BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 8(2018), 487-496 DOI: 10.7251/BIMVI1803487K

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

WEAKLY $(1, 2)^*$ - \ddot{g} -OPEN AND WEAKLY $(1, 2)^*$ - \ddot{g} -CLOSED FUNCTIONS

R. Karthik and N. Rajasekar

ABSTRACT. In this paper, the concepts of weakly $(1,2)^*$ - \ddot{g} -continuous functions, weakly $(1,2)^*$ - \ddot{g} -compact spaces and weakly $(1,2)^*$ - \ddot{g} -connected spaces are introduced and some of their properties are investigated.

1. Introduction

Ravi and Ganesan [7] have introduced the concept of \ddot{g} -closed sets and studied their most fundamental properties in topological spaces. In this paper, we introduce a new class of generalized closed sets called weakly $(1, 2)^*$ - \ddot{g} -closed sets which contains the above mentioned class. Also, we investigate the relationships among the related generalized closed sets.

2. Preliminaries

Throughout this paper, (X, τ_1, τ_2) , (Y, τ_1, τ_2) and (Z, η_1, η_2) (briefly, X, Y and Z) will denote bitopological spaces.

DEFINITION 2.1. Let S be a subset of X. Then S is said to be $\tau_{1,2}$ -open [8] if $S = A \cup B$ where $A \in \tau_1$ and $B \in \tau_2$. The complement of $\tau_{1,2}$ -open set is called $\tau_{1,2}$ -closed.

Notice that $\tau_{1,2}$ -open sets need not necessarily form a topology.

DEFINITION 2.2. ([8]) Let S be a subset of a bitopological space X. Then

(1) the $\tau_{1,2}$ -closure of S, denoted by $\tau_{1,2}$ -cl(S), is defined as $\cap \{F : S \subseteq F \text{ and } F \text{ is } \tau_{1,2}\text{-closed } \}$.

²⁰¹⁰ Mathematics Subject Classification. 54C05, 54C08, 54C10.

Key words and phrases. Bit opological space, $(1, 2)^*$ -sg-closed set, $(1, 2)^*$ g-closed set, $(1, 2)^*$ - α g-closed set.

⁴⁸⁷

(2) the $\tau_{1,2}$ -interior of S, denoted by $\tau_{1,2}$ -int(S), is defined as $\cup \{F : F \subseteq S \text{ and } F \text{ is } \tau_{1,2}$ -open $\}$.

DEFINITION 2.3. A subset S of a bitopological space X is called

- (1) $(1, 2)^*$ -semi-open set [9] if $S \subseteq \tau_{1,2}$ - $cl(\tau_{1,2}$ -int(S));
- (2) $(1,2)^*$ - α -open set [8] if $S \subseteq \tau_{1,2}$ - $int(\tau_{1,2}$ - $cl(\tau_{1,2}$ -int(S)));
- (3) regular $(1,2)^*$ -open set [10] if $S = \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(S));
- (4) $(1,2)^*$ - π -open set [10] if S is the finite union of regular $(1,2)^*$ -open sets.

The complements of the above mentioned open sets are called their respective closed sets.

The $(1,2)^*$ -semi-closure [9] (resp. $(1,2)^*-\alpha$ -closure [10]) of a subset S of X, $(1,2)^*$ -scl(S) (resp. $(1,2)^*-\alpha$ cl(S)), is defined to be the intersection of all $(1,2)^*$ -semi-closed (resp. $(1,2)^*-\alpha$ -closed) sets of X containing S. It is known that $(1,2)^*$ -scl(S) (resp. $(1,2)^*-\alpha$ cl(S)) is a $(1,2)^*$ -semi-closed (resp. an $(1,2)^*-\alpha$ -closed) set.

DEFINITION 2.4. A subset S of a bitopological space X is called

- (1) $(1,2)^*$ -generalized closed (briefly, $(1,2)^*$ -g-closed) set [11] if $\tau_{1,2}$ -cl(S) $\subseteq U$ whenever $S \subseteq U$ and U is $\tau_{1,2}$ -open in X.
- (2) $(1,2)^*$ -semi-generalized closed (briefly, $(1,2)^*$ -sg-closed) set [9] if $(1,2)^*$ -scl $(S) \subseteq U$ whenever $S \subseteq U$ and U is $(1,2)^*$ -semi-open in X.
- (3) $(1,2)^*$ - α -generalized closed (briefly, $(1,2)^*$ - αg -closed) set [12] if $(1,2)^*$ - $\alpha cl(S) \subseteq U$ whenever $S \subseteq U$ and U is $\tau_{1,2}$ -open in X.
- (4) $(1,2)^*$ -*g*-closed set [3] if $\tau_{1,2}$ - $cl(S) \subseteq U$ whenever $S \subseteq U$ and U is $(1,2)^*$ sg-open in X.
- (5) $(1,2)^*-\pi g$ -closed set [10] if $\tau_{1,2}$ - $cl(S) \subseteq U$ whenever $S \subseteq U$ and U is $(1,2)^*-\pi$ -open in X.

The complements of the above mentioned open sets are called their respective closed sets.

The family of all $(1,2)^*$ - \ddot{g} -open (resp. $(1,2)^*$ - \ddot{g} -closed) sets in X is denoted by $(1,2)^*$ - $\ddot{G}O(X)$ (resp. $(1,2)^*$ - $\ddot{G}C(X)$).

