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POINT THEOREMS IN COMPLEX METRIC SPACES

Waleed M. Alfaqih, Mohammad Imdad, and Rqeeb Gubran

Abstract. The aim of this paper is to discuss the existence and uniqueness

of a common solution for the following system of linear Fredholm integral
equations (of the second kind):

u(t) = fi(t) + β

∫ b

a
Ki(t, s)Fi(u(s))ds, t, s ∈ [a, b],

where β ∈ R, fi,Ki and Fi are given continuous functions, i = 1, 2 while u
is unknown function to be determined. To establish this, we prove a common

fixed point theorem for two self-mappings defined on a complex metric space.
Moreover, we prove coincidence and common fixed point theorems for two
weakly compatible self-mappings defined on a complex metric space.

1. Introduction

The theory of integral equations is a very important as well as applicable branch
of the mathematical analysis and have several applications to real world problems.
Many problems which arise in several domains of mathematics, engineering and
physical sciences, lead to mathematical models expressible in the form of linear in-
tegral equations. There exist numerous advanced and efficient methods, which are
often utilized to find the solution of linear integral equations. One of the powerful
tools for obtaining the solutions of such equations is the use of fixed point theoretic
results.
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Banach contraction principle is the most fundamental and natural result of
metric fixed point theory. This principle was formulated by Banach in his Ph.D
thesis in 1922 wherein it was originally proved in function spaces and was also
utilized to establish the existence of a solution of an integral equation. In recent
years, due to the enormous potential of utility and usefulness, this principle has
been generalized and improved in several directions. One of the main direction is
accomplished by proving this principle in different types of spaces. With similar
quest, in 2011 Azam et al. [1] introduced the concept of complex valued metric
space and proved some fixed point theorems using a rational contraction condition.
Since then, many authors have studied the existence and uniqueness results on
fixed point, coincidence point and common fixed point for self-mappings satisfying
different contraction conditions especially of rational type contractions.

The purpose of this paper is three-fold:

(i) to prove a common fixed point theorem involving two self-mappings de-
fined on a complex valued metric space;

(ii) to prove a coincidence and a common fixed point theorem for two weakly
compatible self-mappings defined on a complex valued metric space;

(iii) to study the existence and uniqueness of a common solution for the fol-
lowing system of linear Fredholm integral equations of the second kind:

u(t) = f1(t) + β

∫ b

a

K1(t, s)F1(u(s))ds,

u(t) = f2(t) + β

∫ b

a

K2(t, s)F2(u(s))ds,

where t, s ∈ [a, b], β ∈ R, f1, f2,K1,K2, F1 and F2 are given continuous
functions, and u is unknown function to be determined.

2. Preliminaries

For the sake of completeness, we collect some basic notions, definitions and
auxiliary results from the existing literature.

Definition 2.1. ([1]) Let w1, w2 ∈ C. Define a partial order relation - on C
as follows:

w1 - w2 ⇐⇒ Re(w1) 6 Re(w2) and Im(w1) 6 Im(w2),

that is, w1 - w2, if one of the following conditions holds:

(i) Re(w1) = Re(w2), Im(w1) = Im(w2),

(ii) Re(w1) < Re(w2), Im(w1) = Im(w2),

(iii) Re(w1) = Re(w2), Im(w1) < Im(w2),

(iv) Re(w1) < Re(w2), Im(w1) < Im(w2).

Especially, we write w1 = w2 if (i) is satisfied and we write w1 � w2 if w1 ̸= w2

and one of (ii), (iii) and (iv) holds while w1 ≺ w2 if only (iv) is satisfied.
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In the sequel, C+ = {w ∈ C : 0 - w}. Also, by writing %, we refer to the dual
relation of -.

Remark 2.1. For all w1, w2, w3 ∈ C, we have the following:

(i) r1, r2 ∈ R with r1 6 r2 and 0 - w1 =⇒ r1w1 - r2w1,

(ii) 0 - w1 � w2 =⇒ |w1| < |w2|,
(iii) w1 - w2, w2 ≺ w3 =⇒ w1 ≺ w3.

Definition 2.2. ([1]) Let X be a nonempty set. A mapping d : X ×X → C+

is said to be a complex valued metric if it satisfies the following conditions:

(i) d(u, v) = 0 if and only if u = v for all u, v ∈ X,

(ii) d(u, v) = d(v, u) for all u, v ∈ X,

(iii) d(u, v) - d(u, z) + d(z, v) for all u, v, z ∈ X.

