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ON EXPONENTIAL BOUNDS OF

HYPERBOLIC COSINE

Yogesh J. Bagul

Abstract. In this note, natural exponential bounds for coshx are established.

The inequalities thus obtained are interesting and sharp.

1. Introduction

The well-known Lazarević inequality [1, 2] states that

(1.1) coshx <

(
sinhx

x

)p

;x > 0 if and only if p > 3.

Chen, Zhao and Qi [ 3 ] obtained the inequality -

(1.2) coshx 6
(
π2 + 4x2

π2 − 4x2

)
; x ∈ [0, π/2).

which is Redheffer - type [ 4 ].
The inequality (1.2) later was generalised and sharpened by Zhu and Sun [5]

as follows -

(1.3)

(
r2 + x2

r2 − x2

)α

6 coshx 6
(
r2 + x2

r2 − x2

)β

for 0 6 x < r

if and only if α 6 0 and β > r2

4 .
Below are the bounds of coshx given in [6] -

(1.4)

(
1

cosx

)2/3

< coshx <
1

cosx
; x ∈ (0, π/4).
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Yupei Lv, Wang et al. [7] give the refinement of (1.4) as follows -

(1.5)

(
1

cosx

)a

< coshx <
1

cosx
; x ∈ (0, π/4) and a ≈ 0.811133.

For x ∈ (0, 1) the following inequality [6, 8] -

(1.6)
3

3− x2
6 coshx 6 2

2− x2

holds.
In this paper, we shall obtain more sharp bounds than given in the above

inequalities (1.1) - (1.6) for coshx by using natural exponential function.

2. Main Results

We obtain our main results by using the following l’Hôpital’s Rule of Mono-
tonicity [9, Thm. 1.25] -

Lemma 2.1. Let f, g : [a, b] → R be two continuous functions which are dif-
ferentiable on (a, b) and g′ ̸= 0 in (a, b). If f ′/g′ is increasing (or decreasing) on

(a, b), then the functions f(x)−f(a)
g(x)−g(a) and f(x)−f(b)

g(x)−g(b) are also increasing (or decreasing)

on (a, b). If f ′/g′ is strictly monotone, then the monotonicity in the conclusion is
also strict.

Now we give our Main results.

Theorem 2.1. If x ∈ (0, 1) then

eax
2

< coshx < ex
2/2(2.1)

with the best possible constants a ≈ 0.433781 and 1/2.

Proof. Let eax
2

< coshx < ebx
2

, which implies that, a < log(coshx)
x2 < b.

Then f(x) = log(coshx)
x2 = f1(x)

f2(x)
,

where f1(x) = log(coshx) and f2(x) = x2 with f1(0) = f2(0) = 0. By differentiation
we get

f ′
1(x)

f ′
2(x)

= tanhx
2x = f3(x)

f4(x)

where f3(x) = tanhx and f4(x) = 2x, with f3(0) = f4(0) = 0. Again differentiation
gives us -

f ′
3(x)

f ′
4(x)

= sech2x
2 ,

which is clearly strictly decreasing in (0, 1). By Lemma 2.1, f(x) is strictly
decreasing in (0, 1). Consequently, a = f(1) = log(cosh1) ≈ 0.4333781 and
b = f(0+) = 1/2 by l’Hôpital’s Rule. �
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Remark 2.1. For −r < x < r,

eAx2 6 coshx 6 ex
2/2,where A =

log(coshr)

r2
.(2.2)

Proof. For any r > 0 , clearly sech2x is strictly increasing in (−r, 0) and
strictly decreasing in (0, r). Applying Lemma 2.1, we get, A ≈ log(coshr)/r2. �

For the application of Thm. 2.1, we give another proof of the following theorem
[6, Thm.1.2] :

Theorem 2.2. If x ∈ (0, 1) then

1

coshx
<

x2

sinh2x
<

(
1

coshx

)1/2

.(2.3)

Proof. As e−ax2

< e−x2/3, for a ≈ 0.433781
and by theorem 3 in [10] -

e−x2/3 < x2

sinh2x < e−bx2

where x ∈ (0, 1) and b ≈ 0.322878. Using these inequalities with (2.1) , it is clear
that -

1
coshx < x2

sinh2x < e−bx2

< e−x2/4 <
(

1
coshx

)1/2
.

This completes the proof. �
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