BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 8(2018), 517-521 DOI: 10.7251/BIMVI1803517Ö

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

A NOTE ON COHEN-MACAULAY SKELETONS OF CYCLES AND VERTEX-DECOMPOSABILITY

Tahsin Öner and Alper Ülker

ABSTRACT. Let G be a graph and I(G) be its edge ideal then $k[\operatorname{Ind}(G)] = k[x_1, ..., x_n]/I(G)$ is the Stanley-Reisner ring of G. We compute the depth invariant of $k[\operatorname{Ind}(G)]$ for independence complexes of cycle graphs. In addition to this we introduce an operation that allows us to generate vertex-decomposable graphs.

1. Introduction

Let G be a simple undirected graph on the vertex set $V(G) = \{x_1, ..., x_n\}$. Let $R = k[x_1, ..., x_n]$ be a polynomial ring on *n* variables corresponding to V(G). We define $I(G) = \{x_i x_j : \{x_i x_j\} \in E(G)\}$ where E(G) is the edge set of G. Then the set I(G) is called edge ideal of G and introduced by Villarreal [10]. The independence complex of G is a simplicial complex with vertex set V(G) and the faces are the independent sets of G and denoted by Ind(G). The Stanley-Reisner ring over a field k of $\operatorname{Ind}(G)$ is the quotient ring $R = k[x_1, ..., x_n]/I(G)$ and denoted by $k[\operatorname{Ind}(G)]$. Krull dimension of $k[\operatorname{Ind}(G)]$ is the supremum of the longest chain of the strict inclusions of prime ideals of $k[\operatorname{Ind}(G)]$ and denoted by $\dim(k[\operatorname{Ind}(G)])$. Depth of a ring or module is very important invariant in commutative algebra. For a Stanley-Reisner ring of an independence complex of a graph G, the depth(k[Ind(G)]) is the longest homogeneous sequence $f_1, ..., f_k$ such that f_i is not a zero-divisor of $k[x_1, ..., x_n]/(I, f_1, ..., f_{i-1})$ for all $1 \le i \le k$ and studied in [7, 6, 5]. The projective dimension of $k[\operatorname{Ind}(G)]$ is the shortest length of a projective free resolution of $k[x_1, ..., x_n]/I(G)$, denoted by pd(k[Ind(G)]). The projective dimension of Stanley-Reisner rings is also recently well-studied in many papers i.e [4, 5]. Moreover,

517

²⁰¹⁰ Mathematics Subject Classification. Primary 13F20; Secondary 05C69.

Key words and phrases. Vertex-Decomposability, Independence Complex, Depth.

by Auslander-Buchsbaum formula [1] computing depth of a ring gives information about its projective dimension.

Let G be a graph and $\operatorname{Ind}(G)$ be the independence complex of G such that depth $(k[\operatorname{Ind}(G)]) = \dim(k[\operatorname{Ind}(G)])$, then we call $\operatorname{Ind}(G)$ a Cohen-Macaulay complex and G a Cohen-Macaulay graph. We study vertex-decomposability of pure skeletons of independence complexes of cycles to determine in which dimension its skeletons are Cohen-Macaulay. Because, if a pure simplicial complex vertexdecomposable then it is a Cohen-Macaulay complex [8]. Vertex-decomposability is firstly introduced for pure complexes by Provan and Billera [8] and later extended to non-pure complexes by Björner and Wachs in [3]. Vertex-decomposability is well studied object i.e. for chordal graphs [11], bipartite graphs [9] and codismantlable graphs [2].

In section 3, we compute the depth of independence complexes of cycle graphs via vertex-decomposability. In section 4, we introduce an operation to find vertexdecomposable simple graphs.

2. Preliminaries

Let G = (V, E) be a undirected simple graph without multiple edges. The set $N_G(v) = \{u \in V(G) : uv \in E(G)\}$ is called open neighborhood of v and the closed neighborhood of v is the set $N_G[v] = N_G(v) \cup \{v\}$. A graph G is said to be well-covered, if all maximal independent sets of G has the same cardinality. If G is well-covered graph, then $\operatorname{Ind}(G)$ is pure simplicial complex.

DEFINITION 2.1. A vertex x is called shedding vertex of G if no independent set of $G \setminus N_G[x]$ is a maximal independent set of $G \setminus x$. A graph G is said to be vertex-decomposable, if G is an edgeless graph or for any shedding vertex $x, G \setminus x$ and $G \setminus N_G[x]$ are vertex-decomposable.