The pair (X, d) is called a complex valued metric space (in short, complex metric
space).

Definition 2.3. ([1]) Let (X, d) be a complex metric space and K a subset of
X. Then

(i) a point u in X is said to be an interior point of K, if there exists c ∈ C such
that 0 ≺ c and N(u, c) = {v ∈ X : d(u, v) ≺ c} ⊆ K. Further, if every element
of K is an interior point, then K is called an open set,

(ii) a point u in X is said to be a limit point of K, if for every c ∈ C with 0 ≺ c,
we have N(u, c) ∩ (K r {u}) ≠ ϕ. Further, if K contains all its limit points,
then it is called a closed set.

(iii) the family Ξ = {N(u, c) : u ∈ X, 0 ≺ c ∈ C} forms a sub-basis of a Hausdorff
topology τ on X.

Example 2.1. Let X = C
(
[a, b],R

)
where a, b ∈ R with 0 < a 6 b. Define a

mapping d : X ×X → C as follows:

d(u, v) = max
t∈[a,b]

||u(t)− v(t)||ei.

Then (X, d) is a complex metric space.

Definition 2.4. ([1]) Let (X, d) be a complex metric space, u ∈ X and {un}
a sequence in X. Then

(i) {un} converges to u, if for every c ∈ C with 0 ≺ c, there exists an N0 ∈ N
such that

d(un, u) ≺ c ∀n > N0.

Symbolically, this denoted by limn→∞ un = u or un → u, as n → ∞,
(ii) {un} is said to be a Cauchy sequence if for every 0 ≺ c ∈ C there exists an

N0 ∈ N such that

d(un, un+m) ≺ c ∀n > N0,

where m ∈ N,
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(iii) (X, d) is said to be complete complex metric space (in short: complete) if
every Cauchy sequence in X converges to some element in X.

Lemma 2.1 ([1]). Let (X, d) be a complex metric space and {un} a sequence in
X. Then {un} is a Cauchy sequence if and only if |d(un, un+m)| −→ 0 as n −→ ∞,
where n,m ∈ N.

Definition 2.5. ([8]) Let (T,Q) be a pair of self-mappings on a complex metric
space (X, d) and u, v ∈ X . If

(i) Tu = u, then u is said to be a fixed point of T ,

(ii) Tu = Qu, then u is said to be a coincidence point of T and Q,

(iii) Tu = Qu = v, then v is called a point of coincidence of T and Q,

(iv) Tu = Qu = u, then u is said to be a common fixed point of T and Q.

Definition 2.6. ([5]) A pair of self-mappings (T,Q) defined on a nonempty
set X is said to be weakly compatible if T and Q commute at their coincidence
points, i.e., TQu = QTu whenever Tu = Qu, u ∈ X.

Definition 2.7. ([4]) Two finite families {Ti}mi=1 and {Qj}nj=1, m,n ∈ N, of
self-mappings defined on a nonempty set are said to be pairwise commuting if:

(i) TiTj = TjTi, i, j ∈ {1, 2, ...,m},
(ii) QiQj = QjQi, i, j ∈ {1, 2, ..., n},
(iii) TiQj = QjTi, i ∈ {1, 2, ...,m} and j ∈ {1, 2, ..., n}.

Lemma 2.2 ([3]). Let X be a nonempty set and T : X → X. Then there exists
a subset A ⊆ X such that T (A) = T (X) and T : A → X is one-to-one.

3. Main Results

Throughout this work, Γ stands for the class of all functions γ : C+ → [0, 1)
which satisfy the following condition:

γ(un) → 1 =⇒ |un| → 0,

for any sequence {un} in C+.

The following functions are in Γ (see [8]):

(i) γ(u) = λ, where λ ∈ [0, 1);

(i) γ(u) = 1
1+λ|u| , where λ ∈ [0,∞).

Lemma 3.1. Let (X, d) be a complex metric space and {un} a sequence in X.
If {un} is not Cauchy in X, then there exist ϵ0 > 0 and two subsequences {un(k)}
and {um(k)} of {un} such that

k < m(k) < n(k) < m(k+1), |d(um(k), un(k))| > ϵ0 and |d(um(k), un(k)−1)| < ϵ0.

