A NOTE ON COHEN-MACAULAY SKELETONS OF CYCLES AND VERTEX-DECOMPOSABILITY

Tahsin Öner and Alper Ülker

Abstract. Let G be a graph and $I(G)$ be its edge ideal then $k[\text{Ind}(G)] = k[x_1, ..., x_n]/I(G)$ is the Stanley-Reisner ring of G. We compute the depth invariant of $k[\text{Ind}(G)]$ for independence complexes of cycle graphs. In addition to this we introduce an operation that allows us to generate vertex-decomposable graphs.

1. Introduction

Let G be a simple undirected graph on the vertex set $V(G) = \{x_1, ..., x_n\}$. Let $R = k[x_1, ..., x_n]$ be a polynomial ring on n variables corresponding to $V(G)$. We define $I(G) = \{x_i x_j : \{x_i, x_j\} \in E(G)\}$ where $E(G)$ is the edge set of G. Then the set $I(G)$ is called edge ideal of G and introduced by Villarreal [10]. The independence complex of G is a simplicial complex with vertex set $V(G)$ and the faces are the independent sets of G and denoted by $\text{Ind}(G)$. The Stanley-Reisner ring over a field k of $\text{Ind}(G)$ is the quotient ring $R = k[x_1, ..., x_n]/I(G)$ and denoted by $k[\text{Ind}(G)]$. Krull dimension of $k[\text{Ind}(G)]$ is the supremum of the longest chain of the strict inclusions of prime ideals of $k[\text{Ind}(G)]$ and denoted by $\text{dim}(k[\text{Ind}(G)])$. Depth of a ring or module is very important invariant in commutative algebra. For a Stanley-Reisner ring of an independence complex of a graph G, the depth($k[\text{Ind}(G)]$) is the longest homogeneous sequence $f_1, ..., f_k$ such that f_i is not a zero-divisor of $k[x_1, ..., x_n]/(I, f_1, ..., f_{i-1})$ for all $1 \leq i \leq k$ and studied in [7, 6, 5]. The projective dimension of $k[\text{Ind}(G)]$ is the shortest length of a projective free resolution of $k[x_1, ..., x_n]/I(G)$, denoted by $\text{pd}(k[\text{Ind}(G)])$. The projective dimension of Stanley-Reisner rings is also recently well-studied in many papers i.e [4, 5]. Moreover,

2010 Mathematics Subject Classification. Primary 13F20; Secondary 05C69.

Key words and phrases. Vertex-Decomposability, Independence Complex, Depth.
by Auslander-Buchsbaum formula \[1\] computing depth of a ring gives information about its projective dimension.

Let \(G \) be a graph and \(\text{Ind}(G) \) be the independence complex of \(G \) such that \(\text{depth}(k[\text{Ind}(G)]) = \dim(k[\text{Ind}(G)]) \), then we call \(\text{Ind}(G) \) a Cohen-Macaulay complex and \(G \) a Cohen-Macaulay graph. We study vertex-decomposability of pure skeletons of independence complexes of cycles to determine in which dimension its skeletons are Cohen-Macaulay. Because, if a pure simplicial complex vertex-decomposable then it is a Cohen-Macaulay complex \[8\]. Vertex-decomposability is firstly introduced for pure complexes by Provan and Billera \[8\] and later extended to non-pure complexes by Björner and Wachs in \[3\]. Vertex-decomposability is well studied object i.e. for chordal graphs \[11\], bipartite graphs \[9\] and codismantlable graphs \[2\].

In section 3, we compute the depth of independence complexes of cycle graphs via vertex-decomposability. In section 4, we introduce an operation to find vertex-decomposable simple graphs.

2. Preliminaries

Let \(G = (V, E) \) be a undirected simple graph without multiple edges. The set \(N_G(v) = \{ u \in V(G) : uv \in E(G) \} \) is called open neighborhood of \(v \) and the closed neighborhood of \(v \) is the set \(N_G[v] = N_G(v) \cup \{ v \} \). A graph \(G \) is said to be well-covered, if all maximal independent sets of \(G \) has the same cardinality. If \(G \) is well-covered graph, then \(\text{Ind}(G) \) is pure simplicial complex.

