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∗λµ-CONNECTEDNESS IN GENERALIZED

TOPOLOGICAL SPACES

Pon Jeyanthi, Periyadurai Nalayini, and Takashi Noiri

Abstract. In this paper, we introduce the concept of ∗λµ-connectedness in
generalized topological spaces by means of ∗λµ-open sets and investigate their

properties.

1. Introduction

In 1997, Császár [2] introduced the concept of a generalization of topological
spaces, which is a generalized topological space. A generalized topology (briefly
GT) µ on a non-empty set X is a collection of subsets of X such that ϕ ∈ µ and µ
is closed under arbitrary union. Elements of µ are called µ-open sets. A set X with
a GT µ is called a generalized topological space (briefly GTS), denoted by (X,µ).
If A is a subset of (X,µ), then cµ(A) is the smallest µ-closed set containing A and
iµ(A) is the largest µ-open set contained in A. Clearly, A is µ-open if and only if
A = iµ(A) and A is µ-closed if and only if A = cµ(A) [4, 3]. A GTS (X,µ) is called
a strong generalized topological space if X ∈ µ. The concept of γ-connectedness
was also introduced by Császár, further studied by several authors including Shen
[10] and Baskaran et al. [1]. In this paper, we introduce the concept of ∗λµ-
connectedness in generalized topological spaces and give some characterizations of
these spaces.

Definition 1.1. ([6]) Let (X,µ) be a GTS and A ⊆ X. Then the subsets
∧µ(A) and ∨µ(A) are defined as follows:

∧µ(A) =

{
∩{G : A ⊆ G,G ∈ µ} if there exists G ∈ µ such that A ⊆ G;

X otherwise.
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and

∨µ(A) =

{
∪{H : H ⊆ A,Hc ∈ µ} if there exists Hc ∈ µ suchthat H ⊆ A;

∅ otherwise.

Definition 1.2. ([6]) In a GTS (X,µ), a subset B is called a ∧µ-set (resp.
∨µ-set) if B = ∧µ(B) (resp. B = ∨µ(B)).

Definition 1.3. ([9]) A subset A of a GTS (X,µ) is said to be λµ-closed set
if A = T ∩ C, where T is a ∧µ-set and C is a µ-closed set. The complement of a
λµ-closed set is called a λµ-open set.

For A ⊆ X, we denote by c∗λµ (A) the intersection of all ∗λµ−closed subsets of
X containing A.

Definition 1.4. ([8]) Let (X,µ) be a GTS. A subset A of X is called a ∗∧µ-set
if A =∗ ∧µ (A), where ∗ ∧µ (A) = ∩{G : A ⊂ G,G ∈ λµO(X,µ)}.

Definition 1.5. A subset A of a GTS (X,µ) is called a ∗λµ-closed set if
A = T ∩ C, where T is a ∗∧µ-set and C is λµ-closed. The complement of a ∗λµ-
closed set is called a ∗λµ-open set.

We denote the collection of all λµ-open (resp.λµ-closed,
∗λµ-open.

∗λµ-closed)
sets of X by λµO(X,µ) (resp.λµC(X,µ), ∗λµO(X,µ), ∗λµC(X,µ)).

Definition 1.6. A GTS (X,µ) is µ-connected [10] (γ-connected [5]) if there
are no non-empty disjoint sets U, V ∈ µ such that U ∪ V = X.

Definition 1.7. ([1]) Two subsets A and B in a GTS (X,µ) are said to be
µ-separated if and only if A ∩ cµ(B) = ∅ and B ∩ cµ(A) = ∅.

Definition 1.8. ([7]) If (X,µ) is a GTS and Y is a subset of X, then the
collection µ|Y = {U ∩ Y : U ∈ µ} is a GT on Y called the subspace generalized
topology and (Y, µ|Y ) is the subspace of X.

2. ∗λµ-Separateness

In this section, we introduce the notion of ∗λµ-separated sets and discuss its
properties.