DEFINITION 2.5. ([4]) For every set $S \subseteq X$, we define the $(1,2)^*$ - \ddot{g} -closure of S to be the intersection of all $(1,2)^*$ - \ddot{g} -closed sets containing S. That is $(1,2)^*$ - \ddot{g} - $cl(S) = \cap \{F : S \subseteq F \in (1,2)^*$ - $\ddot{G}C(X)\}.$

DEFINITION 2.6. Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be two bitopological spaces. A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called

- (1) completely $(1,2)^*$ -continuous [10] (resp. $(1,2)^*$ -R-map [10]) if $f^{-1}(V)$ is regular $(1,2)^*$ -open in X for each $\sigma_{1,2}$ -open (resp. regular $(1,2)^*$ -open) set V of Y.
- (2) perfectly $(1,2)^*$ -continuous [10] if $f^{-1}(V)$ is both $\tau_{1,2}$ -open and $\tau_{1,2}$ -closed in X for each $\sigma_{1,2}$ -open set V of Y.
- (3) $(1,2)^*$ - \ddot{g} -continuous [4] if $f^{-1}(V)$ is $(1,2)^*$ - \ddot{g} -closed in X for every $\sigma_{1,2}$ closed set V of Y.

488

- (4) $(1,2)^*$ - \ddot{g} -irresolute [4] if $f^{-1}(V)$ is $(1,2)^*$ - \ddot{g} -closed in X for every $(1,2)^*$ - \ddot{g} -closed set V of Y.
- (5) $(1,2)^*$ -sg-irresolute [13] if $f^{-1}(V)$ is $(1,2)^*$ -sg-open in X for every $(1,2)^*$ -sg-open set V of Y.
- (6) $(1,2)^*$ - \ddot{g} -closed [5] if the image of every $\tau_{1,2}$ -closed set in X is $(1,2)^*$ - \ddot{g} -closed in Y.

DEFINITION 2.7. A subset S of a bitopological space X is called

- (1) weakly $(1,2)^*$ -g-closed (briefly, $(1,2)^*$ -wg-closed) set [14] if $\tau_{1,2}$ -cl $(\tau_{1,2}$ int $(S)) \subseteq U$ whenever $S \subseteq U$ and U is $\tau_{1,2}$ -open in X.
- (2) weakly $(1,2)^*$ - πg -closed (briefly, $(1,2)^*$ - $w\pi g$ -closed) set [14] if $\tau_{1,2}$ - $cl(\tau_{1,2}$ - $int(S)) \subseteq U$ whenever $S \subseteq U$ and U is $(1,2)^*$ - πg -open in X.
- (3) regular weakly $(1,2)^*$ -generalized closed (briefly, $(1,2)^*$ -rwg-closed) set [14] if $\tau_{1,2}$ - $cl(\tau_{1,2}$ - $int(S)) \subseteq U$ whenever $S \subseteq U$ and U is regular $(1,2)^*$ -open in X.

DEFINITION 2.8. ([5]) A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be an $(1,2)^*$ - \ddot{g} -open map if the image f(S) is $(1,2)^*$ - \ddot{g} -open in Y for each $\tau_{1,2}$ -open set S of X.

REMARK 2.1. ([4]) Every $\tau_{1,2}$ -open set is $(1,2)^*$ -sg-open but not conversely.

REMARK 2.2. ([14]) For a subset of a bitopological space, we have following implications:

regular $(1,2)^*$ -open $\rightarrow (1,2)^*$ - π -open $\rightarrow \tau_{1,2}$ -open

DEFINITION 2.9. A subset S of a bitopological space X is said to be nowhere dense if $\tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(S)) = \phi$.

DEFINITION 2.10. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a function. Then f is said to be

- (1) contra- $(1, 2)^*$ - \ddot{g} -continuous [14] if $f^{-1}(V)$ is $(1, 2)^*$ - \ddot{g} -closed in X for every $\sigma_{1,2}$ -open set of Y.
- (2) $(1,2)^*$ -continuous [14] if $f^{-1}(V)$ is $\tau_{1,2}$ -closed in X for every $\sigma_{1,2}$ -closed set of Y.

REMARK 2.3. ([4]) Every $(1,2)^*$ -continuous function is $(1,2)^*$ - \ddot{g} -continuous but not conversely.

3. WEAKLY $(1,2)^*$ -*\ddot{g}*-CLOSED SETS

We introduce the definition of weakly $(1,2)^*$ - \ddot{g} -closed sets in bitopological spaces and study the relationships of such sets.

DEFINITION 3.1. A subset S of a bitopological space X is called a weakly $(1,2)^*$ - \ddot{g} -closed (briefly, $(1,2)^*$ - $w\ddot{g}$ -closed) set if $\tau_{1,2}$ - $cl(\tau_{1,2}$ - $int(S)) \subseteq U$ whenever $S \subseteq U$ and U is $(1,2)^*$ -sg-open in X.

THEOREM 3.1. Every $(1,2)^*$ - \ddot{g} -closed set is $(1,2)^*$ - $w\ddot{g}$ -closed but not conversely.

EXAMPLE 3.1. Let $X = \{a_1, a_2, a_3\}$, $\tau_1 = \{\phi, X, \{a_1, a_2\}\}$ and $\tau_2 = \{\phi, X\}$. Then the sets in $\{\phi, X, \{a_1, a_2\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{a_3\}\}$ are called $\tau_{1,2}$ -closed. Then the set $\{a_1\}$ is $(1,2)^*$ -wö-closed set but it is not a $(1,2)^*$ -ö-closed in X.

