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ON THE h-VECTORS OF CHESSBOARD COMPLEXES

Duško Jojić

Abstract. We use a concrete shelling order of chessboard complexes ∆n,m

for m > 2n − 1 to describe the type of each facet of ∆n,m in this order.

Further, we find some recursive relations for h-vector, describe the generating

facets of shellable ∆n,m and show that the number of generating facets of
∆n,m is the value of a special Poisson-Charlier polynomial pn(m). Some of

these results can be extended to chessboard complexes on triangular boards.

1. Introduction

The chessboard complex ∆n,m is an abstract simplicial complex defined on n×m
chessboard. Its vertices are mn squares in this chessboard and (k− 1)-dimensional
faces of ∆n,m are all configurations of k non-taking rooks on an n×m chessboard.
We label the squares of n×m table by (i, j), where i represents the rows (numbered
top to bottom) while j represents the columns (numbered left to right).

The chessboard complex appears in many situations: as the matching complex
of a complete bipartite graph, as a coset complex of certain subgroups of symmetric
group Sn, as a complex of injective functions, see in [6] for more details.

A simplicial complex ∆ is shellable if it can be built up inductively in a nice
way. To be more precise, its maximal faces (facets) can be ordered so that each
one of them (except for the first one) intersects the union of its predecessors in a
non-empty union of maximal proper faces.

For more information about simplicial complexes, shellability and topological
concept we refer the reader to [1], [6] and [7]. Very often the following definition
of shelling is useful, see in [11].

Definition 1.1. A simplicial complex ∆ is shellable if ∆ is pure and there
exists a linear ordering (shelling order) F1, F2, . . . , Ft of facets of ∆ such that for
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all i < j 6 t, there exists some l < j and a vertex v of Fj , such that

Fi ∩ Fj ⊆ Fl ∩ Fj = Fj r {v}.

For a fixed shelling order F1, F2, . . . , Ft of ∆, the restriction R(Fj) of the facet
Fj is defined by:

R(Fj) = {v is a vertex of Fj : Fj r {v} ⊂ Fi for some 1 6 i < j}.

Geometrically, if we build up ∆ from its facets according to the shelling order,
then R(Fj) is the unique minimal new face added at the j-th step. The type
of the facet Fj in the given shelling order is the cardinality of R(Fj), that is,
type(Fj) = |R(Fj)|.

For a d-dimensional simplicial complex ∆ we denote the number of i-dimensional
faces of ∆ by fi, and call f(∆) = (f−1, f0, f1, . . . , fd) the f -vector. The empty set
is a face of every simplicial complex, so we have that f−1 = 1.

For example, the entries of f -vector of ∆n,m for m > n are

fi−1(∆n,m) =

(
n

i

)
m!

(m− i)!
, for i = 1, 2, . . . , n.

An important invariant of a simplicial complex ∆ is the h-vector h(∆) =
(h0, h1, . . . , hd+1) defined by the formula

hk =

k∑
i=0

(−1)k−i
(
d+ 1− i
d+ 1− k

)
fi−1.

If a simplicial complex ∆ is shellable, then

hk(∆) = |{F is a facet of ∆ : type(F ) = k}|

is a nice combinatorial interpretation of h(∆).
The establishing of shellability of a simplicial complex gives us many informa-

tion about algebraic, combinatorial and topological properties of this complex, see
[2] or [3].

Theorem 1.1. If a d-dimensional simplicial complex ∆ is shellable, then ∆
is either contractible or homotopy equivalent to a wedge of hd+1 spheres of the
dimension d.

A set of maximal simplices from a simplicial complex ∆ are generating simplices
if the removal of their interiors makes ∆ contractible.

For a given shelling order of a complex ∆ we have that

{F ∈ ∆ : F is a facet and R(F ) = F}

is a set of generating facets of ∆. A facet F is in this set if and only if

∀v ∈ F there exists a facet F ′ before F such that F ∩ F ′ = F r {v}.

G. Ziegler in [10] proved that chessboard complexes ∆n,m are vertex decomposable
for m > 2n− 1. As vertex-decomposability is a stronger property than shellability
(see in [1]), he established that these complexes are shellable.
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2. Recursive relations for h-vector

G. Ziegler noted in [10] that the natural lexicographical order of facets of ∆n,m

is not a shelling order. A concrete linear order of the facets that is a shelling of
∆n,m (for m > 2n − 1) can be found in [5]. Here we restate this shelling order
inductively and describe the type of each facet of ∆n,m in this order.