Definition 2.1. A vertex \(x \) is called shedding vertex of \(G \) if no independent set of \(G \setminus N_G[x] \) is a maximal independent set of \(G \setminus x \). A graph \(G \) is said to be vertex-decomposable, if \(G \) is an edgeless graph or for any shedding vertex \(x \), \(G \setminus x \) and \(G \setminus N_G[x] \) are vertex-decomposable.

The above definition of vertex-decomposability for graphs is originated from independence complexes \[8\]. So vertex-decomposability for independence complexes of \(G \) is given:

Definition 2.2. A vertex \(x \) is a shedding vertex for \(\text{Ind}(G) \) if for any face \(\sigma \in \text{Ind}(G) \) with \(x \in \sigma \), there exists a vertex \(y \in V(G) \) such that \((\sigma \setminus \{ x \}) \cup \{ y \} \) is a face of \(\text{Ind}(G) \). Independence complex of \(\text{Ind}(G) \) of \(G \) is called vertex-decomposable if \(\text{Ind}(G) \) is a simplex or has a shedding vertex \(x \) such that both \(\text{Ind}(G \setminus x) \) and \(\text{Ind}(G \setminus N_G[x]) \) are vertex-decomposable.

Let \(G \) be a graph, recall that a set of vertices \(A \subseteq V(G) \) is a dominating set if every vertex of \(V(G) \setminus A \) is adjacent at least one vertex of \(A \). Independence domination number of \(G \) is as follows.

Definition 2.3. For any graph \(G \),

\[
i(G) = \min\{|A| : A \subseteq V(G) \text{ is independent and a dominating set of } G\}
\]

is called independence domination number of \(G \).
Definition 2.4. (Auslander-Buchsbaum) Let $R = k[x_1, \ldots, x_n]$ be polynomial ring over a field k and G be a graph on vertex set $V(G) = \{x_1, \ldots, x_n\}$ and $I(G)$ be its edge ideal. Then,

$$\text{depth}(R/I(G)) + \text{pd}(R/I(G)) = n.$$

3. Depth of Cycles

In this section, we calculate the depth of Stanley-Reisner rings of cycle graphs. The i-skeleton of complex Δ of dimension d is the simplical complex consists of i-dimensional faces of Δ such that $i \leq d$. The depth of a simplicial complex Δ is the maximum i such that i-skeleton of Δ is Cohen-Macaulay [12].

Lemma 3.1. If G is a vertex-decomposable graph with independence domination number $i(G)$, then $\text{depth}(k[\text{Ind}(G)]) = i(G)$.

Proof. Since any vertex-decomposable complex is Cohen-Macaulay in the dimension of minimal facet, an independence complex has minimal facet in the dimension of $i(G)$ of graph G. □

Lemma 3.2. Let C_n be a cycle on n vertices. If $n \equiv 0$ or $n \equiv 2 \mod 3$, then $i(C_n) = i(C_n - v)$ for any $v \in V(C_n)$.

Remark 3.1. Let C_n and P_n be cycle and path graphs on n vertices respectively. The followings are their independence domination numbers.

$$i(P_n) = \begin{cases} \frac{n}{3}, & \text{if } n \equiv 0 \mod 3 \\ \frac{n+2}{3}, & \text{if } n \equiv 1 \mod 3 \\ \frac{n+1}{3}, & \text{if } n \equiv 2 \mod 3 \end{cases}$$

$$i(C_n) = \begin{cases} \frac{n}{3}, & \text{if } n \equiv 0 \mod 3 \\ \frac{n-1}{3}, & \text{if } n \equiv 1 \mod 3 \\ \frac{n+1}{3}, & \text{if } n \equiv 2 \mod 3 \end{cases}$$

Lemma 3.3. Let G be a graph with independence domination number $i(G)$, then any $v \in V(G)$ is a shedding vertex for $(i(G) - 1)$-dimensional skeleton of $\text{Ind}(G)$.