THEOREM 3.2. Every $(1,2)^*$ -w \ddot{g} -closed set is $(1,2)^*$ -wg-closed but not conversely.

PROOF. Let S be any $(1,2)^*$ -w \ddot{g} -closed set and V be any $\tau_{1,2}$ -open set containing S. Then V is a $(1,2)^*$ -sg-open set containing S. We have $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(S)) \subseteq U$. Thus, S is $(1,2)^*$ -wg-closed.

EXAMPLE 3.2. Let $X = \{a_1, a_2, a_3\}$, $\tau_1 = \{\phi, X, \{a_1\}\}$ and $\tau_2 = \{\phi, X\}$. Then the sets in $\{\phi, X, \{a_1\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{a_2, a_3\}\}$ are called $\tau_{1,2}$ -closed. Then the set $\{a_1, a_2\}$ is $(1, 2)^*$ -wg-closed but it is not a $(1, 2)^*$ wg-closed.

THEOREM 3.3. Every $(1,2)^*$ -w \ddot{g} -closed set is $(1,2)^*$ -w πg -closed but not conversely.

PROOF. Let S be any $(1,2)^*$ -w \ddot{g} -closed set and V be any $(1,2)^*$ - π -open set containing S. Then V is a $(1,2)^*$ -sg-open set containing S. We have $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(S)) \subseteq U$. Thus, S is $(1,2)^*$ -w πg -closed.

EXAMPLE 3.3. In Example 3.2, the set $\{a_1, a_3\}$ is $(1, 2)^* \cdot w\pi g$ -closed but it is not a $(1, 2)^* \cdot w\ddot{g}$ -closed.

THEOREM 3.4. Every $(1,2)^*$ -wÿ-closed set is $(1,2)^*$ -rwg-closed but not conversely.

PROOF. Let S be any $(1,2)^*$ -w \ddot{g} -closed set and V be any regular $(1,2)^*$ -open set containing S. Then V is a $(1,2)^*$ -sg-open set containing S. We have $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(S)) \subseteq V$. Thus, S is $(1,2)^*$ -rwg-closed.

EXAMPLE 3.4. In Example 3.2, the set $\{a_1\}$ is $(1,2)^*$ -rwg-closed but it is not a $(1,2)^*$ -wg-closed.

THEOREM 3.5. If a subset S of a bitopological space X is both $\tau_{1,2}$ -closed and $(1,2)^*$ - αg -closed, then it is $(1,2)^*$ - $w \ddot{g}$ -closed in X.

PROOF. Let S be an $(1,2)^*$ - αg -closed set in X and V be any $\tau_{1,2}$ -open set containing S. Then $V \supseteq (1,2)^*$ - $\alpha cl(S) = S \cup \tau_{1,2}$ - $cl(\tau_{1,2}$ - $int(\tau_{1,2}$ -cl(S))). Since S is $\tau_{1,2}$ -closed, $V \supseteq \tau_{1,2}$ - $cl(\tau_{1,2}$ -int(S)) and hence $(1,2)^*$ - $w\ddot{g}$ -closed in X.

THEOREM 3.6. If a subset S of a bitopological space X is both $\tau_{1,2}$ -open and $(1,2)^*$ -wÿ-closed, then it is $\tau_{1,2}$ -closed.

PROOF. Since S is both $\tau_{1,2}$ -open and $(1,2)^*$ -w \ddot{g} -closed, $S \supseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(S)) = \tau_{1,2}$ -cl(S) and hence S is $\tau_{1,2}$ -closed in X.

COROLLARY 3.1. If a subset S of a bitopological space X is both $\tau_{1,2}$ -open and $(1,2)^*$ -wÿ-closed, then it is both regular $(1,2)^*$ -open and regular $(1,2)^*$ -closed in X.

THEOREM 3.7. Let X be a bitopological space and $S \subseteq X$ be $\tau_{1,2}$ -open. Then, S is $(1,2)^*$ -w \ddot{g} -closed if and only if S is $(1,2)^*$ - \ddot{g} -closed.

PROOF. Let S be $(1,2)^*$ - \ddot{g} -closed. By Theorem 3.1, it is $(1,2)^*$ - $w\ddot{g}$ -closed. Conversely, let S be $(1,2)^*$ - $w\ddot{g}$ -closed. Since S is $\tau_{1,2}$ -open, by Theorem 3.6, S is $\tau_{1,2}$ -closed. Hence S is $(1,2)^*$ - \ddot{g} -closed.

THEOREM 3.8. If a set S is $(1,2)^*$ -w \ddot{g} -closed then $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(S)) – S contains no non-empty $(1,2)^*$ -sg-closed set.

PROOF. Let F be a $(1,2)^*$ -sg-closed set such that $F \subseteq \tau_{1,2}$ - $cl(\tau_{1,2}$ -int(S)) - S. Since F^c is $(1,2)^*$ -sg-open and $S \subseteq F^c$, from the definition of $(1,2)^*$ - $w\ddot{g}$ -closedness, it follows that $\tau_{1,2}$ - $cl(\tau_{1,2}$ - $int(S)) \subseteq F^c$. That is $F \subseteq (\tau_{1,2}$ - $cl(\tau_{1,2}$ - $int(S)))^c$. This implies that $F \subseteq (\tau_{1,2}$ - $cl(\tau_{1,2}$ - $int(S))) \cap (\tau_{1,2}$ - $cl(\tau_{1,2}$ - $int(S)))^c = \phi$.

