda_{\mu}}(E)) \cap (A \cap c_{*\lambda_{\mu}}(B)) = \emptyset$. Similarly, $(E \cap B) \cap c_{*\lambda_{\mu}}(E \cap A) = \emptyset$.

Hence $E \cap A$ and $E \cap B$ are ${}^*\lambda_{\mu}$ -separated. Thus, E is ${}^*\lambda_{\mu}$ -disconnected, which is a contradiction. Hence at least one of the sets $E \cap A$ and $E \cap B$ is empty. If $E \cap A = \emptyset$, then $E = E \cap B$ which implies that $E \subseteq B$. Similarly if $E \cap B = \emptyset$, then $E \subseteq A$. Therefore, either $E \subseteq A$ or $E \subseteq B$.

COROLLARY 3.1. If E is a $*\lambda_{\mu}$ -connected subset of a GTS (X, μ) such that $E \subseteq A \cup B$, where A and B are disjoint $*\lambda_{\mu}$ -open (resp, $*\lambda_{\mu}$ -closed) subsets of X, then A and B are $*\lambda_{\mu}$ -separated.

PROOF. Since $A \subseteq X \setminus B$, $c_{*\lambda_{\mu}}(A) \subseteq c_{*\lambda_{\mu}}(X \setminus B) = X \setminus B$. Thus, $B \cap c_{*\lambda_{\mu}}(A) = \emptyset$. Similarly, $A \cap c_{*\lambda_{\mu}}(B) = \emptyset$. Hence A and B are $*\lambda_{\mu}$ -separated. \Box

THEOREM 3.4. If E is a λ_{μ} -connected subset of a GTS (X, μ) and C is a subset such that $E \subseteq C \subseteq c_{\lambda_{\mu}}(E)$, then C is also λ_{μ} -connected.

PROOF. Suppose that C is not ${}^*\lambda_{\mu}$ -connected. There exist ${}^*\lambda_{\mu}$ -separated sets A and B such that $C = A \cup B$. Since $E \subseteq C$, $E \subseteq A \cup B$. By Theorem 3.3, $E \subseteq A$ or $E \subseteq B$. Let $E \subseteq A$, then $c_{*\lambda_{\mu}}(E) \subseteq c_{*\lambda_{\mu}}(A)$ which implies $c_{*\lambda_{\mu}}(E) \cap B \subseteq c_{*\lambda_{\mu}}(A) \cap B = \emptyset$. Since $C \subseteq c_{*\lambda_{\mu}}(E)$, $B \subseteq C \subseteq c_{*\lambda_{\mu}}(E)$ and hence $c_{*\lambda_{\mu}}(E) \cap B = B$. Thus, $c_{*\lambda_{\mu}}(E) \cap B = \emptyset$ and $c_{*\lambda_{\mu}}(E) \cap B = B$ imply $B = \emptyset$. Similarly, if we consider $E \subseteq B$, we obtain $A = \emptyset$, which contradicts A and B are non-empty. Therefore C is ${}^*\lambda_{\mu}$ -connected.

COROLLARY 3.2. If E is a λ_{μ} -connected subset of a GTS (X, μ) , $c_{\lambda_{\mu}}(E)$ is also λ_{μ} -connected.

PROOF. This is obvious by Theorem 3.4.

THEOREM 3.5. Let E be a subset of a GTS (X, μ) . If any two points of E are contained in some λ_{μ} -connected subset of E, E is a λ_{μ} -connected subset of X.

PROOF. Suppose E is not $*\lambda_{\mu}$ -connected. Then there exist non-empty subsets A and B of X such that $A \cap c_{*\lambda_{\mu}}(B) = \emptyset$, $B \cap c_{*\lambda_{\mu}}(A) = \emptyset$ and $E = A \cup B$. Since A, B are non-empty, there exists a point $a \in A$ and a point $b \in B$. By hypothesis, a and b must be contained in some $*\lambda_{\mu}$ -connected subset F of E. Since $F \subseteq A \cup B$ and F is $*\lambda_{\mu}$ -connected, either $F \subseteq A$ or $F \subseteq B$. It follows that either $a, b \in A$ or $a, b \in B$. Let $a, b \in A$. Then $A \cap B \neq \emptyset$, which is a contradiction. Hence E is a $*\lambda_{\mu}$ -connected subset of X.