Definition 2.1. Two subsets A and B of a GTS (X,µ) are said to be ∗λµ-
separated if and only if A ∩ c∗λµ(B) = ∅ and c∗λµ(A) ∩B = ∅.

From the fact that c∗λµ(A) ⊆ cµ(A), for every subset A of (X,µ), every µ-
separated set is ∗λµ-separated. But the converse may not be true as shown in the
following example.

Example 2.1. Let X = R and µ = {∅, Q}, where R and Q denote the set
of all real numbers and rational numbers, respectively. The family of all ∗λµ-
closed sets is {∅, Q,R\Q,R}. Then Q ∩ c∗λµ(R\Q) = c∗λµ(Q) ∩ (R\Q) = ∅ but
cµ(Q) ∩ (R\Q) ̸= ∅. Hence Q and R\Q are ∗λµ-separated but not µ-separated.

�
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Remark 2.1. Since A∩B ⊆ A∩c∗λµ(B), ∗λµ-separated sets are always disjoint.
The converse may not be true in general. �

Example 2.2. Let X = R and µ = {∅, Q}. The subsets {
√
2,
√
3}, {

√
5,
√
7}

are disjoint but not ∗λµ-separated.

�
Theorem 2.1. Let A and B be non-empty subsets in a GTS (X,µ). The

following statements are hold:
(i) If A and B are ∗λµ-separated, A1 ⊆ A and B1 ⊆ B, then A1 and B1 are

also ∗λµ-separated.
(ii) If A and B are ∗λµ-closed sets such that A ∩ B = ∅, then A and B are

∗λµ-separated.
(iii) If A and B are ∗λµ-open, H = A ∩ (X\B) and G = B ∩ (X\A), then H

and G are ∗λµ-separated.

Proof. (i) Since A1 ⊆ A, c∗λµ
(A1) ⊆ c∗λµ

(A). Therefore B ∩ c∗λµ
(A) = ∅

implies B1 ∩ c∗λµ(A) = ∅ and B1 ∩ c∗λµ(A1) = ∅. Similarly A1 ∩ c∗λµ(B1) = ∅.
Hence A1 and B1 are ∗λµ-separated.

(ii) Since A and B are ∗λµ-closed, A = c∗λµ(A) and B = c∗λµ(B). Now
A ∩ B = ∅ implies c∗λµ(A) ∩ B = ∅ and c∗λµ(B) ∩ A = ∅. Hence A and B are
∗λµ-separated.

(iii) Since H ⊆ (X\B), c∗λµ(H) ⊆ c∗λµ(X\B) = X\B and hence c∗λµ(H) ∩
B = ∅. Also G ⊆ B implies c∗λµ(H) ∩G = ∅. Similarly, H ∩ c∗λµ(G) = ∅. Hence
H and G are ∗λµ-separated. �

Corollary 2.1. Let A and B be non-empty sets in a GTS (X,µ). The fol-
lowing statements are hold:

(i) If A and B are ∗λµ-open sets such that A ∩ B = ∅, then A and B are
∗λµ-separated.

(ii) If A and B are ∗λµ-closed, H = A ∩ (X\B) and G = B ∩ (X\A), then H
and G are ∗λµ-separated.

Theorem 2.2. The subsets A and B of a GTS (X,µ) are ∗λµ-separated if and
only if there exist U, V ∈ ∗λµO(X,µ) such that A ⊆ U , B ⊆ V and A ∩ V = ∅,
B ∩ U = ∅.

Proof. Let A and B be ∗λµ-separated sets. Let V = X\c∗λµ(A) and U =
X\c∗λµ(B). Then U, V ∈ ∗λµO(X,µ) such that A ⊂ U , B ⊆ V and A ∩ V = ∅,
B ∩ U = ∅. On the otherhand, let U, V ∈ ∗λµO(X,µ) such that A ⊆ U , B ⊆ V
and A ∩ V = ∅, B ∩ U = ∅. Since X\V and X\U are ∗λµ-closed, c∗λµ(A) ⊆
c∗λµ(X\V ) = X\V ⊆ X\B. Thus, c∗λµ(A) ∩ B = ∅. Similarly, A ∩ c∗λµ(B) = ∅.
Hence A and B are ∗λµ-separated sets. �

3. ∗λµ-Connectedness

In this section, we introduce the notion of ∗λµ-connectedness and discuss their
properties.
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Definition 3.1. A subset S of a GTS (X,µ) is said to be ∗λµ-connected if
there exist no ∗λµ-separated subsets A and B and S = A∪B. Otherwise S is said
to be ∗λµ-disconnected.