THEOREM 3.9. If a subset S of a bitopological space X is nowhere dense, then it is $(1,2)^*$ -w \ddot{g} -closed.

PROOF. Since $\tau_{1,2}$ -int $(S) \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(S)) and S is nowhere dense, $\tau_{1,2}$ -int $(S) = \phi$. Therefore $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(S)) = \phi$ and hence S is $(1,2)^*$ -w \ddot{g} -closed in X.

The converse of Theorem 3.9 need not be true as seen in the following example. $\hfill \Box$

EXAMPLE 3.5. Let $X = \{a_1, a_2, a_3\}, \tau_1 = \{\phi, X, \{a_1\}\}$ and $\tau_2 = \{\phi, X, \{a_2, a_3\}\}$. Then the sets in $\{\phi, X, \{a_1\}, \{a_2, a_3\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{a_1\}, \{a_2, a_3\}\}$ are called $\tau_{1,2}$ -closed. Then the set $\{a_1\}$ is $(1, 2)^*$ -wÿ-closed set but not nowhere dense in X.

REMARK 3.1. The following examples show that $(1, 2)^*$ -wÿ-closedness and $(1, 2)^*$ -semi-closedness are independent.

EXAMPLE 3.6. In Example 3.1, we have the set $\{a_1, a_3\}$ is $(1, 2)^*$ -w \ddot{g} -closed set but not $(1, 2)^*$ -semi-closed in X.

EXAMPLE 3.7. Let $X = \{a_1, a_2, a_3\}, \tau_1 = \{\phi, X, \{a_1\}\}$ and $\tau_2 = \{\phi, X, \{a_2\}\}$. Then the sets in $\{\phi, X, \{a_1\}, \{a_2\}, \{a_1, a_2\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{a_3\}, \{a_1, a_3\}, \{a_2, a_3\}\}$ are called $\tau_{1,2}$ -closed. Then the set $\{a_1\}$ is $(1, 2)^*$ -semi-closed set but not $(1, 2)^*$ -wÿ-closed in X.

REMARK 3.2. From the above discussions and known results in [12]. We obtain the following diagram, where $A \to B$ represents A implies B but not conversely.

Diagram

 $\tau_{1,2}$ -closed $\rightarrow (1,2)^*$ - $w\ddot{g}$ -closed $\rightarrow (1,2)^*$ - $w\pi g$ -closed $\rightarrow (1,2)^*$ - $w\pi g$ -closed $\rightarrow (1,2)^*$ -rwg-closed

None of the above implications is reversible as shown in the above examples and in the related paper [14].

DEFINITION 3.2. A subset S of a bitopological space X is called $(1, 2)^* - w\ddot{g}$ -open set if S^c is $(1, 2)^* - w\ddot{g}$ -closed in X.

PROPOSITION 3.1. (1) Every $(1,2)^*$ - \ddot{g} -open set is $(1,2)^*$ - $w\ddot{g}$ -open but not conversely.

(2) Every $(1,2)^*$ -g-open set is $(1,2)^*$ -wg-open but not conversely.

THEOREM 3.10. A subset S of a bitopological space X is $(1,2)^*$ -w \ddot{g} -open if $G \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(S)) whenever $G \subseteq S$ and G is $(1,2)^*$ -sg-closed.

PROOF. Let S be any $(1,2)^*$ -w \ddot{g} -open. Then S^c is $(1,2)^*$ -w \ddot{g} -closed. Let G be a $(1,2)^*$ -sg-closed set contained in S. Then G^c is a $(1,2)^*$ -sg-open set containing S^c . Since S^c is $(1,2)^*$ -w \ddot{g} -closed, we have $\tau_{1,2}$ - $cl(\tau_{1,2}$ - $int(S^c)) \subseteq G^c$. Therefore $G \subseteq \tau_{1,2}$ - $int(\tau_{1,2}$ -cl(S)).

Conversely, we suppose that $G \subseteq \tau_{1,2}$ - $int(\tau_{1,2}$ -cl(S)) whenever $G \subseteq S$ and G is $(1,2)^*$ -sg-closed. Then G^c is a $(1,2)^*$ -sg-open set containing S^c and $G^c \supseteq (\tau_{1,2}$ - $int(\tau_{1,2}$ - $cl(S)))^c$. It follows that $G^c \supseteq \tau_{1,2}$ - $cl(\tau_{1,2}$ - $int(S^c))$. Hence S^c is $(1,2)^*$ -wg-closed and so S is $(1,2)^*$ -wg-open.

DEFINITION 3.3. Let $S \subseteq X$. The $(1,2)^*$ -kernel of S is defined as the intersection of all $\tau_{1,2}$ -open supersets of the set S and is denoted by $(1,2)^*$ -ker(S).

LEMMA 3.1. The following properties hold for subsets P, Q of a space X:

(1) $x \in (1,2)^*$ -ker(P) if and only if $P \cap F \neq \phi$ for any $\tau_{1,2}$ -closed set F containing x.

(2) $P \subseteq (1,2)^*$ -ker(P) and $P = (1,2)^*$ -ker(P) if P is $\tau_{1,2}$ -open in X. (3) If $P \subseteq Q$, then $(1,2)^*$ -ker $(P) \subseteq (1,2)^*$ -ker(Q).

THEOREM 3.11. The following are equivalent for a function $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$.