Remark 2.1. First, we note that ∆1,m is a shellable 0-dimensional complex
for all m ∈ N. Assuming that the complexes ∆k,r are shellable (whenever k < n
and r > 2k − 1), we describe a shelling order for ∆n,m (for m > 2m − 1). The
facets of ∆n,m are ordered by the following criterias:

(1) The position of the rook in the first row.

Note that each facet of ∆n,m contains exactly one rook in the first row. Our shelling
order starts with the facets of ∆n,m having a rook at the position (1, 1), then follow
up the facets with a rook at the position (1, 2), and so on up to the facets that
contain a rook at (1,m).

All facets of ∆n,m that contain a rook at (1, 1) span a subcomplex that is
isomorphic to ∆n−1,m−1, which is shellable by inductive assumption. We use the
assumed shelling order of ∆n−1,m−1 to define the linear order of the facets of ∆n,m

containing a rook at (1, 1).

To order the facets of ∆n,m that have rook at (1, i) for i > 1 we consider:

(2) The number of occupied columns immediately before the i-th column.

The shelling order of the facets containing the rook at (1, i) starts with facets that
do not contain a rook in the column (i − 1). These facets span a subcomplex of
∆n,m that is isomorphic to ∆n−1,m−2. By the inductive assumption this subcom-
plex is shellable. We order the above described facets of ∆n,m in the same way as
their corresponding facets are ordered in the assumed shelling of ∆n−1,m−2.

The order of the facets of ∆n,m that contain a rook at the position (1, i) contin-
ues with the facets that have a rook in the column i−1 but not in the column i−2.
Note that the subcomplex of ∆n,m spanned by the facets that contain the rooks at
(1, i) and (j, i−1) (for a fixed j > 1), but do not contain a rook in the column i−2
is isomorphic to ∆n−2,m−3 (we just delete two rows and three columns). Again, we
use the assumption of shellability of ∆n−2,m−3 to define the order of corresponding
facets of ∆n,m.

Our shelling order of the facets containing a rook at (1, i) continues further in
the same manner. The facets that have a rook at (1, i), contain the rooks in the
columns i− 1, . . . , i− k + 1 (at fixed positions), but not in the column i− k (here
we assume that k < i) span the subcomplex of ∆n,m isomorphic to ∆n−k,m−k−1.
For a fixed configuration of the rooks in the columns i− 1, . . . , i− k + 1 (there are
(n − 1) · · · (n − k + 1) of such configurations) the shelling order for ∆n−k,m−k−1

defines the order of corresponding facets of ∆n,m.



416 JOJIĆ

Note that for a fixed i, 1 < i < n, the part of the shelling of ∆n,m that lists
the facets containing (1, i) ends with the facets containing the rooks in columns

1, 2, . . . , i − 1. There are (n−1)!
(n−i)! ways to distribute the rooks in the first i − 1

columns. For a fixed distribution of the rooks in the first i column, all of these
facets span a subcomplex isomorphic to shellable complex ∆n−i,m−i.

The order of the facets that contain a rook at (1, n) finishes with (n−1)! facets
containing the rooks in each of the first n− 1 columns. A similar situation is with
the facets that contain the rook at (1, i) for m > i > n.

The rigorous proof that the above defined linear order is a shelling can be found
in [5] (see Theorem 4.4).

Remark 2.2. Now, we use the above defined shelling to determine the type of
a given facet and to discuss when a facet of ∆n,m is a generating facets.

(i) Assume that a facet F containing a rook at the position (1, i) also contains
the rooks at each of the first i− 1 columns. This is possible for i 6 n.

In that case we have F = S∪T , where S = {(a1, 1), . . . , (ai−1, i−1), (1, i)} and T is
a facet of ∆n−i,m−i. Note that F cannot be a generating facet, because F r{(1, i)}
is not contained in any of facets that precede F in the shelling order defined in
Remark 2.1. Further, for any j such that 1 6 j < i the vertex (aj , j) belongs to the
restriction of F . There is an empty column after the i-th column. If we assume that
the p-th column is empty for p > i, then F ′ = Fr{(aj , j)}∪{(aj , p)} ⊃ Fr{(aj , j)},
and F ′ precedes F in the described shelling order. Therefore, we obtain that

type(F ) = |S| − 1 + type(T ).

