A NOTE ON AVERAGE DOMINATION AND AVERAGE INDEPENDENT DOMINATION NUMBERS IN GRAPHS

A. Wilson Baskar and P. Nataraj

Abstract

Henning[6] introduced the concept of average domination and average independent domination. The domination number $\gamma_{v}(G)$ of G relative to v is the minimum cardinality of a dominating set containing v. The average domination number of G is $\gamma_{a v}(G)=\frac{1}{|V(G)|} \sum_{v \in V(G)} \gamma_{v}(G)$. The independent domination number $i_{v}(G)$ of G relative to v is the minimum cardinality of a maximal independent set in G that contains v. The average independent domination number of G is $i_{a v}(G)=\frac{1}{|V(G)|} \sum_{v \in V(G)} i_{v}(G)$. In this note, we look at these parameters in a different point of view and hence simplify the results.

1. Introduction

Domination and its variations in graphs are well studied and the literature on this subject has been surveyed and detailed in the books [4], [5]. For notation and graph theory terminology we in general follow [4]. Specifically, let $G=(V, E)$ be a graph with a vertex set V of order n and edge set E of size m, and let v be a vertex in V. The open neighborhood of v is $N(v)=\{u \in V \mid u v \in E\}$ and the closed neighborhood of v is $N[v]=\{v\} \cup N(v)$. For a set $S \subseteq V$, its open neighborhood $N(S)=\cup_{v \in S} N(v)$ and its closed neighborhood $N[S]=N(S) \cup S$. A leaf is a vertex of degree one and its neighbor is called a support vertex. A vertex v is said to be a full degree vertex if $\operatorname{deg}(v)=|V(G)|-1$.

A subset $S \subseteq V$ of vertices is a dominating set of G if every vertex in $V-S$ is adjacent to at least one vertex of S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set in G. A subset $I \subseteq V$ of vertices is an independent

[^0]set of G if no two vertices are adjacent in I. The independence number $\beta(G)$ of G is the maximum cardinality of an independent set in G, while the independent domination number $i(G)$ of G is the minimum cardinality of maximal independent set of G.

Definition 1.1. Let $\mu(G)$ be a numerical invariant of a graph G defined in such a way that it is the minimum or maximum number of vertices of a set $S \subseteq V$ with a given property P. A set with property P and with $\mu(G)$ vertices in G is called a μ - set of G . A vertex v of a graph G is defined to be a
(1) ([3]) μ - good vertex if it belongs to some μ - set of G;
(2) $([\mathbf{3}]) \mu$ - bad vertex if it belongs to no μ - set of G ;
(3) ([7]) μ - fixed vertex if it belongs to every μ - set of G;
(4) $([7]) \mu$ - free vertex if it belongs to some μ - set but not to all μ - sets of G.

Definition 1.2. ([8]) A graph G is μ-excellent if every vertex of G belongs to some μ-set.

Definition 1.3. The corona $H^{+}=H \circ K_{1}$ is the graph constructed from a copy of H , where for each vertex $v \in V(H)$, a new vertex v^{\prime} and a pendant edge $v v^{\prime}$ are added.

Definition 1.4. The binomial tree of order $n \geqslant 0$ with root R is the tree B_{n} defined as follows.
(1) If $n=0, B_{n}=B_{0}=R$, i.e., the binomial tree of order zero consists of a single vertex R.
(2) If $n>0, B_{n}=R, B_{0}, B_{1}, \cdots, B_{n-1}$, i.e., the binomial tree of order $n>0$ comprises of the root R , and n binomial sub trees, $B_{0}, B_{1}, \cdots, B_{n-1}$.

Note 1.1. From above definition, $B_{n}=B_{n-1}^{+}$.
Definition 1.5. Let $p_{1}, p_{2}, \cdots, p_{n}$ be non-negative integers and G be a graph with $|V(G)|=n$. The thorn graph of a graph, with parameters $p_{1}, p_{2}, \cdots, p_{n}$, is obtained by attaching p_{i} new vertices of degree 1 to the vertex u_{i} of the graph $G, i=1,2, \cdots, n$. The thorn graph of the graph G will be denoted by G^{*} or by $G^{*}\left(p_{1}, p_{2}, \cdots, p_{n}\right)$.