Proof. Assume that σ is a face of $(i(G) - 1)$-dimensional skeleton of $\text{Ind}(G)$ with $v \in \sigma$. Then $|\sigma| \leq i(G) - 1$. Since any maximal independent set of G has cardinality at least $i(G)$, it follows that there exist some vertices $w \in V(G)$ such that $(\sigma \setminus v) \cup \{w\}$ is independent. □

Theorem 3.1. If $n = 3k + 2$ or $n = 3k$ for $k \in \mathbb{Z}^+$, then $\text{depth}(k[\text{Ind}(C_n)])] = i(C_n) - 1$.

Proof. By Lemma 3.3, we know that any vertex v is a shedding vertex for $(i(C_n) - 1)$-dimensional skeleton of $\text{Ind}(C_n)$. Since $\text{Ind}(C_n \setminus v) = \text{Ind}(P_{n-1})$ and $\text{Ind}(C_n \setminus N_{C_n}[v]) = \text{Ind}(P_{n-3})$, from Remark 3.1 and Lemma 3.2 it is easy to see that $i(C_n) = i(C_n \setminus v) = i(P_{n-1})$ and $i(C_n \setminus N_{C_n}[v]) = i(P_{n-3}) = i(C_n) - 1$. From Lemma 3.1, $\text{Ind}(P_{n-1})$ is $i(P_{n-1}) = i(C_n)$ dimensional Cohen-Macaulay
graph and \(\text{Ind}(P_{n-3}) \) is \(i(P_{n-3}) = i(C_n) - 1 \) dimensional Cohen-Macaulay graph, because they are both vertex-decomposable. Therefore, \(\text{Ind}(C_n) \) is \((C_n - 1) \) dimensional and vertex-decomposable and \(i(P_{n-3}) \) is \(i(C_n) - 1 \) dimensional vertex decomposable complexes. Hence using Lemma 3.1 and lowering the dimension of skeleton to find a shedding vertex results that \((i(C_n) - 1) \)-dimensional skeleton of \(\text{Ind}(C_n \setminus v) \) and \((i(C_n) - 2) \)-dimensional skeleton of \(\text{Ind}(C_n \setminus N_{C_n}[v]) \) are pure and vertex-decomposable by induction. Therefore \((i(C_n) - 1) \)-dimensional skeleton of \(\text{Ind}(C_n) \) is Cohen-Macaulay. Since depth\((k|\text{Ind}(C_n)) = r \) if and only if \(r \)-dimensional skeletons of \(\text{Ind}(G) \) is pure and vertex-decomposable, we conclude that depth\((k|\text{Ind}(C_n)) \) = 1.

\[\square \]

4. Directed Graphs and Vertex-Decomposability

In [2], the authors introduced an operation on directed graphs that allows to construct a simple graph which is vertex-decomposable. Let \(\overrightarrow{G} = (V, E) \) be a directed graph, they called this simple graph arising from \(
\overrightarrow{G} \) a common-enemy graph of \(\overrightarrow{G} \) and denoted by \(CE(\overrightarrow{G}) \). And \(x \Rightarrow y \) means a directed path starting from \(x \) ending at \(y \). They define enemy set of a vertex \(u \) of \(\overrightarrow{V} \) by \(A(u) = \{ v \in \overrightarrow{V} : v \Rightarrow u \} \) and set \(A(u) = A(u) \cup \{ u \} \). Let \(E(CE(\overrightarrow{G})) \) be edge set of \(CE(\overrightarrow{G}) \), so \(xy \in E(CE(\overrightarrow{G})) \) if and only if \(x \neq y \) and \(A[x] \cap A[y] \neq \emptyset \). They proved that if \(\overrightarrow{G} \) is acyclic directed graph, then \(CE(\overrightarrow{G}) \) is vertex-decomposable. In this section, we introduce a new operation called close gap operation on directed graphs. Close-gap graph of a directed graph \(\overrightarrow{G} \) is a simple graph arising from this \(\overrightarrow{G} \) and denoted by \(CP(\overrightarrow{G}) \). We define enemy set and edge set of \(CP(\overrightarrow{G}) \) in similar way of \(CE(\overrightarrow{G}) \).

In particular, if \(\overrightarrow{G} \) is a directed graph and \(x_0, x_1, x_2, \ldots, x_n \) is a directed path on \(\overrightarrow{G} \), then in this operation deleting a vertex \(x_1 \) from directed path \(x_0, x_1, x_2, \ldots, x_n \) yields a new directed path \(x_0, x_1, x_2, \ldots, x_n \).

