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ON M-BI IDEALS IN SEMIGROUPS

Mohammad Munir

Abstract. Bi ideals are the generalized form of the quasi ideals that are
further a generalization of right and left ideals. In this article, we introduce

the m-bi ideals as a generalization of bi ideals in semigroups. We present
the basic and fundamental properties of the m-bi ideals in the semigroups
from a pure algebraic point of view. The form of the m-bi ideals generated
by an element, a subset and a subsemigroup of a semigroup is given. Their

fundamental properties are also described.

1. Introduction

Theory of semigroups originated as a generalization of the group theory in the
early twentieth century. Semigroups comparatively having simpler structures have
uses and applications recognized in various fields of mathematics and science since
their origin. They have wide spread applications in theoretical computer science
because of having a natural association with the finite automata. Their uses in the
theory of graphs, time-invariant processes and abstract evolution equations have
been eminent. Ideals theory in semigroups, like all other algebraic structures, play
an important role in studying them. Steinfeld gave the idea of quasi ideals in rings
and semigroups respectively in his articles [12] and [11]. Iseki [5] developed this
concept for semirings having no zero and studied important characterizations of
semirings using quasi ideals.

Generalization of the ideals in algebraic structures have also been an interesting
and a useable task for the mathematicians. Ideals were generalized to one-sided
ideals; they were generalized to quasi ideals. The concept of bi ideals as generalized
forms of quasi ideals were introduced by Lajos and Szasz [7] in associative rings.
Later mathematicians introduced this concepts in different types of semigroups.
S.Kar et al generalized bi ideals for the ternary semigroups [6]. Ayutthaya and
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Pibaljommee characterized the ordered semirings by the ordered quasi ideals [10].
Munir et al characterized regular and weakly regular semirings using their quasi and
bi ideals[8]. In [9], the author of this paper generalized the bi ideals for semirings.

In this paper, we define the m-bi ideals as a generalization of bi ideals for
semigroups. In Section 2, we present the idea of the m-bi ideal for the semigroups.
The forms of the m-bi ideals generated by the nonempty sets, subemigroups and
single elements of the semigroup are presented in Section 3. The conclusion of the
article is given in Section 4.

2. m-Bi Ideals

In this section, before presenting the idea of the m-bi ideals in semigroups, we
give a brief summary of the essential concepts and notions used in this field from
the books [3] and [4] which will be used in the sequel.

A nonempty set A together with a binary operation ∗ : A×A → A is called a
semigroup if A is closed under · i.e. a ∗ b ∈ A for all a, b ∈ A, and associative law
holds in A i.e. a ∗ (b ∗ c) = (a ∗ b) ∗ c, for all a, b, c ∈ A. A nonempty subset K of
A is called its subsemirgoup if K itself is a semigroup under the operation ∗ of A.
A subsemigroup I of A is called a left (right) ideal of A if AI ⊆ I (IA ⊆ I). If
A is a left as well as a right ideal, then it is called an ideal (or a two-sided ideal )
of A. A quasi ideal Q of A is a subsemigroup (Q,+) of A satisfying the condition
AQ ∩QA ⊆ Q. A subsemigroup B of A is called a bi ideal of A if BAB ⊆ B.

Now we define the notion of m-bi ideals and discuss their important properties.

Definition 2.1. Let (A, ·) be a semigroup. An m-bi ideal B of A is a subsemi-
group of A such that BAmB ⊆ B where m is a positive integer, not necessarily 1,
called the bipotency of the bi ideal B.

BAmB ⊆ B is called the bipotency condition. This is to be noted that every
bi ideal B of A is a 1-bi ideal of A (bi ideal with bipotency 1). All the so-called
1-bi ideals are simply the bi ideals, whereas those with bipotency m > 1 are to be
indicated with the value of m.

Proposition 2.1. In a semigroup A, every bi ideal is m-bi ideal for any m > 1.

Proof. Since B is a bi ideal of A [8], then we can write BAB ⊆ B because
BA1B ⊆ B which makes B an m-bi ideal of A. �

The converse of the above proposition is not true. This follows from the exam-
ples.

Example 2.1. If A =

0 s t u
0 0 v w
0 0 0 x
0 0 0 0

 : s, t, u, v, w, x are any positive real numbers

 ,



ON M-BI IDEALS IN SEMIGROUPS 463

then (A, ·) is a semigroup under the usual operations of multiplication ′ · ′ of
matrices. If

B =



0 s 0 0
0 0 0 0
0 0 0 x
0 0 0 0

 : s, x are any positive real numbers

 ,

then B is 2-bi ideal of A as BA2B ⊆ B, and BAB ̸⊂ B.