(ii) If a facet F contains the rooks at the squares (1, i), (ai−1, i − 1),. . .,
(ai−k+1, i−k+1) and F does not have a rook in the column i−k for k < i,
then F = S ∪ T . Here S = {(1, i), (ai−1, i − 1), . . . , (ai−k+1, i − k + 1)}
and T is a facet of ∆n−k,m−k−1.

In this situation, any of the rooks from a square contained in S can be moved to
the empty column i− k, and therefore we obtain

type(F ) = |S|+ type(T ).

Note that F is a generating facet of ∆n,m if and only if T is a generating facet of
∆n−k,m−k−1. Further, if i > n, then any facet F = {(1, i)} ∪ T (here T is a facet
of ∆n−1,m−1) is a generating facet of ∆n,m if and only if T is a generating facet for
∆n−1,m−1.

Now, we describe some recursive relations for the entries of h-vector ∆n,m.

Theorem 2.1. For fixed n,m ∈ N, m > 2n− 1, and for all k = 1, 2, . . . , n− 1
we have that

hk(∆n,m) =

k∑
i=1

(n− 1)!

(n− i)!

[
hk+1−i(∆n−i,m−i) + (k + 1− i)hk−i(∆n−i,m−i−1)

]
+

+
(n− 1)!

(n− k − 1)!
+ (m− k − 1)hk−1(∆n−1,m−1).
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Proof. Assume that k is fixed. For i = 1, 2, . . . , k + 1 there are

(n− 1)!

(n− i)!
hk+1−i(∆n−i,m−i)

facets of ∆n,m of the type k described in (i) of Remark 2.2. Therefore, we obtain

that for i = k + 1 there are (n−1)!
(n−k−1)! of these facets.

Also, for i = 1, 2, . . . , k there are

(k + 1− i) (n− 1)!

(n− i)!
hk−i(∆n−i,m−i−1)

facets of the type k described in (ii) of Remark 2.2 (the rook at the first row is at
the position (i, 1) for 1 < i < n, and there is an empty column before).

When a facet contains a rook at the position (1, i) for i > k + 1, then (1, i)
belongs to the restriction of this facet. The number of these facets of type k is

(m− k − 1)hk−1(∆n−1,m−1).

By adding all possibilities we get the formula for hk(∆n,m).
�

It follows from Theorem 1.1 that for x > 2n− 1 the complex ∆n,x is homotopy
equivalent to a wedge of (n− 1)-dimensional spheres. We let pn(x) = hn(∆n,x) to
denote the number of these spheres, i. e., pn(x) counts the number of generating
facets of ∆n,x. Note that pn(x) (for a fixed n ∈ N and variable x ∈ N, x > 2n−1) is
a function pn : N>2n−1 → N. It is well-known fact that pn(x) is the reduced Euler
characteristic:

pn(∆n,x) = χ̃(∆n,x) =

n∑
i=0

(−1)n−ifi−1(∆n,x) =

n∑
i=0

(−1)n−i
(
n

i

)
x(i),

where x(i) = x(x − 1) · · · (x − i + 1) and x(0) = 1. Therefore, the functions pn(x)
coincides with special Poisson-Charlier polynomials, see Chapter 10 in [8].

The first few polynomials pn(x) are:

p1(x) = x− 1, p2(x) = x2 − 3x+ 1, p3(x) = x3 − 6x2 + 8x− 1,

p4(x) = x4 − 10x3 + 29x2 − 24x+ 1, p5(x) = x5 − 15x4 + 75x3 − 145x2 + 89x− 1,

p6(x) = x6 − 21x5 + 160x4 − 545x3 + 814x2 − 415x+ 1,

p7(x) = x7 − 28x6 + 301x5 − 1575x4 + 4179x3 − 5243x2 + 2372x− 1.

There are some well-known recursive relations for special Poisson-Charlier polyno-
mials, see [8] and [9]:

(2.1) pn(x) = xpn−1(x− 1)− pn−1(x), pn(x) = pn(x− 1) + npn−1(x− 1).

If we interpret pn(x) as the reduced Euler characteristic χ̃(∆n,x), both of these
relations follow from recursive relations for f -vector of ∆n,x:

fi(∆n,x) = xfi−1(∆n−1,x−1) + fi(∆n−1,x) = fi(∆n,x−1) + nfi−1(∆n−1,x−1).
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The second relation in (2.1) also follows easily from Remark 2.2. There are pn(x−1)
generating facets of ∆n,x in which the last column is empty, and npn−1(x − 1)
generating facets that contain a rook in the last column.

