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Abstract. An important step in the production of soybean-derived products
such as soya milk is the soaking process. Moisture hydration during soaking

depends on the time-temperature binomial. The amount of absorbed water

increases with soaking time and temperature until it reaches a saturation limit.
Both empirical and phenomenological models that represent hydration have

been developed to predict the necessary time to obtain the desired moisture

content at a certain temperature, representing the dynamic behavior of the
soaking process. A distributed parameter phenomenological model which is

known as Hsu model is used in this study. As the model involves nonlinear
partial differential equations (PDEs) which are inherently ’stiff’, it is usually

difficult to solve them numerically. To solve Hsu model it is used Crank-

Nicolson method and a splitting technique. Besides grain volume variation
function is used in the literature, a new exponential type function is used and

results are compared.

1. Introduction

Soaking is a prelude to cooking in softening the seeds and gelatinizing the starch
before or during cooking. Partial leaching oligosaccharides during soaking reduce
gas production in humans and monogastric animals. Pre-soaking brings down the
cooking time required to achieve the desired softness making the cooking process
convenient and fuel efficient. Maximizing water content and seed size improves
profitability in the canning industry; for consumers, it can achieve satiety at the
lower calorific value or dry seed weight [5].

Water absorption by soybean grain during soaking depends mainly on time-
temperature binomial. The amount of absorbed water increases with soaking time
and temperature [3, 4].
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Models that represent the hydration of grains have been developed to predict
the necessary time to obtain the desired moisture content at a certain tempera-
ture, representing the dynamic behavior of the soaking process. These models may
basically empirical and phenomenological [3, 4].

Hsu [2] developed well-established distributed parameter model that does not
take into account the change in volume expansion due to soaking presented in the
literature for the analysis of grain hydration. Coutinho [3] obtained experimentally
that the increase throughout soybean grains hydration could reach 30 %. After
that, Nicolin et al.[1] proposed a model with considering the volume variation in
hydration of grain by using radius function with respect to time.

In this study, Hsu model with volume variation is investigated by Crank-
Nicolson method and a splitting technique. Grain volume variation is represented
by two different radius function with respect to time and obtained results are com-
pared.

2. Problem Formulation

Hsu model assumes that seeds are spherical, diffusion takes place only in ra-
dial direction, the effect of volume change due to absorption is negligible and the
diffusion coefficient is a function of moisture content.

The model in Eq.(2.1) is inspired Fick’s diffusion model(1855) that from a
mass balance in differential volume element, considering radial diffusivity as expo-
nentially varying with grain moisture content as in Eq.(2.2).

(2.1)
∂X

∂t
=

1

r2

∂

∂r

(
r2D

∂X

∂r

)
(2.2) D = D0e

k1X

where D0 is a pre-exponential factor that represents the value for water diffusivity
in the grain when moisture content (X) equals zero; k1 is an exponential factor.

The amount of water absorbed by soybean can be obtained from Eq.(2.1) with
the following initial and boundary conditions:

(2.3) X = X0 for any r and t = 0

(2.4)
∂X

∂r
= 0 for r = 0 and t > 0

(2.5) X =
(
1 − e−βt

)
Xeq +X0e

−βt for r = R and t > 0

where X0 is initial moisture content, Xeq is equilibrium moisture content and β is
constant saturation rate.

Eq.(2.3) represents the initial condition that assumes moisture content initially
uniform throughout the grain. The boundary conditions establish the grain central
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symmetry in any instant of time in Eq.(2.4) and the moisture content variation at
the solid-fluid interface in Eq.(2.5).

In the present study grain volume variation will be represented by the radius
versus time functions as in Eq.(2.6) and Eq.(2.7):

(2.6) Rp = R0 + atn

(2.7) Rp = a+ bexp(tc)

where R0 is initial radius size and a, b, c, n are constants.
Eq.(2.6) is used in [4] for grain volume variation at all temperatures. Also in

this study, both functions are used separately to represent the volume variation.
By making the following substitutions [2]:

X∗ =
X −X0

Xeq −X0
r∗ =

r

R

t∗ =
tD∗

0

R2
D1 =

D

D∗
0

D∗
0 = D0e

k1X0 k = k1 (Xeq −X0)

On introducing,

S =

∫ X∗

0

D1dX
∗ =

1

k

(
ekX

∗
− 1
)

=
1

k
(D1 − 1)

By this way, dimensionless form of the model is obtained as Eqs.(2.8)-(2.11):

(2.8)
∂S

∂t∗
= D1

[
∂2S

∂r∗2
+

2

r∗

(
∂S

∂r∗

)]
(2.9) S = 0 for all r∗ and t∗ = 0

(2.10)
∂S

∂r∗
= 0 at t∗ = 0

(2.11) S =
1

k

(
e
k
(

1−e−Bt∗
))

for r∗ = 1 with B =
βR2

D∗
0

2.1. Crank-Nicolson Method. Discretization of radial and time derivatives
of Eq.(2.8) by Crank-Nicolson method yields Eq.(2.12) which is valid for the internal
points:

(2.12)
Si,j+1 − Si,j

∆t∗
=

1

2
(kSi,j + 1)

[
Si+1,j+1 − 2Si,j+1 + Si−1,j+1
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+
Si+1,j − 2Si,j + Si−1,j

∆r∗2

]

+
1

(i− 1)∆r∗
(kSi,j + 1)

[
Si+1,j+1 − Si−1,j+1
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+
Si+1,j − Si−1,j
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Initial and boundary conditions are discretized as below:

(2.13) Si = 0 for all r∗ and t∗ = 0, i = 1, 2, ..., N + 1

(2.14) S0 = S1, r∗ = 0

(2.15) SN+1 =

[
e
k
(

1−e−Bt∗
)
− 1

]
/k, r∗ = 1 with B =

βR2

D∗
0

.