The following examples characterize the m-bi ideals for the categories of idem-
potent and nilpotent matrices.

Example 2.2. Let A be the set of all idempotent matrices of idempotency m
each and commuting with each other, then A forms a semigroup under the ordinary
multiplication of matrices. In this case, for any two matricesM and N belonging to
A, we have (MN )m = NmMm = NM = MN , therefore MN is idempotent with
idempotency m. Moreover, since the multiplication of matrices is associative , so
associative law holds in A. Therefore, A is a semigroup. Next, let B be any bi ideal
of A, then BAmB = BmAmBm = (BAB)m = Bm = B. Therefore, BAmB ⊆ B.
Thus B is a bi ideal of A with bipotency m.

Example 2.3. Let A be the set of all nilpotent matrices of nilpotency m, then
A also forms a semigroup under the usual multiplication of matrices. In this case,
every subsemigroup B of A forms its m-bi ideal; as BAmB = B0B = 0 ⊆ B implies
BAmB ⊆ B,0 is the null matrix.

The left ideal L and the right ideal R of the semigroup A are the bi ideals or
the 1-bi ideals. Every ideal of A is a 1-bi ideal of A.

Proposition 2.2. The product of any m1-bi ideals and m2-bi-ideal of a semi-
group A, with identity e, is max(m1,m2)-bi ideal of A.

Proof. Let B1 and B2 be two bi ideals of a semigroup A with bipotencies
m1 and m2 respectively i.e., B1Am1B1 ⊆ B1 and B2Am1B2 ⊆ B2, m1 and m2

are any positive integers. We have, (B1B2)
2 = (B1B2)(B1B2) = (B1AB1)B2 =

(B1Ae...eB1)B2 ⊆ (B1AA...AB1)B2 ⊆ (B1AmB1)B2 ⊆ B1B2, i.e., (B1B2)
2 ⊆ B1B2.

So, B1B2 is closed under multiplication and B1B2 is a subsemigroup of A. More-
over, B1B2(Amax(m1,m2))B1B2 ⊆ B1AAmax(m1,m2)B1B2 = B1A1+max(m1,m2)B1B2 ⊆
B1Am1B1B2 ⊆ B1B2. We have used the result A1+max(m1,m2) ⊆ Am1 (See [8]). So,
B1B2(Amax(m1,m2))B1B2 ⊆ B1B2. Thus, B1B2 is an max(m1,m2)-bi ideal of A. �

Proposition 2.3. Let A be a semigroup with identity e, T be its arbitrary
subset and B be its m-bi ideal; m not necessarily 1, then BT is its m-bi ideal.

Proof. We have (BT )2 = (BT )(BT ) = (BT B)T ⊆ (BAB) ⊆ BAe...eB ⊆
BAA...AB ⊆ (BAmB)T ⊆ BT . So, BT 2 ⊆ BT making it a subsemigroup of A.
Moreover, BT (Am)BT ⊆ BAAmBT ⊆ BA1+mBT ⊆ BAmBT ⊆ BT . Therefore,
BT is m-bi ideal of A. �

In a similar way, we can also prove T B an m-bi ideal of A.
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Proposition 2.4. The intersection of a family of bi ideals of a semigroup A
with bipotencies m1,m2, ..., is also a bi ideal with bipotency max{m1,m2, ...}.

Proof. Let {Bλ : λ ∈ ∧} be a family of m-bi ideals of semigroup A, then B =∩
λ∈∧

Bλ, being the intersection of subsemigroups of A is a subsemigroup of A. Since

BλAmλBλ ⊆ Bλ ∀ λ ∈ ∧, and B ⊆ Bλ ∀ λ ∈ ∧, therefore BAmax{mλ:λ∈∧}B ⊆
BλAmλBλ ⊆ Bλ ∀ λ ∈ ∧. This implies that BAmax{mλ:λ∈∧}B ⊆ Bλ ∀ λ ∈ ∧.
This gives BAmax{mλ:λ∈∧}B ⊆

∩
λ∈∧

Bλ = B. Therefore, BAmax{mλ:λ∈∧}B ⊆ B. Thus

B is an m-bi ideal with bipotency max{m1,m2, ...}. �

Sum of two m-bi ideals of a semigroup is not an m-bi ideals.

Example 2.4. If

A =

{(
a b
c d

)
: a, b, c, d are non-negative integers

}
,

then A is a semigroup under multiplication of matrices. If

B1 =

{(
x 0
0 0

)
: x is a non-negative integers

}
and

B2 =

{(
0 0
0 y

)
: y is a non-negative integers

}
,

then B1 and B2 are 1-bi ideals of A. But B = B1 + B2, is not a bi ideal of A
because, in this case, we have

B =

{(
x 0
0 y

)
: x and y are non-negative integers

}
.