Some other recursive relations for pn(x) = hn(∆n,x) can be obtained in a
similar way as in Theorem 2.1. We list these relations without proof.

Proposition 2.1. For all n, x ∈ N such that x > 2n − 1 the numbers pn(x)
satisfy the following recursive relations

pn(x) = (x− n)pn−1(x− 1) +

n−1∑
k=1

(n− 1)!

(n− k − 1)!
pn−k(x− k − 1),

pn(x) = (x− n)(n− 1)! +

n−1∑
k=1

(n− 1)!

(n− k)!
(x− k)pn−k(x− k − 1),

pn−1(x− 1) = (n− 1)! +

n−1∑
k=1

(n− 1)!

(n− k)!
pn−k(x− k).

3. Chessboard complex on a triangular board

For given a1, . . . , an ∈ N, the triangular board Ψan,...,a1
is defined in [4] as

a left justified board with ai rows of length i. E. Clark and M. Zeckner in [4]
consider chessboard complex Σ(Ψan,...,a1

) whose faces correspond with non-taking
rooks configurations on this triangular board.

Theorem 3.1 (Theorem 3.1, [4]). If ai > i for all i = 1, . . . , n then Σ(Ψan,...,a1
)

is vertex decomposable.

Figure 1. An admissible 4-shape in a triangular board Ψ4,1,1,1

The admissible k-shape (Definition 3.1. in [10]) is a subset of k × (2k − 1)
chessboard:

Σk = {(i, j) ∈ [k]× [2k − 1] : 0 6 j − i 6 k − 1},
see the left side of Figure 1.
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G. Ziegler proved (see Theorem 3.3. in [10]) that if a set of squares A ⊂ Z2

contains an isomorphic copy of an admissible k-shape, then the (k − 1)-skeleton of
the chessboard complex on A is vertex decomposable. Note that the board Ψan,...,a1

contains a transposed admissible n-shape (rotated for 90◦, see Figure 1) if an > n
and ai > 1 for i = 1, . . . , n− 1. Therefore, we obtain that the complex Σ(Ψan,...,a1

)
is vertex decomposable if ai > 1 for all i = 1, 2, . . . , n− 1, and an > n.

As every vertex decomposable complex is shellable, we obtain the following
theorem.

Theorem 3.2. Let a1 > 1 for all i = 1, 2, . . . , n− 1, and let an > n. Then the
simplicial complex Σ(Ψan,...,a1

) is shellable.

Remark 3.1. It is possible to consider the chessboard complex on the table
Ψan,...,a1

for ai ∈ N0. Some examples of triangular chessboard complexes when
ai = 0 for some i were analyzed in [4]. For given a1, . . . , an ∈ N0, the table
Ψan,...,a1 contains an admissible k-shape if and only if

(3.1) ai + ai+1 + · · ·+ an > 2n− i, for all i = 1, 2, . . . , n.

Therefore, if a1, a2, . . . , an ∈ N0 satisfy the above conditions the corresponding
complex Σ(Ψan,...,a1

) is vertex decomposable.

Theorem 3.2 can be proved by a slight variation of the shelling order defined
in Remark 2.1. Note that ci = ai + ai+1 + · · · + an in relation (3.1) is just the
number of squares in the i-th column of Ψan,...,a1

. The table Ψan,...,a1
is uniquely

determined by the sequence c1, c2, . . . , cn. Therefore, we can use Σc1,c2,...,cn instead
Σ(Ψan,...,a1

) to denote the chessboard complex on Ψan,...,a1
.

Again, we define our shelling order of Σc1,c2,...,cn recursively. First, we consider

(1) The position of the rook in the last column.

Note that any facet of Σ = Σc1,c2,...,cn has to contain a rook at one of cn = an
position in the last column. The shelling order of Σ begins with the facets that
contain a rook at (1, n), then follow the facets with a rook at (2, n), and our linear
order ends with the facets that contain a rook at (an, n). Note that all of facets of
Σ that contain a rook at (1, n) span a complex isomorphic to Σc1−1,c2−1,...,cn−1−1.
This complex is shellable, and we prescribe its shelling order (and add (1, n) in each
of its facets) to obtain the beginning part of our shelling.