It is clear that each ∗λµ-connected set is µ-connected. The converse may not
be true in general as shown in the following example. In other world, each µ-
disconnected is ∗λµ-disconnected.

Example 3.1. Let X = [1, 2] and µ = {∅, {1}, {1, 2}}. The family of all
∗λµ-closed sets is {∅, {1}, {2}, {1, 2}, (1, 2), [1, 2), (1, 2], [1, 2]}. Thus, {1, 2} is µ-
connected but not ∗λµ-separated.

�
Theorem 3.1. A GTS (X,µ) is ∗λµ-disconnected if and only if there exists a

non-empty proper ∗λµ-clopen subset.

Proof. Assume that (X,µ) is ∗λµ-disconnected. There exist ∗λµ-separated
sets A and B such that A ∪ B = X, A ∩ B = ∅. Hence A = X\B and B = X\A.
Since A∪B = X and B ⊆ c∗λµ(B), X ⊆ A∪c∗λµ(B). But A∪c∗λµ(B) ⊆ X. Thus,
A ∪ c∗λµ(B) = X. We have A ∩ c∗λµ(B) = ∅ and B ∩ c∗λµ(A) = ∅ which implies
A = X\c∗λµ(B) and B = X\c∗λµ(A). Since c∗λµ(A) and c∗λµ(B) are ∗λµ-closed,
X\c∗λµ(A) and X\c∗λµ(B) are ∗λµ-open. Thus, A and B are ∗λµ-open. Since
A = X\B and B = X\A, A and B are ∗λµ-closed. Conversely, assume that there
exists non-empty proper ∗λµ-clopen subset A of X. Let B = X\A. Then A∩B = ∅
and A ∪B = X. Since A ∩B = ∅, c∗λµ(A) ∩B = ∅ and A ∩ c∗λµ(B) = ∅. Thus, A
and B are ∗λµ-separated. Hence (X,µ) is ∗λµ-disconnected. �

Theorem 3.2. A GTS (X,µ) is ∗λµ-disconnected if and only if any one of the
following statements holds:

(i) X is the union of two non-empty disjoint ∗λµ-open sets.
(ii) X is the union of two non-empty disjoint ∗λµ-closed sets.

Proof. Assume that (X,µ) is ∗λµ-disconnected. By Theorem 3.1, there exists
a non-empty proper ∗λµ-clopen subset A of X. Also, A ∪ (X\A) = X. Hence A
and X\A satisfy the conditions (i) and (ii). Conversely, assume that A ∪ B = X
and A ∩ B = ∅, where A and B are non-empty ∗λµ-open sets. Then A = X\B is
∗λµ-closed. Since B is non-empty, A is a proper subset of X. Thus, A is a non-
empty proper ∗λµ-clopen subset of X. By Theorem 3.1, X is ∗λµ-disconnected. Let
X = C ∪D and C ∩D = ∅, where C and D are non-empty ∗λµ-closed sets. Then
C = X\D so that C is ∗λµ-open. Since D is non-empty, C is a proper ∗λµ-clopen
subset of X. By Theorem 3.1, X is ∗λµ-disconnected. �

Theorem 3.3. If E is a ∗λµ-connected subset of a GTS (X,µ) such that E ⊆
A ∪B, where A and B are ∗λµ-separated sets, then either E ⊆ A or E ⊆ B.