The above definition of vertex-decomposability for graphs is originated from independence complexes [8]. So vertex-decomposability for independence complexes of G is given:

DEFINITION 2.2. A vertex x is a shedding vertex for $\operatorname{Ind}(G)$ if for any face $\sigma \in \operatorname{Ind}(G)$ with $x \in \sigma$, there exists a vertex $y \in V(G)$ such that $(\sigma \setminus \{x\}) \cup \{y\}$ is a face of $\operatorname{Ind}(G)$. Independece complex of $\operatorname{Ind}(G)$ of G is called vertex-decomposable if $\operatorname{Ind}(G)$ is a simplex or has a shedding vertex x such that both $\operatorname{Ind}(G \setminus x)$ and $\operatorname{Ind}(G \setminus N_G[x])$ are vertex-decomposable.

Let G be a graph, recall that a set of vertices $A \subseteq V(G)$ is a dominating set if every vertex of $V(G) \setminus A$ is adjacent at least one vertex of A. Independence domination number of G is as follows.

DEFINITION 2.3. For any graph G,

 $i(G) = \min\{|A| : A \subseteq V(G) \text{ is independent and a dominating set of } G\}$

is called independence domination number of G.

DEFINITION 2.4. (Auslander-Buchsbaum) Let $R = k[x_1, ..., x_n]$ be polynomial ring over a field k and G be a graph on vertex set $V(G) = \{x_1, ..., x_n\}$ and I(G) be its edge ideal. Then,

$$\operatorname{depth}(R/I(G)) + \operatorname{pd}(R/I(G)) = n.$$

3. Depth of Cycles

In this section, we calculate the depth of Stanley-Reisner rings of cycle graphs. The *i*-skeleton of complex Δ of dimension *d* is the simplical complex consists of *i*-dimensional faces of Δ such that $i \leq d$. The depth of a simplicial complex Δ is the maximum *i* such that *i*-skeleton of Δ is Cohen-Macaulay [12].

LEMMA 3.1. If G is a vertex-decomposable graph with independence domination number i(G), then depth(k[Ind(G)]) = i(G).

PROOF. Since any vertex-decomposable complex is Cohen-Macaulay in the dimension of minimal facet, an independence complex has minimal facet in the dimension of i(G) of graph G.

LEMMA 3.2. Let C_n be a cycle on n vertices. If $n \equiv 0$ or $n \equiv 2 \mod 3$, then $i(C_n) = i(C_n - v)$ for any $v \in V(C_n)$.

REMARK 3.1. Let C_n and P_n be cycle and path graphs on n vertices respectively. The followings are their independence domination numbers.

$$i(P_n) = \begin{cases} \frac{n}{3} & \text{, if } n \equiv 0 \mod 3\\ \frac{n+2}{3} & \text{, if } n \equiv 1 \mod 3\\ \frac{n+1}{3} & \text{, if } n \equiv 2 \mod 3 \end{cases}$$
$$i(C_n) = \begin{cases} \frac{n}{3} & \text{, if } n \equiv 0 \mod 3\\ \frac{n-1}{3} & \text{, if } n \equiv 1 \mod 3\\ \frac{n+1}{3} & \text{, if } n \equiv 2 \mod 3 \end{cases}$$

LEMMA 3.3. Let G be a graph with independece domination number i(G), then any $v \in V(G)$ is a shedding vertex for (i(G) - 1)-dimensional skeleton of Ind(G).

PROOF. Assume that σ is a face of (i(G) - 1)-dimensional skeleton of $\operatorname{Ind}(G)$ with $v \in \sigma$. Then $|\sigma| \leq i(G) - 1$. Since any maximal independent set of G has cardinality at least i(G), it follows that there exist some vertices $w \in V(G)$ such that $(\sigma \setminus v) \cup \{w\}$ is independent.

THEOREM 3.1. If n = 3k + 2 or n = 3k for $k \in \mathbb{Z}^+$, then depth $(k[\operatorname{Ind}(C_n))] = i(C_n) - 1$.