(1) f is contra $(1,2)^*$ - \ddot{g} -continuous,

(2) the inverse image of every $\sigma_{1,2}$ -closed set of Y is $(1,2)^*$ - \ddot{g} -open.

PROOF. Let P be any $\sigma_{1,2}$ -closed set of Y. Since $Y \setminus P$ is $\sigma_{1,2}$ -open, then by (1), it follows that $f^{-1}(Y \setminus P) = X \setminus f^{-1}(P)$ is $(1,2)^*$ - \ddot{g} -closed. This shows that $f^{-1}(P)$ is $(1,2)^*$ - \ddot{g} -open in X.

Converse is similar.

THEOREM 3.12. Suppose that $(1,2)^*$ - $\ddot{G}C(X)$ is closed under arbitrary intersections. Then the following are equivalent for a function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$.

- (1) f is contra $(1,2)^*$ - \ddot{g} -continuous,
- (2) the inverse image of every $\sigma_{1,2}$ -closed set of Y is $(1,2)^*$ - \ddot{g} -open in X,
- (3) for each $x \in X$ and each $\sigma_{1,2}$ -closed set Q in Y with $f(x) \in Q$, there exists a $(1,2)^*$ - \ddot{g} -open set P in X such that $x \in P$ and $f(P) \subseteq Q$,
- (4) $f((1,2)^* \ddot{g} cl(P)) \subseteq (1,2)^* ker(f(P))$ for every subset P of X,
- (5) $(1,2)^*$ - \ddot{g} - $cl(f^{-1}(Q)) \subseteq f^{-1}((1,2)^*$ -ker(Q)) for every subset Q of Y.

PROOF. (1) \Rightarrow (3). Let $x \in X$ and Q be a $\sigma_{1,2}$ -closed set in Y with $f(x) \in Q$. By (1), it follows that $f^{-1}(Y \setminus Q) = X \setminus f^{-1}(Q)$ is $(1,2)^*$ - \ddot{g} -closed and so $f^{-1}(Q)$ is $(1,2)^*$ - \ddot{g} -open. Take $P = f^{-1}(Q)$. We obtain that $x \in P$ and $f(P) \subseteq Q$.

492

(3) \Rightarrow (2). Let Q be $\sigma_{1,2}$ -closed set in Y with $x \in f^{-1}(Q)$. Since $f(x) \in Q$, by (3) there exists a $(1,2)^*$ - \ddot{g} -open set P in X containing x such that $f(P) \subseteq Q$. It follows that $x \in P \subseteq f^{-1}(Q)$. Hence $f^{-1}(Q)$ is $(1,2)^*$ - \ddot{g} -open.

 $(2) \Rightarrow (1)$. Follows from the previous Theorem.

 $(2) \Rightarrow (4)$. Let P be any subset of X. Let $y \notin (1,2)^*$ -ker(f(P)). Then there exists a $\sigma_{1,2}$ -closed set F containing y such that $f(P) \cap F = \phi$. Hence, we have $P \cap f^{-1}(F) = \phi$ and $(1,2)^*$ - \ddot{g} - $cl(P) \cap f^{-1}(F) = \phi$. Hence, we obtain $f((1,2)^*$ - \ddot{g} - $cl(P)) \cap F = \phi$ and $y \notin f((1,2)^*$ - \ddot{g} -cl(P)). Thus, $f((1,2)^*$ - \ddot{g} - $cl(P)) \subseteq (1,2)^*$ -ker(f(P)).

 $(4) \Rightarrow (5).$ Let Q be any subset of Y. By (4), $f((1,2)^*-\ddot{g}-cl(f^{-1}(Q))) \subseteq (1,2)^*-ker(Q)$ and $(1,2)^*-\ddot{g}-cl(f^{-1}(Q)) \subseteq f^{-1}((1,2)^*-ker(Q)).$

(5) ⇒ (1). Let Q be any $\sigma_{1,2}$ -open set of Y. By (5), $(1,2)^*$ - \ddot{g} - $cl(f^{-1}(Q)) \subseteq f^{-1}((1,2)^*$ - $ker(Q)) = f^{-1}(Q)$ and $(1,2)^*$ - \ddot{g} - $cl(f^{-1}(Q)) = f^{-1}(Q)$. We obtain that $f^{-1}(Q)$ is $(1,2)^*$ - \ddot{g} -closed in X.

4. WEAKLY $(1,2)^*$ - \ddot{g} -OPEN AND WEAKLY $(1,2)^*$ - \ddot{g} -CLOSED FUNCTIONS

DEFINITION 4.1. Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be bitopological spaces. A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called weakly $(1, 2)^*$ - \ddot{g} -open (briefly, $(1, 2)^*$ - $\ddot{w}\ddot{g}$ -open) if f(V) is a $(1, 2)^*$ - $\ddot{w}\ddot{g}$ -open set in Y for each $\tau_{1,2}$ -open set V of X.

REMARK 4.1. Every $(1,2)^*$ - \ddot{g} -open function is $(1,2)^*$ - $w\ddot{g}$ -open but not conversely.

EXAMPLE 4.1. Let $X = Y = \{a_1, a_2, a_3, a_4\}, \tau_1 = \{\phi, X, \{a_1\}\}$ and $\tau_2 = \{\phi, X, \{a_1, a_2, a_4\}\}$. Then the sets in $\{\phi, X, \{a_1\}, \{a_1, a_2, a_4\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{a_3\}, \{a_2, a_3, a_4\}\}$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y, \{a_1\}\}$ and $\sigma_2 = \{\phi, Y, \{a_2, a_3\}\}$. Then the sets in $\{\phi, Y, \{a_1\}, \{a_2, a_3\}, \{a_1, a_2, a_3\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_4\}, \{a_1, a_4\}, \{a_2, a_3, a_4\}\}$ are called $\sigma_{1,2}$ -closed. Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be the identity function. Then f is $(1, 2)^*$ - $w\ddot{g}$ -open but not $(1, 2)^*$ - \ddot{g} -open.