Proof. Since A and B are ∗λµ-separated sets, A ∩ c∗λµ(B) = ∅ and B ∩
c∗λµ(A) = ∅. E ⊆ A ∪ B implies E = E ∩ (A ∪ B) = (E ∩ A) ∪ (E ∩ B). Suppose
E ∩ A ̸= ∅ and E ∩ B ̸= ∅. Then (E ∩ A) ∩ c∗λµ(E ∩ B) ⊆ (E ∩ A) ∩ (c∗λµ(E) ∩
c∗λµ(B)) = (E∩c∗λµ(E))∩(A∩c∗λµ(B)) = ∅. Similarly, (E∩B)∩c∗λµ(E∩A) = ∅.
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Hence E ∩ A and E ∩ B are ∗λµ-separated. Thus, E is ∗λµ-disconnected, which
is a contradiction. Hence at least one of the sets E ∩ A and E ∩ B is empty. If
E ∩ A = ∅, then E = E ∩ B which implies that E ⊆ B. Similarly if E ∩ B = ∅,
then E ⊆ A. Therefore, either E ⊆ A or E ⊆ B. �

Corollary 3.1. If E is a ∗λµ-connected subset of a GTS (X,µ) such that
E ⊆ A ∪B, where A and B are disjoint ∗λµ-open (resp, ∗λµ-closed) subsets of X,
then A and B are ∗λµ-separated.

Proof. Since A ⊆ X\B, c∗λµ(A) ⊆ c∗λµ(X\B) = X\B. Thus, B∩ c∗λµ(A) =
∅. Similarly, A ∩ c∗λµ(B) = ∅. Hence A and B are ∗λµ-separated. �

Theorem 3.4. If E is a ∗λµ-connected subset of a GTS (X,µ) and C is a
subset such that E ⊆ C ⊆ c∗λµ(E), then C is also ∗λµ-connected.

Proof. Suppose that C is not ∗λµ-connected. There exist ∗λµ-separated sets
A and B such that C = A∪B. Since E ⊆ C, E ⊆ A∪B. By Theorem 3.3, E ⊆ A
or E ⊆ B. Let E ⊆ A, then c∗λµ(E) ⊆ c∗λµ(A) which implies c∗λµ(E) ∩ B ⊆
c∗λµ(A)∩B = ∅. Since C ⊆ c∗λµ(E), B ⊆ C ⊆ c∗λµ(E) and hence c∗λµ(E)∩B = B.
Thus, c∗λµ(E)∩B = ∅ and c∗λµ(E)∩B = B imply B = ∅. Similarly, if we consider
E ⊆ B, we obtain A = ∅, which contradicts A and B are non-empty. Therefore C
is ∗λµ-connected. �

Corollary 3.2. If E is a ∗λµ-connected subset of a GTS (X,µ), c∗λµ(E) is
also ∗λµ-connected.

Proof. This is obvious by Theorem 3.4. �

Theorem 3.5. Let E be a subset of a GTS (X,µ). If any two points of E are
contained in some ∗λµ-connected subset of E, E is a ∗λµ-connected subset of X.

Proof. Suppose E is not ∗λµ-connected. Then there exist non-empty subsets
A and B of X such that A ∩ c∗λµ(B) = ∅, B ∩ c∗λµ(A) = ∅ and E = A ∪B. Since
A, B are non-empty, there exists a point a ∈ A and a point b ∈ B. By hypothesis,
a and b must be contained in some ∗λµ-connected subset F of E. Since F ⊆ A∪B
and F is ∗λµ-connected, either F ⊆ A or F ⊆ B. It follows that either a, b ∈ A or
a, b ∈ B. Let a, b ∈ A. Then A ∩ B ̸= ∅, which is a contradiction. Hence E is a
∗λµ-connected subset of X. �

Theorem 3.6. The union of any family of ∗λµ-connected sets having a non-
empty intersection is a ∗λµ-connected set.