Definition 1.6. A complete k-ary tree with depth n is, all leaves with the same depth and all internal vertices have exactly k children. A complete k -ary tree has $\frac{k^{n+1}-1}{k-1}$ vertices and $\frac{k^{n+1}-1}{k-1}-1$ edges.

2. Average Domination Number

For a vertex v of G, the domination number $\gamma_{v}(G)$ of G relative to v is defined as the minimum cardinality of a dominating set containing v. The average domination number of G is

$$
\gamma_{a v}(G)=\frac{1}{|V(G)|} \sum_{v \in V(G)} \gamma_{v}(G)
$$

We call a dominating set of cardinality $\gamma_{v}(G)$ containing v a γ_{v} - set. Let $S \subseteq V$ be a γ - set of G. Then for every vertex $v \in V(G)$, either $v \in D$ or $v \notin D$. If $v \in D$, then $\gamma_{v}=\gamma$, if $v \notin D$, then $\gamma_{v}=\gamma+1$. Therefore, $\gamma \leqslant \gamma_{v} \leqslant \gamma+1$ for all $v \in V(G)$ and thus $\gamma \leqslant \gamma_{a v} \leqslant \gamma+1$.

Definition 2.1. Let G be a graph. Let V_{g} be the set of all γ-good vertices in G and V_{b} be the set of all γ-bad vertices. Then, $\left|V_{b}\right|=|V|-\left|V_{g}\right|$. Let $g_{\gamma}=\left|V_{g}\right|$ and $b_{\gamma}=\left|V_{b}\right|$. Therefore, $g_{\gamma}=n-b_{\gamma}$.

Proposition 2.1. For any graph G, $\gamma_{a v}(G)=\gamma(G)+\frac{b_{\gamma}(G)}{n}$.
Proof. By definition of $\gamma_{a v}(G)$,
$\gamma_{a v}(G)=\frac{1}{|V|}\left(\sum_{v \in V(G)} \gamma_{v}\right)=\frac{1}{n}\left(\sum_{v \in V_{g}} \gamma_{v}+\sum_{v \in V_{b}} \gamma_{v}\right)=\frac{1}{n}\left(\gamma\left|V_{g}\right|+(\gamma+1)\left|V_{b}\right|\right)=$ $\frac{1}{n}\left(n \gamma+b_{\gamma}\right)=\gamma(G)+\frac{b_{\gamma}}{n}$.

Corollary 2.1. $\gamma \leqslant \gamma_{a v}<\gamma+1$.
Corollary 2.2. G is γ-excellent iff $\gamma_{a v}=\gamma$.
Corollary 2.3. $\gamma_{a v}\left(C_{n}\right)=\gamma\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil, \gamma_{a v}\left(K_{n}\right)=\gamma\left(K_{n}\right)=1$, $\gamma_{a v}\left(K_{m, n}\right)=\gamma\left(K_{m, n}\right)=2$, for $m, n \geqslant 2$.

Corollary 2.4. If $G=H^{+}$, then $\gamma_{a v}(G)=\gamma(G)=|V(H)|$, for some H.
Corollary $2.5([\mathbf{1}]) . \gamma_{a v}\left(B_{n}\right)=\gamma\left(B_{n}\right)=2^{n-1}$.
Proof. Since $B_{n}=B_{n-1}^{+}, \gamma_{a v}\left(B_{n}\right)=\gamma\left(B_{n}\right)=2^{n-1}$.
Corollary $2.6([\mathbf{6}]) . \gamma_{a v} \leqslant \gamma+1-\frac{\gamma}{n}$, with equality iff G has a unique $\gamma-$ set.

Proposition 2.2. $b_{\gamma}\left(P_{n}\right)= \begin{cases}\frac{2 n}{3} & \text { if } n \equiv 0(\bmod 3) \\ 0 & \text { if } n \equiv 1(\bmod 3) \\ \frac{n-2}{3} & \text { if } n \equiv 2(\bmod 3) .\end{cases}$
Corollary 2.7 $([\mathbf{6}]) . \gamma_{a v}\left(P_{n}\right)= \begin{cases}\frac{n+2}{3}-\frac{2}{3 n} & \text { if } n \equiv 2(\bmod 3) \\ \frac{n+2}{3} & \text { otherwise. }\end{cases}$
Proposition 2.3. Let G be a connected graph of order n and G^{*} be the thorn graph of G. Then

$$
b_{\gamma}\left(G^{*}\right)= \begin{cases}0 & \text { if } p_{i}=1 \text { for all } i \\ \sum_{i} p_{i} & \text { if } p_{i}>1 \text { for all } i\end{cases}
$$

Proof. For $p_{i}=1$ for all i, G^{*} is γ-excellent and hence $b_{\gamma}\left(G^{*}\right)=0$. For $p_{i}>1$ for all $i, b_{\gamma}\left(G^{*}\right)=\sum_{i} p_{i}$.