PROOF. By Lemma 3.3, we know that any vertex v is a shedding vertex for $(i(C_n) - 1)$ -dimensional skeleton of $\operatorname{Ind}(C_n)$. Since $\operatorname{Ind}(C_n \smallsetminus v) = \operatorname{Ind}(P_{n-1})$ and $\operatorname{Ind}(C_n \smallsetminus N_{C_n}[v]) = \operatorname{Ind}(P_{n-3})$, from Remark 3.1 and Lemma 3.2 it is easy to see that $i(C_n) = i(C_n \smallsetminus v) = i(P_{n-1})$ and $i(C_n \smallsetminus N_{C_n}[v]) = i(P_{n-3}) = i(C_n) - 1$. From Lemma 3.1, $\operatorname{Ind}(P_{n-1})$ is $i(P_{n-1}) = i(C_n)$ dimensional Cohen-Macaulay ÖNER, ÜLKER

graph and $\operatorname{Ind}(P_{n-3})$ is $i(P_{n-3}) = i(C_n) - 1$ dimensional Cohen-Macaulay graph, because they are both vertex-decomposable. Therefore, $\operatorname{Ind}(C_n)$ is $(C_n - 1)$ dimensional and vertex-decomposable and $i(P_{n-3})$ is $i(C_n) - 1$ dimensional vertex decomposable comlexes. Hence using Lemma 3.1 and lowering the dimension of skeleton to find a shedding vertex results that $(i(C_n) - 1)$ -dimensional skeleton of $\operatorname{Ind}(C_n \setminus v)$ and $(i(C_n) - 2)$ -dimensional skeleton of $\operatorname{Ind}(C_n \setminus N_{C_n}[v])$ are pure and vertex-decomposable by induction. Therefore $(i(C_n) - 1)$ -dimensional skeleton of $\operatorname{Ind}(C_n)$ is Cohen-Macaulay. Since $\operatorname{depth}(k[\operatorname{Ind}(G)]) = r$ if and only if r-dimensional skeletons of $\operatorname{Ind}(G)$ is pure and vertex-decomposable, we conclude that $\operatorname{depth}(k[\operatorname{Ind}(C_n))] = i(C_n) - 1$. \Box

4. Directed Graphs and Vertex-Decomposability

In [2], the authors introduced an operation on directed graphs that allows to construct a simple graph which is vertex-decomposable. Let $\overrightarrow{G} = (V, E)$ be a directed graph, they called this simple graph arising from \overrightarrow{G} a common-enemy graph of \overrightarrow{G} and denoted by $CE(\overrightarrow{G})$. And $x \Longrightarrow y$ means a directed path starting from x ending at y. They define enemy set of a vertex u of V by $A(u) = \{v \in V : v \Longrightarrow u\}$ and set $A[u] = A(u) \cup \{u\}$. Let $E(CE(\overrightarrow{G}))$ be edge set of $CE(\overrightarrow{G})$, so $xy \in E(CE(\overrightarrow{G}))$ if and only if $x \neq y$ and $A[x] \cap A[y] \neq \emptyset$. They proved that if \overrightarrow{G} is acyclic directed graph, then $CE(\overrightarrow{G})$ is vertex-decomposable. In this section, we introduce a new operation called *close gap operation* on directed graphs. Close-gap graph of a directed graph \overrightarrow{G} is a simple graph arising from this \overrightarrow{G} and denoted by $CP(\overrightarrow{G})$. We define enemy set and edge set of $CP(\overrightarrow{G})$ in similar way of $CE(\overrightarrow{G})$. In particular, if \overrightarrow{G} is a directed graph and $x_0, x_1, x_2, ..., x_n$ is a directed path on \overrightarrow{G} , then in this operation deleting a vertex x_1 from directed path $x_0, \hat{x_1}, x_2, ..., x_n$ yields a new directed path $x_0, x_2, ..., x_n$.

REMARK 4.1. Let x be a vertex of $V(\vec{G})$ with zero out-degree and positive in-degree. Since there is no directed path starting from x ending at w for any $w \in V(\vec{G})$, then we have $CE(\vec{G}-x) \cong CP(\vec{G}-x)$ and $CE(\vec{G}-N_{CE(\vec{G})}[x]) \cong CP(\vec{G}-N_{CP(\vec{G})}[x])$.

A vertex x of G is called codominated vertex if $N_G[y] \subseteq N_G[x]$ for some vertex y in $N_G(y)$. The next lemma shows the relation between shedding and codominated vertices.

LEMMA 4.1. [2] If x is codominated vertex of G, then x is a shedding vertex.

REMARK 4.2. A vertex x of G is called if induced graph on $N_G(x)$ is a clique. It is clear that every vertex of $N_G(x)$ is codominated hence shedding vertex.

THEOREM 4.1. Let \overrightarrow{G} be a directed graph, then $CP(\overrightarrow{G})$ is vertex-decomposable.

