ON EXPONENTIAL BOUNDS OF HYPERBOLIC COSINE

Yogesh J. Bagul

Abstract. In this note, natural exponential bounds for $\cosh x$ are established.
The inequalities thus obtained are interesting and sharp.

1. Introduction

The well-known Lazarević inequality [1, 2] states that

$$
\begin{equation*}
\cosh x<\left(\frac{\sinh x}{x}\right)^{p} ; x>0 \text { if and only if } p \geqslant 3 \tag{1.1}
\end{equation*}
$$

Chen, Zhao and Qi [3] obtained the inequality -

$$
\begin{equation*}
\cosh x \leqslant\left(\frac{\pi^{2}+4 x^{2}}{\pi^{2}-4 x^{2}}\right) ; x \in[0, \pi / 2) . \tag{1.2}
\end{equation*}
$$

which is Redheffer - type [4].
The inequality (1.2) later was generalised and sharpened by Zhu and Sun [5] as follows -

$$
\begin{equation*}
\left(\frac{r^{2}+x^{2}}{r^{2}-x^{2}}\right)^{\alpha} \leqslant \cosh x \leqslant\left(\frac{r^{2}+x^{2}}{r^{2}-x^{2}}\right)^{\beta} \text { for } 0 \leqslant x<r \tag{1.3}
\end{equation*}
$$

if and only if $\alpha \leqslant 0$ and $\beta \geqslant \frac{r^{2}}{4}$.
Below are the bounds of $\cosh x$ given in [6] -

$$
\begin{equation*}
\left(\frac{1}{\cos x}\right)^{2 / 3}<\cosh x<\frac{1}{\cos x} ; x \in(0, \pi / 4) \tag{1.4}
\end{equation*}
$$

[^0]Yupei Lv, Wang et al. [7] give the refinement of (1.4) as follows -

$$
\begin{equation*}
\left(\frac{1}{\cos x}\right)^{a}<\cosh x<\frac{1}{\cos x} ; x \in(0, \pi / 4) \text { and } a \approx 0.811133 . \tag{1.5}
\end{equation*}
$$

For $x \in(0,1)$ the following inequality $[6,8]$ -

$$
\begin{equation*}
\frac{3}{3-x^{2}} \leqslant \cosh x \leqslant \frac{2}{2-x^{2}} \tag{1.6}
\end{equation*}
$$

holds.
In this paper, we shall obtain more sharp bounds than given in the above inequalities (1.1) - (1.6) for $\cosh x$ by using natural exponential function.

2. Main Results

We obtain our main results by using the following l'Hôpital's Rule of Monotonicity [9, Thm. 1.25] -

Lemma 2.1. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be two continuous functions which are differentiable on (a, b) and $g^{\prime} \neq 0$ in (a, b). If f^{\prime} / g^{\prime} is increasing (or decreasing) on (a, b), then the functions $\frac{f(x)-f(a)}{g(x)-g(a)}$ and $\frac{f(x)-f(b)}{g(x)-g(b)}$ are also increasing (or decreasing) on (a, b). If f^{\prime} / g^{\prime} is strictly monotone, then the monotonicity in the conclusion is also strict.

Now we give our Main results.
Theorem 2.1. If $x \in(0,1)$ then

$$
\begin{equation*}
e^{a x^{2}}<\cosh x<e^{x^{2} / 2} \tag{2.1}
\end{equation*}
$$

with the best possible constants $a \approx 0.433781$ and $1 / 2$.
Proof. Let $e^{a x^{2}}<\cosh x<e^{b x^{2}}$, which implies that, $a<\frac{\log (\cosh x)}{x^{2}}<b$.

$$
\text { Then } f(x)=\frac{\log (\cosh x)}{x^{2}}=\frac{f_{1}(x)}{f_{2}(x)}
$$

where $f_{1}(x)=\log (\cosh x)$ and $f_{2}(x)=x^{2}$ with $f_{1}(0)=f_{2}(0)=0$. By differentiation we get

$$
\frac{\frac{f_{1}^{\prime}(x)}{f_{2}^{\prime}(x)}}{}=\frac{\tanh x}{2 x}=\frac{f_{3}(x)}{f_{4}(x)}
$$

where $f_{3}(x)=\tanh x$ and $f_{4}(x)=2 x$, with $f_{3}(0)=f_{4}(0)=0$. Again differentiation gives us -

$$
\frac{f_{3}^{\prime}(x)}{f_{4}^{\prime}(x)}=\frac{\operatorname{sech}^{2} x}{2},
$$

which is clearly strictly decreasing in (0,1). By Lemma $2.1, f(x)$ is strictly decreasing in (0,1). Consequently, $a=f(1)=\log (\cosh 1) \approx 0.4333781$ and $b=f(0+)=1 / 2$ by l'Hôpital's Rule.