Corollary 2.8 ([1]).

$$
\gamma_{a v}\left(G^{*}\right)= \begin{cases}n & \text { if } p_{i}=1 \text { for all } i \\ n+1-\frac{n}{n+\sum_{i} p_{i}} & \text { if } p_{i}>1 \text { for all } i .\end{cases}
$$

Proposition 2.4. Let G be a complete k-ary tree with depth n. Then

$$
\gamma(G)= \begin{cases}\frac{k^{2}\left(k^{n}-1\right)}{k^{3}-1}+1 & n \equiv 0(\bmod 3) \\ \frac{k^{n+2}-1}{k^{3}-1} & n \equiv 1(\bmod 3) \\ \frac{k\left(k^{n+1}-1\right)}{k^{3}-1} & n \equiv 2(\bmod 3)\end{cases}
$$

Proposition 2.5. Let G be the complete k-ary tree with depth n. Then

$$
b_{\gamma}(G)= \begin{cases}|V(G)|-\gamma(G)-k & \text { if } n \equiv 0(\bmod 3) \\ |V(G)|-\gamma(G) & \text { otherwise }\end{cases}
$$

Proof. Let G be the complete k-ary tree with depth n . Then all the vertices on the levels $n-1-3 i \leqslant 3,0 \leqslant i \leqslant \frac{n-4}{3}$, are γ-fixed vertices.

If $n \equiv 1(\bmod 3)$, then the root vertex is γ-fixed. If $n \equiv 2(\bmod 3)$, then the vertices at level one are γ-fixed. Therefore, γ-set is unique and hence $b_{\gamma}(G)=$ $|V(G)|-\gamma(G)$.

If $n \equiv 0(\bmod 3)$, then the root vertex and the vertices at level one are γ-free vertices and thus $b_{\gamma}(G)=|V(G)|-\gamma(G)-k$.

Corollary 2.9 ([1]).

$$
\gamma_{a v}(G)= \begin{cases}\gamma(G)+1-\frac{\gamma(G)+k}{\left|V_{\gamma}(G)\right|} & \text { if } n \equiv 0(\bmod 3) \\ \gamma(G)+1-\frac{\gamma}{|V(G)|} & \text { otherwise } .\end{cases}
$$

Proposition 2.6. Let G be a graph with full-degree vertices. Then, $b_{\gamma}=n-r$, where r denotes the number of full degree vertices.

Corollary 2.10. Let G be a graph with r full-degree vertices. Then, $\gamma_{a v}(G)=$ $2-\frac{r}{n}$.

Corollary 2.11 ([1]). Let r_{1}, r_{2} be the number of full-degree vertices of two graphs G_{1}, G_{2} respectively. Then, $\gamma_{a v}\left(G_{1}+G_{2}\right)=2-\frac{r_{1}+r_{2}}{n_{1}+n_{2}}$, where $n_{1}=$ $\left|V\left(G_{1}\right)\right|, n_{2}=\left|V\left(G_{2}\right)\right|$.

Corollary 2.12 ([1]). Let G_{1} and G_{2} be two graphs without full-degree vertex. Then, $\gamma_{a v}\left(G_{1}+G_{2}\right)=2$.

3. Average Domination Number of Some Middle Graphs

Definition 3.1. The middle graph $\mathrm{M}(\mathrm{G})$ is the graph obtained from G by inserting a new vertex into every edge of G and by joining edges those pairs of these new vertices which lie on adjacent edges of G. The new inserted vertices are called middle vertices. If G is a (n,m)-graph, then $|V(M(G))|=n+m$.

