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CYCLES AND VERTEX-DECOMPOSABILITY

Tahsin Öner and Alper Ülker

Abstract. Let G be a graph and I(G) be its edge ideal then k[Ind(G)] =
k[x1, ..., xn]/I(G) is the Stanley-Reisner ring of G. We compute the depth in-
variant of k[Ind(G)] for independence complexes of cycle graphs. In addition to

this we introduce an operation that allows us to generate vertex-decomposable
graphs.

1. Introduction

Let G be a simple undirected graph on the vertex set V (G) = {x1, ..., xn}. Let
R = k[x1, ..., xn] be a polynomial ring on n variables corresponding to V (G). We de-
fine I(G) = {xixj : {xixj} ∈ E(G)} where E(G) is the edge set of G. Then the set
I(G) is called edge ideal of G and introduced by Villarreal [10]. The independence
complex of G is a simplicial complex with vertex set V (G) and the faces are the
independent sets of G and denoted by Ind(G). The Stanley-Reisner ring over a field
k of Ind(G) is the quotient ring R = k[x1, ..., xn]/I(G) and denoted by k[Ind(G)].
Krull dimension of k[Ind(G)] is the supremum of the longest chain of the strict
inclusions of prime ideals of k[Ind(G)] and denoted by dim(k[Ind(G)]). Depth of a
ring or module is very important invariant in commutative algebra. For a Stanley-
Reisner ring of an independence complex of a graph G, the depth(k[Ind(G)]) is
the longest homogeneous sequence f1, ..., fk such that fi is not a zero-divisor of
k[x1, ..., xn]/(I, f1, ..., fi−1) for all 1 6 i 6 k and studied in [7, 6, 5]. The projec-
tive dimension of k[Ind(G)] is the shortest length of a projective free resolution of
k[x1, ..., xn]/I(G), denoted by pd(k[Ind(G)]). The projective dimension of Stanley-
Reisner rings is also recently well-studied in many papers i.e [4, 5]. Moreover,
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by Auslander-Buchsbaum formula [1] computing depth of a ring gives information
about its projective dimension.

Let G be a graph and Ind(G) be the independence complex of G such that
depth(k[Ind(G)]) = dim(k[Ind(G)]), then we call Ind(G) a Cohen-Macaulay com-
plex and G a Cohen-Macaulay graph. We study vertex-decomposability of pure
skeletons of independence complexes of cycles to determine in which dimension
its skeletons are Cohen-Macaulay. Because, if a pure simplicial complex vertex-
decomposable then it is a Cohen-Macaulay complex [8]. Vertex-decomposability is
firstly introduced for pure complexes by Provan and Billera [8] and later extended
to non-pure complexes by Björner and Wachs in [3]. Vertex-decomposability is well
studied object i.e. for chordal graphs [11], bipartite graphs [9] and codismantlable
graphs [2].

In section 3, we compute the depth of independence complexes of cycle graphs
via vertex-decomposability. In section 4, we introduce an operation to find vertex-
decomposable simple graphs.

2. Preliminaries

Let G = (V,E) be a undirected simple graph without multiple edges. The
set NG(v) = {u ∈ V (G) : uv ∈ E(G)} is called open neighborhood of v and the
closed neighborhood of v is the set NG[v] = NG(v) ∪ {v}. A graph G is said to be
well-covered, if all maximal independent sets of G has the same cardinality. If G is
well-covered graph, then Ind(G) is pure simplicial complex.

Definition 2.1. A vertex x is called shedding vertex of G if no independent
set of G\NG[x] is a maximal independent set of G\x. A graph G is said to be
vertex-decomposable, if G is an edgeless graph or for any shedding vertex x, Gr x
and G\NG[x] are vertex-decomposable.

The above definition of vertex-decomposability for graphs is originated from in-
dependence complexes [8]. So vertex-decomposability for independence complexes
of G is given:

Definition 2.2. A vertex x is a shedding vertex for Ind(G) if for any face
σ ∈ Ind(G) with x ∈ σ, there exists a vertex y ∈ V (G) such that (σ\{x})∪{y} is a
face of Ind(G). Independece complex of Ind(G) of G is called vertex-decomposable
if Ind(G) is a simplex or has a shedding vertex x such that both Ind(G\x) and
Ind(G\NG[x]) are vertex-decomposable.