Remark 4.1. Let \(x \) be a vertex of \(V(\overrightarrow{G}) \) with zero out-degree and positive in-degree. Since there is no directed path starting from \(x \) ending at \(w \) for any \(w \in V(\overrightarrow{G}) \), then we have \(CE(\overrightarrow{G} - x) \cong CP(\overrightarrow{G} - x) \) and \(CE(\overrightarrow{G} - N_{CE(\overrightarrow{G})}[x]) \cong CP(\overrightarrow{G} - N_{CP(\overrightarrow{G})}[x]) \).

A vertex \(x \) of \(G \) is called codominated vertex if \(N_{G}[y] \subseteq N_{G}[x] \) for some vertex \(y \) in \(N_{G}(y) \). The next lemma shows the relation between shedding and codominated vertices.

Lemma 4.1. [2] If \(x \) is codominated vertex of \(G \), then \(x \) is a shedding vertex.

Remark 4.2. A vertex \(x \) of \(G \) is called if induced graph on \(N_{G}(x) \) is a clique. It is clear that every vertex of \(N_{G}(x) \) is codominated hence shedding vertex.

Theorem 4.1. Let \(\overrightarrow{G} \) be a directed graph, then \(CP(\overrightarrow{G}) \) is vertex-decomposable.

Proof. Let \(\overrightarrow{G} \) be an acyclic directed graph. Then its common-enemy graph is vertex decomposable by [2], and from Remark 4.1, \(CP(\overrightarrow{G}) \) is vertex-decomposable.
as well. Hence assume that \(\overrightarrow{G} \) has at least one directed cycle. Let \(\{x_1, x_2, \ldots, x_n, x_1\} \) be a directed cycle in \(\overrightarrow{G} \). Since \(xy \in E(CE(\overrightarrow{G})) \) if and only if \(x \neq y \) and \(A[x] \cap A[y] \neq \emptyset \), then \(\{x_1, x_2, \ldots, x_n\} \) can induce a clique in \(CP(\overrightarrow{G}) \). So every vertex in \(\{x_1, x_2, \ldots, x_n\} \) is codominated by Remark 4.2, hence it is shedding vertex. Without loss of generality, we assume that \(x_1 \) is a shedding vertex in \(CP(\overrightarrow{G}) \). It is sufficient to show that \(CP(\overrightarrow{G} - x_1) \) and \(CP(\overrightarrow{G} - N_{CP(\overrightarrow{G})}[x_1]) \) are vertex-decomposable graphs. Assume that \(ab \in E(\overrightarrow{G} - x_1) \). Then \(v \in A[a] \cap A[b] \) for some \(v \in V(\overrightarrow{G}) \). If \(v = x_1 \) then for \(i = \{0, 2, \ldots, n\}, x_i \in A[a] \cap A[b] \) in \(E(\overrightarrow{G} - x_1) \), since \(\{x_0, x_1, \ldots, x_n\} \) is a directed path. Assume that there is a directed path from \(v \) to \(a \) and \(b \). Let \(ab \) be in \(E(\overrightarrow{G} - N_{CP(\overrightarrow{G})}[x_1]) \). So \(w \in A[a] \cap A[b] \) for some \(w \in V(\overrightarrow{G}) \). If \(w \in N[x_1] \), then clearly \(a \) and \(b \) both must be in \(N[x_1] \), which is impossible. So \(ab \in E(\overrightarrow{G} - N_{CP(\overrightarrow{G})}[x_1]) \). Therefore, we have both \(CP(\overrightarrow{G} - x_1) \) and \(CP(\overrightarrow{G} - N_{CP(\overrightarrow{G})}[x_1]) \) are vertex-decomposable graphs by induction. \(\square \)

References

Received by editors 04.10.2017; Revised version 02.10.2018; Available online 08.10.2018.

DEPARTMENT OF MATHEMATICS, EGE UNIVERSITY, İZMİR, TURKEY
E-mail address: tahsin.oner@ege.edu.tr

DEPARTMENT OF MATHEMATICS, Ağrı İbrahim Çeçen University, Ağrı, TURKEY
E-mail address: aulker@agri.edu.tr