DEFINITION 4.2. Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be bitopological spaces. A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called weakly $(1, 2)^*$ - \ddot{g} -closed (briefly, $(1, 2)^*$ - $w\ddot{g}$ -closed) if f(V) is a $(1, 2)^*$ - $w\ddot{g}$ -closed set in Y for each $\tau_{1,2}$ -closed set V of X.

It is clear that an $(1,2)^*$ -open function is $(1,2)^*$ -w \ddot{g} -open and a $(1,2)^*$ -closed function is $(1,2)^*$ -w \ddot{g} -closed.

THEOREM 4.1. Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be bitopological spaces. A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $(1, 2)^*$ -w \ddot{g} -closed if and only if for each subset Q of Y and for each $\tau_{1,2}$ -open set G containing $f^{-1}(Q)$ there exists a $(1, 2)^*$ -w \ddot{g} -open set F of Y such that $Q \subseteq F$ and $f^{-1}(F) \subseteq G$.

PROOF. Let Q be any subset of Y and let G be an $\tau_{1,2}$ -open subset of X such that $f^{-1}(Q) \subseteq G$. Then $F = Y \setminus f(X \setminus G)$ is $(1,2)^*$ -w \ddot{g} -open set containing Q and $f^{-1}(F) \subseteq G$.

Conversely, let U be any $\tau_{1,2}$ -closed subset of X. Then $f^{-1}(Y \setminus f(U)) \subseteq X \setminus U$ and $X \setminus U$ is $\tau_{1,2}$ -open. According to the assumption, there exists a $(1,2)^*$ -wÿ-open set F of Y such that $Y \setminus f(U) \subseteq F$ and $f^{-1}(F) \subseteq X \setminus U$. Then $U \subseteq X \setminus f^{-1}(F)$. From $Y \setminus F \subseteq f(U) \subseteq f(X \setminus f^{-1}(F)) \subseteq Y \setminus F$, it follows that $f(U) = Y \setminus F$, so f(U) is $(1,2)^* - w\ddot{g}$ -closed in Y. Therefore f is a $(1,2)^* - w\ddot{g}$ -closed function. \Box

REMARK 4.2. The composition of two $(1,2)^*$ -w \ddot{g} -closed functions need not be a $(1,2)^*$ -w \ddot{g} -closed as we can see from the following example.

EXAMPLE 4.2. Let $X = Y = Z = \{a_1, a_2, a_3\}, \tau_1 = \{\phi, X, \{a_1\}\}$ and $\tau_2 = \{\phi, X, \{a_1, a_2\}\}$. Then the sets in $\{\phi, X, \{a_1\}, \{a_1, a_2\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{a_3\}, \{a_2, a_3\}\}$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y, \{a_1\}\}$ and $\sigma_2 = \{\phi, Y, \{a_2, a_3\}\}$. Then the sets in $\{\phi, Y, \{a_1\}, \{a_2, a_3\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_1\}, \{a_2, a_3\}\}$ are called $\sigma_{1,2}$ -closed. Let $\eta_1 = \{\phi, Z, \{a_1, a_2\}\}$ and $\eta_2 = \{\phi, Z\}$. Then the sets in $\{\phi, Z, \{a_1, a_2\}\}$ are called $\eta_{1,2}$ -open and the sets in $\{\phi, Z, \{a_3\}\}$ are called $\sigma_{1,2}$ -closed. We define $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by $f(a_1) = a_3, f(a_2) = a_2$ and $f(a_3) = a_1$ and let $g : (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ be the identity function. Hence both f and g are $(1, 2)^*$ -wÿ-closed functions. For a $\tau_{1,2}$ -closed set $U = \{a_2, a_3\}, (g \circ f)(U) = g(f(U)) = g(\{a_1, a_2\}) = \{a_1, a_2\}$ which is not $(1, 2)^*$ -wÿ-closed in Z. Hence the composition of two $(1, 2)^*$ -wÿ-closed functions need not be a $(1, 2)^*$ -wÿ-closed.

THEOREM 4.2. Let (X, τ_1, τ_2) , (Y, σ_1, σ_2) and (Z, η_1, η_2) be bitopological spaces. If $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a $(1, 2)^*$ -closed function and $g : (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2)$ is a $(1, 2)^*$ -w \ddot{g} -closed function, then $g \circ f : (X, \tau_1, \tau_2) \to (Z, \eta_1, \eta_2)$ is a $(1, 2)^*$ -w \ddot{g} -closed function.

DEFINITION 4.3. A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called a weakly $(1, 2)^*$ - \ddot{g} -irresolute (briefly, $(1, 2)^*$ - $w\ddot{g}$ -irresolute) function if $f^{-1}(Q)$ is a $(1, 2)^*$ - $w\ddot{g}$ -open set in X for each $(1, 2)^*$ - $w\ddot{g}$ -open set Q of Y.