To order the facets of Σ that have a rook at (i, n) (the fixed position in the
n-th column) we consider

(2) The number of occupied rows that precede the i-th row.

The order of these facets starts with the facets of Σ that do not contain a rook
in the row i − 1. The subcomplex of Σ spanned by these facets is isomorphic to
(n−2)-dimensional complex Σ1 = Σ(Ψc1−2,c2−2...,cn−1−2). Obviously, we have that
ci−2 > 2(n−1)− i and by the assumption Σ1 is shellable. We will use this shelling
order of Σ1 to define the linear order of the corresponding facets of Σ.

For ordering the facets of Σ that contain the rooks at (i, n),(i − 1, s1),. . . ,
(i − k + 1, sk−1) and the row i − k is empty (here we assume k < i), we consider
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S = {s1, s2, . . . , sk−1} ⊆ [n−1]. Now, we let ΣS to denote the subcomplex spanned
with these facets. After we delete k+ 1 consecutive rows i, i− 1, . . . , i− k (the last
deleted row is empty) and k columns labelled by s1, s2, . . . , sk−1, n, we obtain that
ΣS
∼= Σb1−k−1,b2−k−1,...,bn−k−k−1, where

(3.2) {b1, b2, . . . , bn−k} = {c1, c2, . . . , cn−1}r {cs1 , . . . , csk−1
}.

As we have that

bi − k − 1 > ci+k−1 − k − 1 > 2n− (k + i− 1)− k − 1 = 2(n− k)− i

by inductive assumption ΣS is shellable. The facets of Σ with the rooks at fixed
positions are ordered in our shelling order as their corresponding facets of ΣS .

The facets of Σ that contain the rooks at (k, n),(k−1, s1),. . . , (1, si−1) (the first
k rows are occupied) span a subcomplex ΣS . Note that ΣS

∼= Σb1−k,b2−k,...,bn−k−k,
where bi are defined as in (3.2).

A similar reasoning as for standard chessboard complexes gives us the recursive
formula for h-vector of Σc1,c2,...,cn if ci > 2n − i for all i = 1, 2, . . . , n. For all
n > k > 0 the entries of h-vector of Σ = Σc1,c2,...,cn satisfy

hk(Σ) =

k∑
i=1

(i− 1)!
∑

S⊂[n−1],|S|=i−1

(
(k + 1− i)hk−i(ΣS) + hk+1−i(ΣS)

)
+

+
(n− 1)!

(n− k − 1)!
+ (cn − k − 1)hk−1(Σc1−1,c2−1,...,cn−1−1).

The Betti number of Σ = Σc1,c2,...,cn can be computed as

hn(Σ) =

n∑
i=1

(n− i)(i− 1)!
∑

S⊂[n−1]

hn−i(ΣS) + (cn − n)hn−1(Σc1−1,...,cn−1−1).

The complexes ΣS and ΣS that appear in these formulas are above defined smaller
triangular chessboard complexes.
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[5] D. Jojić, S. T. Vrećica and R. T. Živaljević. Multiple chessboard complexes and the colored
Tverberg problem. J. Combin. Theory Ser. A, 145(2017), 400–425.

[6] J. Jonsson. Simplicial complexes of graphs. Lecture Notes in Mathematics, 1928. Springer-

Verlag, Berlin, 2008.
[7] J. R. Munkres. Elements of algebraic topology. Addison-Wesley Publishing Company, Menlo

Park CA, 1984.

[8] G. Peccati and M.S. Taqqu. Wiener Chaos: Moments, Cumulants and Diagrams: A survey
with computer implementation. Springer, Milan; Bocconi University Press, Milan, 2011



ON THE h-VECTORS OF CHESSBOARD COMPLEXES 421

[9] S. Roman. The umbral calculus. Pure and Applied Mathematics, 111. Academic Press, Inc.,

New York, 1984.

[10] G. M. Ziegler. Shellability of chessboard complexes. Israel J. Math., 87(1-3)(1994), 97–110.
[11] G. M. Ziegler. Lectures on polytopes. Graduate Texts in Mathematics, 152. Springer-Verlag,

New York, 1995.

Receibed by editors 27.01.2018; Revised version 08.03.2018; Available online 19.03.2018.

Faculty of Science, University of Banja Luka, Banja Luka, Bosnia and Herzegovina

Email address: dusko.jojic@pmf.unibl.org