Proof. We know that {un} is a Cauchy sequence if, and only if, for each ϵ > 0
there exists N ∈ N such that |d(un, um)| 6 ϵ for all n,m > N . If such condition
does not hold, then there exists ϵ0 > 0 such that for all N ∈ N there exist n,m > N
with |d(un, um)| > ϵ0.
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Let N = 2. Then there exist n1,m1 > 2 such that |d(un1 , um1)| > ϵ0. Let
m(1) = min{n1,m1} and consider

|d(um(1), um(1)+1)|, |d(um(1), um(1)+2)|, ... , |d(um(1), umax{n1,m1})|.

Since

|d(um(1), umax{n1,m1})| = |d(un1 , um1)| > ϵ0,

between the previous numbers there exists a first nonnegative integer

n(1) ∈ {m(1) + 1,m(1) + 2, ...,max{n1,m1}}

such that |d(um(1), un(1))| > ϵ0 and |d(um(1), ui)| < ϵ0 for all i ∈ {m(1)+ 1,m(1)+
2, ..., n(1)− 1}. In particular, |d(um(1), un(1)−1)| < ϵ0.

Next, let N = n(1) + 1. Then there exist n2,m2 > n(1) + 1 such that
|d(un2 , um2)| > ϵ0. Let m(2) = min{n2,m2} and consider

|d(um(2), um(2)+1)|, |d(um(2), um(2)+2)|, ... , |d(um(2), umax{n2,m2})|.

Since |d(um(2), umax{n2,m2})| = |d(un2 , um2)| > ϵ0, between the previous numbers
there exists a first nonnegative integer n(2) ∈ {m(2)+1,m(2)+2, ...,max{n2,m2}}
such that |d(um(2), un(2))| > ϵ0 and |d(um(2), ui)| < ϵ0 for all i ∈ {m(2)+ 1,m(2)+
2, ..., n(2)− 1}. In particular, |d(um(2), un(2)−1)| < ϵ0.

Repeating this process, we can find two subsequences {um(k)} and {un(k)} such
that, for all k ∈ N

k < m(k) < n(k) < m(k + 1), |d(um(k), un(k))| > ϵ0, |d(um(k), un(k)−1)| < ϵ0.

�

Now, we prove our main result as follows:

Theorem 3.1. Let (T,Q) be a pair of self-mappings defined on a complex
metric space (X, d) and µ1, µ2 : C+ → [0, 1) given mappings such that µ1 +µ2 ∈ Γ.
Assume that TX ∪QX is complete subspace of X and for all u, v ∈ X,

(3.1) d(Tu,Qv) - µ1

(
d(u, v)

)
d(u, v) + µ2

(
d(u, v)

)d(Tu, u)d(Qv, v)

1 + d(Tu,Qv)
.

Then the pair (T,Q) has a unique common fixed point.

Proof. Let u0 be an arbitrary element of X. Construct a sequence {un} in
TX ∪QX as follows:

(3.2) u2n+1 = Tu2n, u2n+2 = Qu2n+1, n = 0, 1, 2, ...
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Now, we assert that {un} is a Cauchy sequence. Using (3.1) and (3.2) we have (for
all n > 0)

d(u2n+1, u2n+2) = d(Tu2n, Qu2n+1)

- µ1(d(u2n, u2n+1))d(u2n, u2n+1)

+µ2(d(u2n, u2n+1))
d(Tu2n, u2n)d(Qu2n+1, u2n+1)

1 + d(Tu2n, Qu2n+1)

= µ1(d(u2n, u2n+1))d(u2n, u2n+1)

+µ2(d(u2n, u2n+1))
d(u2n+1, u2n)d(u2n+2, u2n+1)

1 + d(u2n+1, u2n+2)
,

yielding thereby

|d(u2n+1, u2n+2)| 6 µ1(d(u2n, u2n+1))|d(u2n, u2n+1)|

+µ2(d(u2n, u2n+1))
∣∣∣d(u2n+1, u2n)d(u2n+2, u2n+1)

1 + d(u2n+1, u2n+2)

∣∣∣
6

(
µ1(d(u2n, u2n+1)) + µ2(d(u2n, u2n+1))

)
||d(u2n+1, u2n)|,

so that

(3.3) |d(u2n+1, u2n+2)| 6 (µ1 + µ2)(d(u2n, u2n+1))|d(u2n, u2n+1)|.