THEOREM 3.6. The union of any family of λ_{μ} -connected sets having a nonempty intersection is a λ_{μ} -connected set.

PROOF. Let $\{E_{\alpha}\}$ be any family of λ_{μ} -connected sets such that $\cap\{E_{\alpha}\} \neq \emptyset$. Let $E = \cup\{E_{\alpha}\}$. Suppose E is not λ_{μ} -connected. Therefore, there exist λ_{μ} -separated sets A and B such that $E = A \cup B$. Since $\cap\{E_{\alpha}\} \neq \emptyset$, $x \in \cap\{E_{\alpha}\}$. Then x belongs to each E_{α} and so $x \in E$. Consequently, $x \in A$ or $x \in B$. Without loss of generality, assume that $x \in A$. Then $E_{\alpha} \subseteq A$ for each α . Hence $\cup E_{\alpha} \subseteq A$ and so $E \subseteq A$. Thus, $A \cup B \subseteq A$. Therefore A = E which implies $B = \emptyset$ which is a contradiction. Thus, E is λ_{μ} -connected. THEOREM 3.7. The union of any family of λ_{μ} -connected subsets of a GTS (X, μ) with the property that one of the members of the family, intersects every other members is a λ_{μ} -connected set.

PROOF. Let $\{E_{\alpha}\}$ be any family of λ_{μ} -connected sets of a GTS (X, μ) with the property that one of the member say, E_{α_0} intersects every other members. By Theorem 3.6, $E_{\alpha_0} \cup E_{\alpha}$ is λ_{μ} -connected. Now, let E_{α_p} and E_{α_q} be any two members of the family. Then $E_{\alpha_0} \cap E_{\alpha_p} \neq \emptyset$, $E_{\alpha_0} \cap E_{\alpha_q} \neq \emptyset$ and hence $(E_{\alpha_0} \cap E_{\alpha_p}) \cup (E_{\alpha_0} \cap E_{\alpha_q}) = E_{\alpha_0} \cup (E_{\alpha_p} \cap E_{\alpha_q}) \neq \emptyset$. By Theorem 3.6, $\cup (E_{\alpha_0} \cap E_{\alpha})$ for each α is λ_{μ} -connected. Hence $\cup E_{\alpha}$ is λ_{μ} -connected.

THEOREM 3.8. If $A \subseteq B \cup C$ such that A is a non-empty λ_{μ} -connected set in a GTS (X, μ) and B, C are λ_{μ} -separated, then one of the following conditions holds:

(i) $A \subseteq B$ and $A \cap C = \emptyset$.

(ii) $A \subseteq C$ and $A \cap B = \emptyset$.

PROOF. This is obvious by Theorem 3.3.

DEFINITION 3.2. Let (X, μ) and (X, μ') be two GTS. A mapping $f : (X, \mu) \to (Y, \mu')$ is said to be $(*\lambda_{\mu}, \mu')$ -continuous if for each μ' -open set $V, f^{-1}(V)$ is $*\lambda_{\mu}$ -open.

THEOREM 3.9. Let $f : (X, \mu) \to (Y, \mu')$ be a $(*\lambda_{\mu}, \mu')$ -continuous function. If K is $*\lambda_{\mu}$ -connected in X, then f(K) is μ' -connected in Y.