Proposition 3.1. $\gamma\left(M\left(P_{n}\right)\right)=\left\lceil\frac{n}{2}\right\rceil$ and γ-set is unique when n is even.
Proposition 3.2. $\gamma\left(M\left(C_{n}\right)\right)=\left\lceil\frac{n}{2}\right\rceil$.
Proposition 3.3. $\gamma\left(M\left(K_{n}\right)\right)=\left\lceil\frac{n}{2}\right\rceil$.
Proposition 3.4. $\gamma\left(M\left(W_{n}\right)\right)=\left\lceil\frac{n}{2}\right\rceil$.
Proposition 3.5. $\gamma\left(M\left(K_{1, n}\right)\right)=n$.
Proposition 3.6. Let $M\left(C_{n}\right)$ be the middle graph of C_{n}. Then

$$
b_{\gamma}\left(M\left(C_{n}\right)\right)= \begin{cases}n & \text { if } n \text { is even } \\ 0 & \text { if } n \text { is odd }\end{cases}
$$

Proof. When n is even, the n middle vertices of $M\left(C_{n}\right)$ are γ-free vertices and the remaining n vertices are γ-bad. When n is odd, we need $\frac{n-1}{2}$ middle vertices and 1 non middle vertex to dominate $V\left(M\left(C_{n}\right)\right)$ and hence the vertices in each γ-set are γ-free. Therefore, $b_{\gamma}\left(M\left(C_{n}\right)\right)=0$, when n is odd.

Corollary $3.1([\mathbf{2}]) . \gamma_{a v}\left(M\left(C_{n}\right)\right)=\frac{n+1}{2}$.
Proposition 3.7. Let $M\left(P_{n}\right)$ be the middle graph of P_{n}. Then

$$
b_{\gamma}\left(M\left(P_{n}\right)\right)= \begin{cases}\frac{3 n-2}{2-1} & \text { if } n \text { is even } \\ \frac{n}{2} & \text { if } n \text { is odd. }\end{cases}
$$

Proof. Let $P_{n}: v_{1}, v_{2}, \cdots, v_{n}$ be a path. When n is even, γ-set is unique and hence $b_{\gamma}\left(M\left(P_{n}\right)\right)=\left|V\left(M\left(P_{n}\right)\right)\right|-\gamma\left(M\left(P_{n}\right)\right)=\frac{3 n-2}{2}$. When n is odd, the vertices $v_{2}, v_{4}, \cdots, v_{n-1}$ are γ - bad vertices of $M\left(P_{n}\right)$. Therefore, $b_{\gamma}\left(M\left(P_{n}\right)\right)=\frac{n-1}{2}$.

Corollary $3.2([\mathbf{2}]) . \gamma_{a v}\left(M\left(P_{n}\right)\right)=\frac{n^{2}+n-1}{2 n-1}$.

Proposition 3.8. Let $M\left(W_{n}\right)$ be the middle graph of W_{n}. Then

$$
b_{\gamma}\left(M\left(W_{n}\right)\right)= \begin{cases}n & \text { if } n \text { is even } \\ 0 & \text { if } n \text { is odd } .\end{cases}
$$

Proof. When n is even, the $2(n-1)$ middle vertices of $M\left(W_{n}\right)$ are γ-free vertices and the remaining n vertices are γ-bad. When n is odd, $\frac{n-1}{2}$ middle vertices of $M\left(W_{n}\right)$ dominates all but one non middle vertex. Therefore all the vertices are γ-free. Hence, $b_{\gamma}\left(M\left(W_{n}\right)\right)=0$.

Corollary $3.3([\mathbf{2}]) . \gamma_{a v}\left(M\left(W_{n}\right)\right)= \begin{cases}\frac{3 n^{2}}{6 n-4} & \text { if } n \text { is even } \\ \frac{n+1}{2} & \text { if } n \text { is odd }\end{cases}$
Proposition 3.9. Let $M\left(K_{n}\right)$ be the middle graph of K_{n}. Then

$$
b_{\gamma}\left(M\left(K_{n}\right)\right)= \begin{cases}n & \text { if } n \text { is even } \\ 0 & \text { if } n \text { is odd } .\end{cases}
$$

Proof. When n is even, the middle vertices on the perfect matching of K_{n} are the γ - sets of K_{n}. Therefore, the n vertices in K_{n} are γ-bad vertices of $M\left(K_{n}\right)$. When n is odd, all the vertices are γ-free. Therefore, $b_{\gamma}\left(M\left(K_{n}\right)\right)=0$, when n is odd.