Since the radius of soybean changes with respect to time, the average increment
of the radius is determined by

(2.16) ∆r∗ =
Rp
N

where N is the number of division of radius.

2.2. A Splitting Technique. Splitting the Eq.(2.8) it is obtained Eq.(2.17)
and Eq.(2.18):

(2.17)
1

2

∂S

∂t∗
= D1

∂2

∂r∗2
, tj 6 t 6 tj+1/2

(2.18)
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2
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∂t∗
= D1

2

r∗
∂S

∂r∗
, tj+1/2 6 t 6 tj+1

Discretization of radial and time derivatives by finite difference yields Eq.(2.18)
and Eq.(2.19):

(2.19) Si,j+1/2 = 2
(
kSi,j−1/2 + 1

)
rj+1/2

(
Si+1,j−1/2 + Si−1,j−1/2

)
+(1 − 4(kSi,j−1/2 + 1))rj+1/2Si,j−1/2

(2.20) Si,j+1 = Si,j+1/2 +
4

(i− 1)

(
kSi,j+1/2 + 1

)
rj+1(Si+1,j+1/2 − Si−1,j+1/2)

where rj+1/2 and rj+1 are depend on r∗ and t∗. Where Eq.(2.19) is solved for
a time interval of ∆t∗/2 using the initial condition of Eq.(2.1). The solution of
Eq.(2.19) is used as the initial condition of Eq.(2.20) and Eq.(2.20) is solved for a
time interval of ∆t∗/2.

Initial and boundary conditions are discretized as in Eq.(2.21)-(2.23):

(2.21) Si = 0 for all r∗ and t∗ = 0

(2.22) S2,j+1 = S1,j+1 for r∗ = 0

(2.23) Sn+1,j =
1

k

[
e
k
(

1−e−Bt∗
)
− 1

]
for r∗ = 1 with B =

βR2

D∗
0

.
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3. Problem Solution

Hsu model is solved by Crank-Nicolson method and a splitting technique by
using Eq.(2.6) and Eq.(2.7) and the adjusted parameters at temperature 10o C are
given in Table 1. The number of divisions of the radius (N) is taken as 20.

Table 1. Adjusted parameters (Nicolin et al.(2012))

T (oC) D0x1010 k1 βx103

10 4.810 ± 0.085 0.018 ± 0.0001 5.078
20 7.859 ± 0.087 0.021 ± 0.0002 4.026
30 11.250 ± 0.017 0.027 ± 0.0002 4.602
40 17.349 ± 0.077 0.033 ± 0.0006 5.535
50 4.810 ± 0.085 0.039 ± 0.0006 8.732

Figure 1. Moisture content versus radius (on the left) and mois-
ture content versus time (on the right) profiles at T = 10oC,
Rp = R0 + atn

Figure 1 illustrates the moisture content profiles as a function of radius for
various times (on the left) and moisture content profiles as a function of time for
the various radial position (on the right) by using Crank-Nicolson method.

In Figure 2, moisture versus radius (on the left) and moisture versus time
(on the right) profiles are given by using the splitting technique. In both of the
calculations in Figures 1 and 2, grain volume variation which is represented by the
radius versus time function given by Eq.(2.6).

Figure 3 and Figure 4 show the moisture content profiles as a function of radius
for various times (left on) and moisture content profiles as a function of time for the
various radial position (right on) by using Crank-Nicolson method and the splitting
technique, respectively. In these calculations, Eq.(2.7) is used to represent volume
variation.

As figures show the speed of convergence in the splitting technique is faster
than Crank-Nicolson method.



436 GULEN AND OZIS

Figure 2. Moisture content versus radius (on the left) and mois-
ture content versus time (on the right) profiles at T = 10oC,
Rp = R0 + atn

Figure 3. Moisture content versus radius (on the left) and mois-
ture content versus time (on the right) profiles at T = 10oC,
Rp = a+ bexp(tc)

Figure 4. Moisture content versus radius (on the left) and mois-
ture content versus time (on the right) profiles at T = 10oC,
Rp = a+ bexp(tc)
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4. Conclusion

The number of division of radius is chosen as 60 in Nicolin et al.[1] and they
observed that there is no significant difference among the profiles obtained for
50 6 N 6 70. Although we use 20 spatial points, the same trend is obtained with
Nicolin et al.[1]. This shows that our approach reduces the number of mesh points
drastically and gives the good approximation.

For both methods, the maximum error is 1.444x10−8 is obtained. The speed of
convergence in the splitting technique is faster than Crank- Nicolson method and
when it is used Eq.(2.7) computational time is less.
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