So, BAB ̸⊂ B.

Proposition 2.5. Every (m,m)-quasi ideal Q of a semigroup A is its m-bi
ideal.

Proof. Consider QAmQ ⊆ QAmA = QAm+1 ⊆ QAm, and so QAmQ ⊆
QAm. Similarly, QAmQ ⊆ AmQ. Combining these two, we QAmQ ⊆ QAm ∩
AmQ ⊆ Q. Thus QAmQ ⊆ Q. That is, Q is bi ideal with bipotency m. �

Proposition 2.6. The product of any (m1,m2)-quasi ideal and (n1, n2)-quasi-
ideal of a semigroup A, with identity e, is max{m1,m2, n1, n2}-bi ideal of A.

Proof. Since (Q1Q2)(Q1Q2) ⊆ Q1(Q2AQ2) ⊆ Q1Q2, i.e., (Q1Q2)
2 ⊆ Q1Q2,

therefore Q1Q2 is closed under multiplication. (Q1Q2)Amax{m1,m2,n1,n2}(Q1Q2) ⊆
Q1Q2Amax{m1,m2,n1,n2}(AQ2) ⊆ Q1(Q2Amax{m1,m2,n1,n2}+1Q2) ⊆ Q1Q2. Thus,
Q1Q2 is a bi ideal of A with bipotency max{m1,m2, n1, n2}. �

Definition 2.2. A subsemigroup L of a semigroup A is said to be its m-left
ideal if AmL ⊆ L for a positive integer m.
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The n-right ideal R of A is defined similarly, where n is a positive integer
([1],[2]).

Proposition 2.7. An m-left ideal of a semigroup A is its m-bi ideal.

Proof. Let L be the m-left ideal of A, then LAmL ⊆ LL ⊆ L. This implies
that L is m-bi ideal of A. �

Corollary 2.1. An n-right ideal of A is its m-bi ideal.

Proof. As above. �

Theorem 2.1. If Li ( Ri ) is an m-left ( n-right ) ideal of a semigroup A for
i ∈ I, then

∩
i∈I

Li (
∩
i∈I

Ri ) is also m-left (n-right ) ideal of A.

Proof. As Proposition 2.4. �

Theorem 2.2. For an m-left L and n-right R of a semigroup A, their inter-
section L ∩R is its t-bi ideal, where t = max(m,n).

Proof. Since 0 ∈ L ∩ R, therefore by the above Lemma 3.1, we see that
L ∩ R is a subsemigroup of A. Now, since L and R are also m-bi and n-bi ideals
of A, their intersection turns out to be max(m,n)-bi ideals from the above result
2.4. Alternatively, L ∩ R(Amax{m,n})L ∩ R ⊆ LAmax{m,n}L ⊆ Amax{m,n}+1L ⊆
AmL ⊆ L.

Similarly, we can show that L ∩ R(Amax{m,n})L ∩ R ⊆ R. Consequently,
L ∩RAmax{m,n}L ∩R ⊆ L ∩R �

3. Finitely Generated m-bi Ideals

Definition 3.1. For a semigroup A, let τ be the collection of m-bi ideals
B of A containing G, where G is a subset of A. Then, we can write τ = {B :
B is m-bi ideal of A such that it contains G }. τ is nonempty as A ∈ τ . Let
< G >m−b=

∩
B∈τ

B. Clearly, < G >m−b is nonempty because 0 ∈< G >m−b. Since

the intersection of m-bi ideals is m-bi ideal, so is < G >m−b of A. Next, < G >m−b

being the intersection of all m-bi ideals of A containing G is its smallest m-bi ideal
which contains G. < G >m−b is said to be the m-bi ideal of A generated by G.

It is clear that < ϕ >m−b=< 0 >m−b= {0}.

Theorem 3.1. Let G be a non-void subset of A, then the m-bi ideal generated
by G is < G >m−b= G ∪ G2 ∪ GAmG.