Corollary $3.4([\mathbf{2}]) . \gamma_{a v}\left(M\left(K_{n}\right)\right)= \begin{cases}\frac{n^{2}+n+4}{2 n+2} & \text { if } n \text { is even } \\ \frac{n+1}{2} & \text { if } n \text { is odd. }\end{cases}$
Proposition 3.10. Let $M\left(K_{1, n}\right)$ be the middle graph of $K_{1, n}$. Then

$$
b_{\gamma}\left(M\left(K_{1, n}\right)\right)=1 .
$$

Proof. Since the non pendant vertex of $K_{1, n}$ is the only γ-bad vertex of $M\left(K_{1, n}\right), b_{\gamma}\left(M\left(K_{1, n}\right)\right)=1$.

Corollary $3.5([\mathbf{2}])$. Let $M\left(K_{1, n}\right)$ be the middle graph of $K_{1, n}$. Then

$$
\gamma_{a v}\left(M\left(K_{1, n}\right)\right)=\frac{2 n^{2}+n+1}{2 n+1} .
$$

4. Average independent domination in graphs

For a vertex v of G , the independent domination number $i_{v}(G)$ of G relative to v is the minimum cardinality of a maximal independent set in G that contains v. The average independent domination number of G is

$$
i_{a v}(G)=\frac{1}{|V(G)|} \sum_{v \in V(G)} i_{v}(G)
$$

Definition 4.1. Let G be a graph. Let $V_{g_{i}}$ and $V_{b_{i}}$ be the set of all i-good vertices and the set of all i-bad vertices in G respectively. Let $b_{i}=\left|V_{b_{i}}\right|$.

Theorem 4.1. $i_{a v} \leqslant i+\frac{(\beta-i) b_{i}}{n}$.
Proof. By definition,
$i_{a v}=\frac{1}{|V(G)|} \sum_{v \in V} i_{v}=\frac{1}{|V(G)|}\left(\sum_{v \in V_{g_{i}}} i_{v}+\sum_{v \in V_{b_{i}}} i_{v}\right) \leqslant \frac{1}{n}\left(i\left|V_{g_{i}}\right|+\beta\left|V_{b_{i}}\right|\right)=$ $\frac{1}{n}\left(i\left(n-\left|V_{b_{i}}\right|\right)+\beta\left|V_{b_{i}}\right|\right)=i+\frac{(\beta-i) b_{i}}{n}$.

Corollary 4.1. $i_{a v} \leqslant \beta-\frac{i(\beta-i)}{n}$.
Proof. Since, $b_{i} \leqslant n-i$, the result follows.
THEOREM $4.2([\mathbf{6}]) . i_{a v}=\beta-\frac{i(\beta-i)}{n}$ iff G is well-covered or G has a unique i-set and for each vertex not in $i(G)$ - set, every maximal independent set containing it has cardinality $\beta(G)$.

Proof. Let $i_{a v}=\beta-\frac{i(\beta-i)}{n}$. Suppose i - set is not unique. Then there exists a vertex $w \in V_{b_{i}}$ such that $i_{w} \stackrel{n}{=} i$ and so $n i_{a v} \leqslant i\left(n-b_{i}\right)+\beta\left(b_{i}-1\right)+i$. Therefore, $i_{a v}<\beta-\frac{i(\beta-i)}{n}$. If some vertex $w^{\prime} \in V_{b_{i}}$ such that v belongs to a maximal independent set of cardinality less than β, then $n i_{a v} \leqslant i\left(n-b_{i}\right)+\beta\left(b_{i}-1\right)+(\beta-1)$. Therefore, $i_{a v}<\beta-\frac{i(\beta-i)}{n}$. Hence, if $i_{a v}=\beta-\frac{i(\beta-i)}{n}$, then G must have a unique $i(G)$ - set and each vertex not in $i(G)$ - set is such that every maximal independent set containing it has cardinality $\beta(G)$. Conversely if G is well-covered or G has a unique i-set and for each vertex not in $i(G)$ - set, every maximal independent set containing it has cardinality $\beta(G)$, then it is easy to verify $i_{a v}=$ $\beta-\frac{i(\beta-i)}{n}$.

COROLLARY 4.2. $i_{a v}(T) \leqslant n-2+\frac{2}{n}$.

5. $\left(\gamma_{a v}, i_{a v}\right)$-graphs

Theorem 5.1. Let G be a graph. Then, $\gamma_{a v}(G)=i_{a v}(G)$ iff $\gamma=i, b_{\gamma}=b_{i}$ and $i_{v}=i+1$ for all i - bad vertices.