EXAMPLE 4.3. Let $X = Y = \{a_1, a_2, a_3\}, \tau_1 = \{\phi, X, \{a_2\}\}$ and $\tau_2 = \{\phi, X, \{a_1, a_3\}\}$. Then the sets in $\{\phi, X, \{a_2\}, \{a_1, a_3\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{a_2\}, \{a_1, a_3\}\}$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y, \{a_2\}\}$ and $\sigma_2 = \{\phi, Y\}$. Then the sets in $\{\phi, Y, \{a_2\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_2\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_2\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_1, a_3\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_1, a_3\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_1, a_3\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_1, a_3\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_1, a_3\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_1, a_3\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_1, a_3\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_1, a_3\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_1, a_3\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_1, a_3\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_1, a_3\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_1, a_3\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_1, a_3\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_1, a_3\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_1, a_3\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_1, a_3\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_1, a_3\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_1, a_3\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_1, a_3\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_1, a_3\}\}$ are called $\phi_{1,2}$ -open and the sets in $\{\phi, Y, \{a_1, a_3\}\}$ are called $\phi_{1,2}$ -open and the sets in $\{\phi, Y, \{a_1, a_3\}\}$ are called $\phi_{1,2}$ -open and the sets in $\{\phi, Y, \{a_1, a_3\}\}$ are called $\phi_{1,2}$ -open and the sets in $\{\phi, Y, \{a_1, a_3\}\}$ are called $\phi_{1,2}$ -open and the sets in $\{\phi, Y, \{a_1, a_3\}\}$ are called $\phi_{1,2}$ -open and the s

REMARK 4.3. The following examples show that $(1,2)^*$ -sg-irresoluteness and $(1,2)^*$ -wg-irresoluteness are independent of each other.

EXAMPLE 4.4. Let $X = Y = \{a_1, a_2, a_3\}$, $\tau_1 = \{\phi, X, \{a_1, a_2\}\}$ and $\tau_2 = \{\phi, X\}$. Then the sets in $\{\phi, X, \{a_1, a_2\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{a_3\}\}$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y, \{a_1\}\}$ and $\sigma_2 = \{\phi, Y\}$. Then the sets in $\{\phi, Y, \{a_1\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_2, a_3\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_2, a_3\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_2, a_3\}\}$ are called $\sigma_{1,2}$ -closed. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be the identity function. Then f is $(1, 2)^*$ -wÿ-irresolute but not $(1, 2)^*$ -sg-irresolute.

EXAMPLE 4.5. Let $X = Y = \{a_1, a_2, a_3\}, \tau_1 = \{\phi, X, \{a_1\}\}$ and $\tau_2 = \{\phi, X, \{a_2\}\}$. Then the sets in $\{\phi, X, \{a_1\}, \{a_2\}, \{a_1, a_2\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{a_3\}, \{a_1, a_3\}, \{a_2, a_3\}\}$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y, \{a_1, a_2\}\}$

494

and $\sigma_2 = \{\phi, Y\}$. Then the sets in $\{\phi, Y, \{a_1, a_2\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_3\}\}$ are called $\sigma_{1,2}$ -closed. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be the identity function. Then f is $(1,2)^*$ -sg-irresolute but not $(1,2)^*$ -wg-irresolute.

REMARK 4.4. Every $(1,2)^*$ - \ddot{g} -irresolute function is $(1,2)^*$ - $w\ddot{g}$ -continuous but not conversely. Also, the concepts of $(1,2)^*$ - \ddot{g} -irresoluteness and $(1,2)^*$ - $w\ddot{g}$ irresoluteness are independent of each other.

EXAMPLE 4.6. Let $X = Y = \{a_1, a_2, a_3, a_4\}$, $\tau_1 = \{\phi, X, \{a_1\}\}$ and $\sigma_2 = \{\phi, X, \{a_2, a_3\}\}$. Then the sets in $\{\phi, X, \{a_1\}, \{a_2, a_3\}, \{a_1, a_2, a_3\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{a_4\}, \{a_1, a_4\}, \{a_2, a_3, a_4\}\}$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y, \{a_1\}\}$ and $\sigma_2 = \{\phi, Y, \{a_1, a_2, a_4\}\}$. Then the sets in $\{\phi, Y, \{a_1\}, \{a_1, a_2, a_4\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_3\}, \{a_2, a_3, a_4\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a_3\}, \{a_2, a_3, a_4\}\}$ are called $\sigma_{1,2}$ -closed. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be the identity function. Then f is $(1, 2)^*$ - $w\ddot{g}$ -continuous but not $(1, 2)^*$ - \ddot{g} -irresolute.

EXAMPLE 4.7. Let $X = Y = \{a_1, a_2, a_3\}$, $\tau_1 = \{\phi, X, \{a_1\}\}$ and $\tau_2 = \{\phi, X, \{a_2, a_3\}\}$. Then the sets in $\{\phi, X, \{a_1\}, \{a_2, a_3\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{a_1\}, \{a_2, a_3\}\}$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y, \{a_1\}\}$ and $\sigma_2 = \{\phi, Y, \{a_1, a_2\}\}$. Then the sets in $\{\phi, Y, \{a_1\}, \{a_1, a_2\}\}$ are called $\sigma_{1,2}$ -closed. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be the identity function. Then f is $(1, 2)^*$ -wÿ-irresolute but not $(1, 2)^*$ -ÿ-irresolute.

EXAMPLE 4.8. In Example 4.5, then f is $(1,2)^*$ - \ddot{g} -irresolute but not $(1,2)^*$ - $w\ddot{g}$ -irresolute.