PROOF. Suppose that f(K) is μ' -disconnected in Y. There exist μ' -separated sets G and H of Y such that $f(K) = G \cup H$. Set $A = K \cap f^{-1}(G)$ and $B = K \cap f^{-1}(H)$. Since $f(K) = G \cup H$, $K \cap f^{-1}(G) \neq \emptyset$ and hence $A \neq \emptyset$. Similarly, $B \neq \emptyset$. Now, $A \cap B = (K \cap f^{-1}(G)) \cap (K \cap f^{-1}(H)) = K \cap (f^{-1}(G) \cap f^{-1}(H)) =$ $K \cap (f^{-1}(G \cap H)) = \emptyset$. Thus, $A \cap B = \emptyset$ and $A \cup B = K$. Now, $A \cap c_{*\lambda_{\mu}}(B) \subseteq$ $f^{-1}(G) \cap c_{*\lambda_{\mu}}(f^{-1}(H))$. Since f is $(*\lambda_{\mu}, \mu')$ -continuous, $A \cap c_{*\lambda_{\mu}}(B) \subseteq f^{-1}(G) \cap$ $f^{-1}(c_{\mu'}(H)) \subseteq f^{-1}(G \cap c_{\mu'}(H)) = \emptyset$. Therefore, $A \cap c_{*\lambda_{\mu}}(B) = \emptyset$. Similarly, $B \cap c_{*\lambda_{\mu}}(A) = \emptyset$. Thus, A and B are $*\lambda_{\mu}$ -separated in X which is a contradiction. Therefore f(K) is μ' -connected in Y.

COROLLARY 3.3. Let $f: (X, \mu) \to (Y, \mu')$ be a $(*\lambda_{\mu}, \mu')$ -continuous surjection. If K is μ' -disconnected in Y, then $f^{-1}(K)$ is $*\lambda_{\mu}$ -disconnected in X.

PROOF. Let $f^{-1}(K)$ be not $*\lambda_{\mu}$ -disconnected in X. Then $f^{-1}(K)$ is $*\lambda_{\mu}$ connected in X and by Theorem 3.10, $f(f^{-1}(K)) = K$ is μ' -connected. Hence K
is not μ' -disconnected in Y. Therefore, the proof is completed.

Acknowledgement

We would like to thank the referees for his suggestions to improve the presentation of the paper.

References

- R. Baskaran, M. Murugalingam and D. Sivaraj. Separated sets in generalized topological spaces. J. Adv. Res. Pure Math., 2(1)(2010), 74–83.
- [2] Á. Császár. Generalized open sets. Acta Math.Hungar., 75(1-2) (1997), 65-87.
- [3] Á. Császár. On the γ-interior and γ-closure of a set. Acta Math.Hungar., 80(1-2) (1998), 89–93.
- [4] Á. Császár. Generalized open sets in generalized topologies. Acta Math. Hungar., 106(1-2)(2005), 53-66.
- [5] Á. Császár. γ-connected spaces. Acta Math.Hungar., 101(4)(2003), 273–279.
- [6] E. Ekici and B. Roy. New generalized topologies on generalized topological spaces due to Császár. Acta Math.Hungar., 132(1-2) (2011), 117–124.
- [7] J. Li. Generalized topologies generated by subbases. Acta Math. Hungar., 114 (1-2)(2007), 1–12.
- [8] P. Jeyanthi, P. Nalayini and T. Noiri. $^* \wedge_{\mu^-}$ sets and $^* \vee_{\mu^-}$ sets in generalized topological spaces. Bol. Soc. Paran. Mat. (3s), **35**(1)(2017), 33–41.
- B. Roy and E. Ekici. On (Λ, μ)-closed sets in generalized topological spaces. Methods Func. Anal. Top., 17(2)(2011), 174–179.
- [10] R. X. Shen. A note on generalized connectedness. Acta Math.Hungar., 122(3)(2009), 231– 235.

Received by editors 07.10.2017; Revised version 01.10.2018; Available online 15.10.2018.

Pon Jeyanthi. Research Centre, Department of Mathematics, Govindammal Adita-Nar College for Women, Tiruchendur-628 215, Tamil Nadu, India.

$E\text{-}mail\ address:\ jeyajeyanthi@rediffmail.com$

PERIYADURAI NALAYINI. RESEARCH SCHOLAR, REG. NO: 11769, RESEARCH CENTRE, DE-PARTMENT OF MATHEMATICS, GOVINDAMMAL ADITANAR COLLEGE FOR WOMEN, TIRUCHENDUR-628 215, AFFILIATED TO MANONMANIAM SUNDARANAR UNIVERSITY, ABISHEKAPPATTI, TIRUNELVELI-627012, TAMILNADU, INDIA.

E-mail address: nalayini4@gmail.com

Takashi Noiri. Hinagu, Yatsushiro - shi, Kumamoto - ken, 869-5142 Japan *E-mail address*: t.noiri@nifty.com