Proof. We need to show that < G >m−b= G ∪ G2 ∪ GAmG is the smallest
m-bi ideal of A which contains G. < G >m−b is nonempty. Let a ∈< G >m−b.
Then a ∈

∩
G⊆B∈τ

B. This implies a ∈ B, for all B ∈ τ, such that B ⊇ G.

Here, we claim that a ∈ GAmG; for if a /∈ GAmG, then since a /∈ GAmG ⊆ BA2B,
therefore, a /∈ BAmB for some B ∈ τ . This is a contradiction to our hypothesis
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that a ∈
∩

G⊆B∈τ

B. So, a ∈ GAmG, and thus, a ∈ G ∪ G2 ∪ GAmG. Thus, G is

< G >m−b⊆ G ∪ G2 ∪ GAmG.
Conversely, let a ∈ G∪G2∪GAmG. Then, a ∈ G or a ∈ G2 or a ∈ GAmG. When

a ∈ G, then a ∈< G >m−b. When a ∈ G2, then a ∈ GG ⊆< G >m−b< G >m−b⊆
(< G >m−b)

2 ⊆< G >m−b. That is, a ∈< G >m−b. Lastly, when a ∈ GAmG,
then a ∈ BAmB, for all B ∈ τ containing G. So, a ∈

∩
G⊆B∈τ

B =< G >m−b. So,

G ∪ G2 ∪ GAmG ⊆< G >m−b. Consequently, < G >m−b= G ∪ G2 ∪ GAmG.
Next, we need to show that < G >m−b Am < G >m−b⊆< G >m−b. Consider

< G >m−b Am < G >m−b=
(
G ∪ G2 ∪ GAmG

)
Am

(
G ∪ G2 ∪ GAmG

)
⊆

(
G ∪ G2 ∪

GAmA
)
Am

(
A ∪A2 ∪ AAmG

)
=

(
G ∪ G2 ∪ GAm+1

)
Am

(
A ∪Am+1G

)
=

(
G ∪ G2 ∪

GAm+1
)
Am

(
(A∪Am+1)G

)
⊆

(
G∪G2∪GAm+1

)
Am

(
AG

)
⊆

(
G∪G2∪GA2(m+1)G

)
⊆(

G ∪ G2 ∪ GAmG
)
. Therefore, < G >m−b Am < G >m−b⊆< G >m−b. That is,

< G >m−b Am < G >m−b is an m-bi ideal containing G. To show that < G >m−b

is the smallest m-bi ideal of A that contains G, take B′ to be any other m-bi ideal
of A containing G, then, GG ⊆ B′B′ ⊆ (B′)2 ⊆ B′. That is, G2 ⊆ B′. Now
GAmG ⊆ B′AmB′ ⊆ B′. Therefore, < G >m−b= G ∪ G2 ∪ GAmG ⊆ B′, that is,
< G >m−b is the smallest m-bi ideal of A containing G. �

Corollary 3.1. If a ∈ A, the m-bi ideal generated by a is < a >m−b=
{a} ∪ {a2} ∪ aAma.

Corollary 3.2. If G is a subsemigroup of A, then the m-bi ideal generated by
G is < G >m−b= G ∪ GAmG.

Proof. Since G is subsemigroup of A, G2 = GG ⊆ G. Therefore, the m-bi
ideal generated by G is < G >m−b= G ∪ GAmG. �

Corollary 3.3. If the semigroup (A, ·) contains the multiplicative identity e,
then the m-bi ideal generated by the nonempty set G is < G >m−b= GAmG.

Proof. Since A contains the multiplicative identity e, G ⊆ GAmG. Therefore,
< G >m−b= GAmG. �

Corollary 3.4. If a is an element of a semigroup A with identity e, then the
m-bi ideal generated by a is < a >m−b= aAma.

Remark 3.1. For m = 1, the bi ideal generated by a nonempty set G is
< G >b= G ∪ G2 ∪ GAG. If G is a subsemigroup of A, then the bi ideal generated
by G is < G >b= G ∪ GAG. If A possesses the identity element, then the bi ideal
generated by G is < G >b= GAG.

Definition 3.2. An m-bi ideal is called principal m-bi ideal if it is generated
by a single element.

Theorem 3.2. In a semigroup A the following hold

(1) for a nonempty subset G of A, < G >m−b⊆< G >b,
(2) for a semigroup G of A, < G >m−b⊆< G >b,
(3) for an element a of A, < a >m−b⊆< a >b.
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Proof. (1) Since for any positive integer m, G ∪ G2 ∪GAmG ⊆ G ∪G2 ∪GAG.
Therefore, < G >m−b⊆< G >b.

(2) Analogously.
(3) Analogously. �

4. Conclusions

We have introduced the notion of m-bi ideal in semigroups as a generalization
of their bi ideals for a positive integer m, then studied their basic properties. We
have also presented the forms of the m-bi ideals of a semigroup generated by a
nonempty subset, a subsemigroup and a single element of the semigroup. The idea
of m-bi ideals will be useful to characterize some more classes of the semigroups
like regular semigroups, intra-regular and weakly-regular semigroups.
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