Remark 2.1. For $-r<x<r$,

$$
\begin{equation*}
e^{A x^{2}} \leqslant \cosh x \leqslant e^{x^{2} / 2}, \text { where } A=\frac{\log (\cosh r)}{r^{2}} \tag{2.2}
\end{equation*}
$$

Proof. For any $r>0$, clearly $\operatorname{sech}^{2} x$ is strictly increasing in $(-r, 0)$ and strictly decreasing in $(0, r)$. Applying Lemma 2.1, we get, $A \approx \log (\cosh r) / r^{2}$.

For the application of Thm. 2.1, we give another proof of the following theorem [6, Thm.1.2]:

Theorem 2.2. If $x \in(0,1)$ then

$$
\begin{equation*}
\frac{1}{\cosh x}<\frac{x^{2}}{\sinh ^{2} x}<\left(\frac{1}{\cosh x}\right)^{1 / 2} \tag{2.3}
\end{equation*}
$$

Proof. As $e^{-a x^{2}}<e^{-x^{2} / 3}$, for $a \approx 0.433781$ and by theorem 3 in [10] -

$$
e^{-x^{2} / 3}<\frac{x^{2}}{\sinh ^{2} x}<e^{-b x^{2}}
$$

where $x \in(0,1)$ and $b \approx 0.322878$. Using these inequalities with (2.1), it is clear that -

$$
\frac{1}{\cosh x}<\frac{x^{2}}{\sinh ^{2} x}<e^{-b x^{2}}<e^{-x^{2} / 4}<\left(\frac{1}{\cosh x}\right)^{1 / 2} .
$$

This completes the proof.

References

[1] I. Lazarević. Neke nejednakosti sa hiperbolickim funkcijama. Univerzitet u Beogradu. Publikacije Elektrotechničkog Fakulteta. Serija Matematika i Fizika, 159-170(1966), 41-48.
[2] D. S. Mitrinović, Analytic Inequalities. Springer-Verlag, New York, Berlin, 1970.
[3] C. P. Chen, J. W. Zhao and F. Qi. Three inequalities involving hyperbolically trigonometric functions. RGMIA Res. Rep. Coll., 6(3)(2003), 437-443.
[4] R. Redheffer. Problem 5642. Amer. Math. monthly, 76(1969), 422.
[5] L. Zhu and J. Sun. Six new Redheffer-type inequalities for circular and hyperbolic functions. comput. Math. Appl., 56(2)(2008), 522-529.
[6] R. Klén, M. Visuri and M. Vuorinen. On Jordan type inequalities for hyperbolic functions. J. Inequal. and Appl., 2010(2010), Art. ID 362548, 14pp.
[7] Y. Lv, G. Wang and Y. Chu. A note on Jordan type inequalities for hyperbolic functions. Appl. Math. Lett., 25(3)(2012), 505-508.
[8] C. Barbu and L.-I. Pişcoran. Jordan type inequalities using monotony of Functions. J. Math. Inequal., 8(1)(2014), 83-89.
[9] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Conformal Invariants, Inequalities and Quasiconformal maps. John Wiley and Sons, New York, 1997.
[10] Y. J. Bagul. Inequalities involving circular, hyperbolic and exponential functions. J. Math. Inequal., 11(3)(2017), 695-699.

Received by editors 19.12.2017; Accepted 31.12.2017; Available online 22.01.2018.
Department of Mathematics, K. K. M. College, Manwath (S.R.T.M.U.N.), Dist: Parbhani(M.S.) - 431505, India

[^0]: 2010 Mathematics Subject Classification. 26D05, 26D07, 33B10.
 Key words and phrases. Lazarević Inequality, Exponential Bounds, Hyperbolic cosine.