THEOREM 4.3. The composition of two $(1,2)^*$ -w \ddot{g} -irresolute functions is also $(1,2)^*$ -w \ddot{g} -irresolute.

THEOREM 4.4. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ and $g : (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2)$ be functions such that $g \circ f : (X, \tau_1, \tau_2) \to (Z, \eta_1, \eta_2)$ is $(1, 2)^*$ -w \ddot{g} -closed function. Then the following statements hold:

(1) if f is $(1,2)^*$ -continuous and injective, then g is $(1,2)^*$ -w \ddot{g} -closed.

(2) if g is $(1,2)^*$ -w \ddot{g} -irresolute and surjective, then f is $(1,2)^*$ -w \ddot{g} -closed.

PROOF. (1) Let F be a $\sigma_{1,2}$ -closed set of Y. Since $f^{-1}(F)$ is $\tau_{1,2}$ -closed in X, we can conclude that $(g \circ f)(f^{-1}(F))$ is $(1,2)^*$ - $w\ddot{g}$ -closed in Z. Hence g(F) is $(1,2)^*$ - $w\ddot{g}$ -closed in Z. Thus g is a $(1,2)^*$ - $w\ddot{g}$ -closed function.

(2) It can be proved in a similar manner as (1).

THEOREM 4.5. If $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is an $(1, 2)^*$ -w \ddot{g} -irresolute function, then it is $(1, 2)^*$ -w \ddot{g} -continuous.

REMARK 4.5. The converse of the above theorem need not be true in general. The function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ in the Example 4.5 is $(1, 2)^* - w\ddot{g}$ continuous but not $(1, 2)^* - w\ddot{g}$ -irresolute.

THEOREM 4.6. If $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is surjective $(1, 2)^*$ -w \ddot{g} -irresolute function and X is $(1, 2)^*$ -w \ddot{g} -compact, then Y is $(1, 2)^*$ -w \ddot{g} -compact.

THEOREM 4.7. If $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is surjective $(1, 2)^*$ -w \ddot{g} -irresolute function and X is $(1, 2)^*$ -w \ddot{g} -connected, then Y is $(1, 2)^*$ -w \ddot{g} -connected.

References

- P. Bhattacharya and B. K. Lahiri. Semi-generalized closed sets in topology. Indian J. Math., 29(3)(1987), 375–382.
- [2] E. Ekici. On a weaker form of RC-continuity. An. Uni. Vest Din Timisoara, Ser. Math. Inf., XLII (fasc.1) (2004), 79–91.
- [3] M. Kamaraj, K. Kumaresan, O. Ravi and A. Pandi. (1,2)*-*g*-closed sets in bitopological spaces. Int. J. Adv. Pure Appl. Math., 1(3)(2011), 98–111.
- [4] M. Kamaraj, K. Kumaresan, O. Ravi and A. Pandi. Decomposition of (1,2)*-*g*-continuity in bitopological spaces. (Tp appear).
- [5] M. Kamaraj, K. Kumaresan, O. Ravi and A. Pandi. (1,2)*-*ÿ*-closed and (1,2)*-*ÿ*-open maps in bitopological spaces. (To appear).
- [6] N. Levine. Generalized closed sets in topology. Rend. Circ. Math. Palermo, 19(1)(1970), 89–96.
- [7] O. Ravi and S. Ganesan. *¨g*-closed sets in topology. Int. J. Comp. Sci. and Emerging Tech., 2(3)(2011), 330–337.
- [8] O. Ravi and M. L. Thivagar. On stronger forms of (1, 2)*-quotient mappings in bitopological spaces., Int. J. Math. Game Theory and Algebra, 14(6)(2004), 481–492.
- [9] o. Ravi and m. l. Thivagar. A bitopological (1,2)*-semi-generalized continuous maps. Bull. Malaysian Math. Sci. Soc., 2(29)(1)(2006), 76–88.
- [10] O. Ravi, M. L. Thivagar and E. Ekici. Decomposition of (1,2)*-continuity and complete (1,2)*-continuity in bitopological spaces. An. Uni. Din Oradea. Fasc. Mat., Tom XV(2008), 29–37.
- [11] O. Ravi, M. L. Thivagar and X. Jinjinli. Remarks on extensions of (1, 2)*-g-closed mappings in bitopology. Archimedes J. Math., 1(2)(2011), 177–187.
- [12] O. Ravi. S. P. Missier and T. S. Parkunan. On bitopological (1,2)*-generalized homeomorphisms. Int. J. Contemp. Math. Sci., 5(11)(2010), 543–557.
- [13] O. Ravi, A. Pandi, S. P. Missier and T. S. Parkunan. Remarks on bitopological (1,2)*-rωhomeomorphism. Int.J. Math. Archive, 2(4)(2011), 465–475.
- [14] O. Ravi, M. L. Thivagar, K. Kayathri and M. J. Isreal. Mildly (1,2)*-normal spaces and some bitopological functions. *Math. Bohemica*, 135(1)(2010),1–13.

Receibed by editors 04.06.2018; Revised version 28.09.2018; Available online 09.10.2018.

R. Karthik. Department of Mathematics, Sudharsan College of Arts & Science, Pudukkottai-622 104, Tamil Nadu, India.

N. RAJASEKAR. DEPARTMENT OF MATHEMATICS, SUDHARSAN COLLEGE OF ARTS & SCIENCE, PUDUKKOTTAI-622 104, TAMIL NADU, INDIA.

E-mail address: rajasekar000350gmail.com