Proof. Let $\gamma_{a v}=i_{a v}$. Since, $\gamma_{v} \leqslant i_{v}$ for all v and $\sum_{v} \gamma_{v}=\sum_{v} i_{v}, \gamma_{v}=i_{v}$ for all v. Since $\gamma=\gamma_{v_{1}}$ for some $v_{1}, \gamma=\gamma_{v_{1}}=i_{v_{1}} \geqslant i$. Since $\gamma \leqslant i, \gamma=i$. We have $\gamma_{a v}=\gamma+\frac{b_{\gamma}}{n}$ and $i_{a v}=i+\frac{\sum_{v \in V_{b_{i}}}\left(i_{v}-i\right)}{n}$. Since $\gamma_{a v}(G)=i_{a v}(G)$ and $\gamma=i, b_{\gamma}=\sum_{v \in V_{b_{i}}}\left(i_{v}-i\right)$. Since $\gamma=i$, cardinality of every i-good vertex is a γ-good vertex. Therefore, $\left|V_{g_{i}}\right| \leqslant\left|V_{g}\right|$ and hence $\left|V_{b_{i}}\right| \geqslant\left|V_{b}\right|=b_{\gamma}$. Since $i_{v}-i \geqslant 1$ for all $v \in V_{b_{i}}, b_{\gamma}=\sum_{v \in V_{b_{i}}}\left(i_{v}-i\right) \geqslant \sum_{v \in V_{b_{i}}} 1=\left|V_{b_{i}}\right|$. Thus, $b_{\gamma}=\left|V_{b_{i}}\right|$. Now, $V_{b_{i}}=\phi$ iff $V_{b}=\phi$. Let $V_{b_{i}} \neq \phi$. Suppose $i_{v_{1}}-i \geqslant 2$, for some $v_{1} \in V_{b_{i}}$ then,
$b_{\gamma}=\sum_{v \in V_{b_{i}}}\left(i_{v}-i\right) \geqslant 2+\sum_{v \in V_{b_{i}}-\left\{v_{1}\right\}}\left(i_{v}-1\right) \geqslant 2+\left|V_{b_{i}}\right|-1=b_{\gamma}+1$, which is a contradiction. Therefore, $i_{v}-i \leqslant 1$ for all $v \in V_{b_{i}}$. Hence $i_{v}=i+1$ for all $v \in V_{b_{i}}$. It is easy to verify the converse.

References

1. E. Aslan, A. Kirlagic. The average lower domination number of graphs. Bull. Int. Math. Virtual Inst., 3(2)(2013), $155-160$.
2. D. Dogan. Average lower domination number for some middle graphs. International J. Math. Combin., 4(2012), 58-67.
3. G. H. Fricke, T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi and R. C. Laskar. Excellent trees. Bull. Inst. Comb. Appl., 34(2002), $27-38$.
4. T. W. Haynes, S. T. Hedetniemi, P. J. Slater, F undamentals of Domination in Graphs. Marcel Dekker, New York 1998.
5. T. W. Haynes, S. T. Hedetniemi, P. J. Slater. Domination in graphs : Advanced Topics. Marcel Dekker, New York 1998.
6. M. A. Henning. Trees with equal average domination and independent domination numbers. Ars. Combin., 71(2004), 305-318.
7. E. Sampathkumar and P. S. Neeralagi. Domination and neighborhood critical fixed, free and totally free points. Sankhya, 54 (1992), $403-407$.
8. M. Yamuna. Excellent - Just Excellent - Very Excellent graphs. Ph.D Thesis, Alagappa University, Karaikudi 2003.

Received by editors 03.10.2017; Revised version 12.03.2018; Available online 19.03.2018.
A. Wilson Baskar: Ramanujan Research Center in Mathematics, Saraswathi Narayanan College, Madurai, Tamilnadu, IndiA

E-mail address: arwilvic@yahoo.com
P. Nataraj: Department of Mathematics,, SSM Institute of Engineering and Technology, Dindigul-Palani Highway, Dindigul, Tamilnadu, INDIA

E-mail address: natsssac 7 @yahoo.com

[^0]: 2010 Mathematics Subject Classification. 05C69.
 Key words and phrases. Average domination, Average independent domination.