Proof. Let {Eα} be any family of ∗λµ-connected sets such that ∩{Eα} ̸= ∅.
Let E = ∪{Eα}. Suppose E is not ∗λµ-connected. Therefore, there exist ∗λµ-
separated sets A and B such that E = A∪B. Since ∩{Eα} ̸= ∅, x ∈ ∩{Eα}. Then
x belongs to each Eα and so x ∈ E. Consequently, x ∈ A or x ∈ B. Without loss
of generality, assume that x ∈ A. Then Eα ⊆ A for each α. Hence ∪Eα ⊆ A and
so E ⊆ A. Thus, A ∪ B ⊆ A. Therefore A = E which implies B = ∅ which is a
contradiction. Thus, E is ∗λµ-connected. �
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Theorem 3.7. The union of any family of ∗λµ-connected subsets of a GTS
(X,µ) with the property that one of the members of the family, intersects every
other members is a ∗λµ-connected set.

Proof. Let {Eα} be any family of ∗λµ-connected sets of a GTS (X,µ) with
the property that one of the member say, Eα0 intersects every other members.
By Theorem 3.6, Eα0 ∪ Eα is ∗λµ-connected. Now, let Eαp and Eαq be any two
members of the family. Then Eα0 ∩ Eαp ̸= ∅, Eα0 ∩ Eαq ̸= ∅ and hence (Eα0 ∩
Eαp) ∪ (Eα0 ∩ Eαq ) = Eα0 ∪ (Eαp ∩ Eαq ) ̸= ∅. By Theorem 3.6, ∪(Eα0 ∩ Eα) for
each α is ∗λµ-connected. Hence ∪Eα is ∗λµ-connected. �

Theorem 3.8. If A ⊆ B ∪ C such that A is a non-empty ∗λµ-connected set
in a GTS (X,µ) and B, C are ∗λµ-separated, then one of the following conditions
holds:

(i) A ⊆ B and A ∩ C = ∅.
(ii) A ⊆ C and A ∩B = ∅.

Proof. This is obvious by Theorem 3.3. �

Definition 3.2. Let (X,µ) and (X,µ
′
) be two GTS. A mapping f : (X,µ) →

(Y, µ
′
) is said to be (∗λµ, µ

′
)-continuous if for each µ

′
-open set V , f−1(V ) is ∗λµ-

open.

Theorem 3.9. Let f : (X,µ) → (Y, µ
′
) be a (∗λµ, µ

′
)-continuous function. If

K is ∗λµ-connected in X, then f(K) is µ
′
-connected in Y .

Proof. Suppose that f(K) is µ
′
-disconnected in Y . There exist µ

′
-separated

sets G and H of Y such that f(K) = G ∪ H. Set A = K ∩ f−1(G) and B =
K ∩ f−1(H). Since f(K) = G ∪H, K ∩ f−1(G) ̸= ∅ and hence A ̸= ∅. Similarly,
B ̸= ∅. Now, A ∩B = (K ∩ f−1(G)) ∩ (K ∩ f−1(H)) = K ∩ (f−1(G) ∩ f−1(H)) =
K ∩ (f−1(G ∩ H)) = ∅. Thus, A ∩ B = ∅ and A ∪ B = K. Now, A ∩ c∗λµ

(B) ⊆
f−1(G) ∩ c∗λµ(f

−1(H)). Since f is (∗λµ, µ
′
)-continuous, A ∩ c∗λµ(B) ⊆ f−1(G) ∩

f−1(cµ′ (H)) ⊆ f−1(G ∩ cµ′ (H)) = ∅. Therefore, A ∩ c∗λµ(B) = ∅. Similarly,

B ∩ c∗λµ(A) = ∅. Thus, A and B are ∗λµ-separated in X which is a contradiction.

Therefore f(K) is µ
′
-connected in Y . �

Corollary 3.3. Let f : (X,µ) → (Y, µ
′
) be a (∗λµ, µ

′
)-continuous surjection.

If K is µ′-disconnected in Y , then f−1(K) is ∗λµ-disconnected in X.

Proof. Let f−1(K) be not ∗λµ-disconnected in X. Then f−1(K) is ∗λµ-
connected in X and by Theorem 3.10, f(f−1(K)) = K is µ′-connected. Hence K
is not µ′-disconnected in Y . Therefore, the proof is completed. �
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