Let G be a graph, recall that a set of vertices A ⊆ V (G) is a dominating
set if every vertex of V (G)\A is adjacent at least one vertex of A. Independence
domination number of G is as follows.

Definition 2.3. For any graph G,

i(G) = min{|A| : A ⊆ V (G) is independent and a dominating set of G}

is called independence domination number of G.



COHEN-MACAULAY SKELETONS OF CYCLES AND VERTEX-DECOMPOSABILITY 519

Definition 2.4. (Auslander-Buchsbaum) Let R = k[x1, ..., xn] be polynomial
ring over a field k and G be a graph on vertex set V (G) = {x1, ..., xn} and I(G) be
its edge ideal. Then,

depth(R/I(G)) + pd(R/I(G)) = n.

3. Depth of Cycles

In this section, we calculate the depth of Stanley-Reisner rings of cycle graphs.
The i-skeleton of complex ∆ of dimension d is the simplical complex consists of
i-dimensional faces of ∆ such that i 6 d. The depth of a simplicial complex ∆ is
the maximum i such that i-skeleton of ∆ is Cohen-Macaulay [12].

Lemma 3.1. If G is a vertex-decomposable graph with independence domination
number i(G), then depth(k[Ind(G)]) = i(G).

Proof. Since any vertex-decomposable complex is Cohen-Macaulay in the di-
mension of minimal facet, an independence complex has minimal facet in the di-
mension of i(G) of graph G. �

Lemma 3.2. Let Cn be a cycle on n vertices. If n ≡ 0 or n ≡ 2 mod 3, then
i(Cn) = i(Cn − v) for any v ∈ V (Cn).

Remark 3.1. Let Cn and Pn be cycle and path graphs on n vertices respec-
tively. The followings are their independence domination numbers.

i(Pn) =


n
3 , if n ≡ 0 mod 3
n+2
3 , if n ≡ 1 mod 3

n+1
3 , if n ≡ 2 mod 3

i(Cn) =


n
3 , if n ≡ 0 mod 3
n−1
3 , if n ≡ 1 mod 3

n+1
3 , if n ≡ 2 mod 3

Lemma 3.3. Let G be a graph with independece domination number i(G), then
any v ∈ V (G) is a shedding vertex for (i(G)− 1)-dimensional skeleton of Ind(G).

Proof. Assume that σ is a face of (i(G)− 1)-dimensional skeleton of Ind(G)
with v ∈ σ. Then | σ |6 i(G) − 1. Since any maximal independent set of G has
cardinality at least i(G), it follows that there exist some vertices w ∈ V (G) such
that (σ r v) ∪ {w} is independent. �

Theorem 3.1. If n = 3k + 2 or n = 3k for k ∈ Z+, then depth(k[Ind(Cn))] =
i(Cn)− 1.

Proof. By Lemma 3.3, we know that any vertex v is a shedding vertex for
(i(Cn) − 1)-dimensional skeleton of Ind(Cn). Since Ind(Cn r v) = Ind(Pn−1) and
Ind(Cn rNCn [v]) = Ind(Pn−3), from Remark 3.1 and Lemma 3.2 it is easy to see
that i(Cn) = i(Cn r v) = i(Pn−1) and i(Cn r NCn [v]) = i(Pn−3) = i(Cn) − 1.
From Lemma 3.1, Ind(Pn−1) is i(Pn−1) = i(Cn) dimensional Cohen-Macaulay
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graph and Ind(Pn−3) is i(Pn−3) = i(Cn) − 1 dimensional Cohen-Macaulay graph,
because they are both vertex-decomposable. Therefore, Ind(Cn) is (Cn − 1) di-
mensional and vertex-decomposable and i(Pn−3) is i(Cn) − 1 dimensional vertex
decomposable comlexes. Hence using Lemma 3.1 and lowering the dimension of
skeleton to find a shedding vertex results that (i(Cn)− 1)-dimensional skeleton of
Ind(Cn r v) and (i(Cn) − 2)-dimensional skeleton of Ind(Cn r NCn [v]) are pure
and vertex-decomposable by induction. Therefore (i(Cn) − 1)-dimensional skele-
ton of Ind(Cn) is Cohen-Macaulay. Since depth(k[Ind(G)]) = r if and only if
r-dimensional skeletons of Ind(G) is pure and vertex-decomposable, we conclude
that depth(k[Ind(Cn))] = i(Cn)− 1. �

4. Directed Graphs and Vertex-Decomposability

In [2], the authors introduced an operation on directed graphs that allows to

construct a simple graph which is vertex-decomposable. Let
−→
G = (V,E) be a

directed graph, they called this simple graph arising from
−→
G a common-enemy

graph of
−→
G and denoted by CE(

−→
G). And x =⇒ y means a directed path starting

from x ending at y. They define enemy set of a vertex u of V by A(u) = {v ∈ V :

v =⇒ u} and set A[u] = A(u) ∪ {u}. Let E(CE(
−→
G)) be edge set of CE(

−→
G), so

xy ∈ E(CE(
−→
G)) if and only if x ̸= y and A[x] ∩ A[y] ̸= ∅. They proved that if

−→
G

is acyclic directed graph, then CE(
−→
G) is vertex-decomposable. In this section, we

introduce a new operation called close gap operation on directed graphs. Close-gap

graph of a directed graph
−→
G is a simple graph arising from this

−→
G and denoted by

CP (
−→
G). We define enemy set and edge set of CP (

−→
G) in similar way of CE(

−→
G).

In particular, if
−→
G is a directed graph and x0, x1, x2, ..., xn is a directed path on−→

G , then in this operation deleting a vertex x1 from directed path x0, x̂1, x2, ..., xn

yields a new directed path x0, x2, ..., xn.

Remark 4.1. Let x be a vertex of V (
−→
G) with zero out-degree and positive

in-degree. Since there is no directed path starting from x ending at w for any

w ∈ V (
−→
G), then we have CE(

−→
G − x) ∼= CP (

−→
G − x) and CE(

−→
G − N

CE(
−→
G)

[x]) ∼=
CP (

−→
G −N

CP (
−→
G)

[x]).

A vertex x of G is called codominated vertex if NG[y] ⊆ NG[x] for some vertex
y in NG(y). The next lemma shows the relation between shedding and codominated
vertices.

Lemma 4.1. [2] If x is codominated vertex of G, then x is a shedding vertex.

Remark 4.2. A vertex x of G is called if induced graph on NG(x) is a clique.
It is clear that every vertex of NG(x) is codominated hence shedding vertex.

Theorem 4.1. Let
−→
G be a directed graph, then CP (

−→
G) is vertex-decomposable.

Proof. Let
−→
G be an acyclic directed graph. Then its common-enemy graph is

vertex decomposable by [2], and from Remark 4.1, CP (
−→
G) is vertex-decomposable
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as well. Hence assume that
−→
G has at least one directed cycle. Let {x1, x2, ..., xn, x1}

be a directed cycle in
−→
G . Since xy ∈ E(CE(

−→
G)) if and only if x ̸= y and A[x] ∩

A[y] ̸= ∅, then {x1, x2, ..., xn} can induce a clique in CP (
−→
G). So every vertex in

{x1, x2, ..., xn} is codominated by Remark 4.2, hence it is shedding vertex. Without

loss of generality, we assume that x1 is a shedding vertex in CP (
−→
G). It is sufficient

to show that CP (
−→
G − x1) and CP (

−→
G − N

CP (
−→
G)

[x1]) are vertex-decomposable

graphs. Assume that ab ∈ E(CP (
−→
G − x1)). Then v ∈ A[a] ∩ A[b] for some

v ∈ V (
−→
G). If v = x1 then for i = {0, 2, ..., n}, xi ∈ A[a] ∩A[b] in E(CP (

−→
G)− x1),

since {x0, x1, ..., xn} is a directed path. Assume that there is a directed path from

v to a and b. Let ab be in E(CP (
−→
G − N

CP (
−→
G)

[x1]). So w ∈ A[a] ∩ A[b] for some

w ∈ V (
−→
G). If w ∈ N [x1], then clearly a and b both must be in N [x1], which is

impossible. So ab ∈ E(CP (
−→
G−N

CP (
−→
G)

[x1])). Therefore, we have both CP (
−→
G−x1)

and CP (
−→
G −N

CP (
−→
G)

[x1]) are vertex-decomposable graphs by induction. �
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