PROOF. Let \vec{G} be an acyclic directed graph. Then its common-enemy graph is vertex decomposable by [2], and from Remark 4.1, $CP(\vec{G})$ is vertex-decomposable

520

as well. Hence assume that \overrightarrow{G} has at least one directed cycle. Let $\{x_1, x_2, ..., x_n, x_1\}$ be a directed cycle in \overrightarrow{G} . Since $xy \in E(CE(\overrightarrow{G}))$ if and only if $x \neq y$ and $A[x] \cap A[y] \neq \emptyset$, then $\{x_1, x_2, ..., x_n\}$ can induce a clique in $CP(\overrightarrow{G})$. So every vertex in $\{x_1, x_2, ..., x_n\}$ is codominated by Remark 4.2, hence it is shedding vertex. Without loss of generality, we assume that x_1 is a shedding vertex in $CP(\overrightarrow{G})$. It is sufficient to show that $CP(\overrightarrow{G} - x_1)$ and $CP(\overrightarrow{G} - N_{CP(\overrightarrow{G})}[x_1])$ are vertex-decomposable graphs. Assume that $ab \in E(CP(\overrightarrow{G} - x_1))$. Then $v \in A[a] \cap A[b]$ for some $v \in V(\overrightarrow{G})$. If $v = x_1$ then for $i = \{0, 2, ..., n\}, x_i \in A[a] \cap A[b]$ in $E(CP(\overrightarrow{G}) - x_1)$, since $\{x_0, x_1, ..., x_n\}$ is a directed path. Assume that there is a directed path from v to a and b. Let ab be in $E(CP(\overrightarrow{G} - N_{CP(\overrightarrow{G})}[x_1])$. So $w \in A[a] \cap A[b]$ for some $w \in V(\overrightarrow{G})$. If $w \in N[x_1]$, then clearly a and b both must be in $N[x_1]$, which is impossible. So $ab \in E(CP(\overrightarrow{G} - N_{CP(\overrightarrow{G})}[x_1]))$. Therefore, we have both $CP(\overrightarrow{G} - x_1)$ and $CP(\overrightarrow{G} - N_{CP(\overrightarrow{G})}[x_1])$.

References

- M. Auslander and D. A. Buchsbaum. Homological dimension in local rings. Trans. Amer. Math Soc. 85(2)(1957), 390-405.
- [2] T. Bıyıkoğlu and Y.Civan. Vertex decomposable graphs, codismantlability, Cohen-Macaulayness and Castelnuovo-Mumford regularity. *Electron. J. Combin.*, **21**(1)(2014), Paper # P1.1, (pp. 17).
- [3] A. Börner and M. L. Wachs. Shellable nonpure complexes and posets, II. Trans. Amer. Math. Soc. 349(10)(1997), 3945-3975.
- [4] H. Dao and J. Schweig. Projective dimension, graph domination parameters, and independence complex homology. J. Combin. Theory, Ser. A, 120(2)(2013), 453-469.
- [5] F. Khosh-Ahang and S. Moradi, Regularity and projective dimension of the edge ideal of C₅-free vertex-decomposable graphs, Proc. Amer. Math Soc. 142(5)(2014), 1567-1576.
- [6] M. Kummini. Regularity, depth and arithmetic rank of bipartite edge ideals. J. Algebr. Comb. 30(2009), 429-445.
- [7] S. Morey. Depths of powers of the edge ideal of a tree. Comm. Algebra 38(11)(2010), 4042-4055.
- [8] J.S. Provan and L.J. Billera. Decompositions of simplicial complexes related to diameters of convex polyhedra. *Math. of Operation Research*, 5(4)(1980), 576-594.
- [9] A. Van Tuyl. Sequentially Cohen-Macaulay bipartite graphs: vertex decomposability and regularity. Arch. Math. 93(2009), 451-459.
- [10] R. H. Willarreal. Cohen-Macaulay graphs. Manuscripta Maths. 66(1)(1990), 277-293.
- [11] R. Woodroofe. Vertex decomposable graphs and obstructions to shellability. Proc. Amer. Math. Soc. 137(10)(2009), 3235-3246.
- [12] R. Woodroofe. Chains of modular elements and shellability. J. Combin. Theory, Ser. A 119(6)(2012), 1315-1327.

Received by editors 04.10.2017; Revised version 02.10.2018; Available online 08.10.2018.

DEPARTMENT OF MATHEMATICS, EGE UNIVERSITY, İZMİR, TURKEY *E-mail address*: tahsin.oner@ege.edu.tr

DEPARTMENT OF MATHEMATICS, AĞRI İBRAHİM ÇEÇEN UNIVERSITY, AĞRI, TURKEY *E-mail address*: aulker@agri.edu.tr