Similarly, one can show that

(3.4) |d(u2n+2, u2n+3)| 6 (µ1 + µ2)(d(u2n+2, u2n+1))|d(u2n+2, u2n+1)|.

In view of (3.3) and (3.4), we have
(3.5)
|d(un, un+1)| 6 (µ1 + µ2)(d(un−1, un))|d(un−1, un)| < |d(un−1, un)| for all n ∈ N.

Hence, {d(un, un+1)} is non-decreasing sequence of non-negative real numbers.
Thus, {d(un, un+1)} converges to some r > 0. We claim that r = 0. Other-
wise, letting n → ∞ in (3.5), we obtain |(µ1 +µ2)(d(un−1, un))| → 1 which in turn
implies that {|d(un−1, un))|} tends to 0 (as (µ1 + µ2) ∈ Γ), a contradiction. Thus,
we have

(3.6) lim
n→∞

d(un, un+1) = 0.

Next, we prove that {un} is a Cauchy sequence. According to (3.6) it is enough to
show that {u2n} is Cauchy. For this, let us assume the contrary, i.e., {u2n} is not a
Cauchy sequence. In view of Lemma 3.1, there exist ϵ0 > 0 and two subsequences
{u2n(k)} and {u2m(k)} of {u2n} such that k < m(k) < n(k) < m(k + 1),

(3.7) |d(u2n(k), u2m(k))| > ϵ0 and |d(u2n(k), u2m(k)−2) < ϵ0 ∀k ∈ N0.

Using (3.7) and triangular inequality, we have

ϵ0 6 |d(u2n(k), u2m(k))|
6 |d(u2n(k), u2m(k)−2)|+ |d(u2m(k)−2, u2m(k)−1)|+ |d(u2m(k)−1, u2m(k))|
< ϵ0 + |d(u2m(k)−2, u2m(k)−1)|+ |d(u2m(k)−1, u2m(k))|.
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Letting k → ∞ and using (3.6), we have

(3.8) lim
k→∞

|d(u2n(k), u2m(k))| = ϵ0.

Further, we have

|d(u2n(k), u2m(k))| 6 |d(u2n(k), u2m(k)+1)|+ |d(u2m(k)+1, u2m(k))|
6 |d(u2n(k), u2m(k))|+ |d(u2m(k), u2m(k)+1)|+

|d(u2m(k)+1, u2m(k))|.
Letting k → ∞ and using (3.8), we have

(3.9) lim
k→∞

|d(u2n(k), u2m(k)+1)| = ϵ0.

Now, consider

d(u2n(k), u2m(k)+1) - d(u2n(k), u2n(k)+1) + d(u2n(k)+1, u2m(k)+2) +

d(u2m(k)+2, u2m(k)+1)

= d(u2n(k), u2n(k)+1) + d(Tu2n(k), Qu2m(k)+1) +

d(u2m(k)+2, u2m(k)+1)

- d(u2n(k), u2n(k)+1) + d(u2m(k)+2, u2m(k)+1)

+µ1(d(u2n(k), u2m(k)+1))d(u2n(k), u2m(k)+1)

+µ2(d(u2n(k), u2m(k)+1))
d(Tu2n(k),u2n(k))d(Qu2m(k)+1,u2m(k)+1)

1+d(Tu2n(k),Qu2m(k)+1)

- d(u2n(k), u2n(k)+1) + d(u2m(k)+2, u2m(k)+1)

+µ1(d(u2n(k), u2m(k)+1))d(u2n(k), u2m(k)+1)

+µ2(d(u2n(k), u2m(k)+1))
d(u2n(k)+1,u2n(k))d(u2m(k)+2,u2m(k)+1)

1+d(u2n(k)+1,u2m(k)+2)
.

This implies that

|d(u2n(k), u2m(k)+1)| 6 |d(u2n(k), u2n(k)+1)|+ |d(u2m(k)+2, u2m(k)+1)|
+µ1(d(u2n(k), u2m(k)+1))|d(u2n(k), u2m(k)+1)|
+µ2(d(u2n(k), u2m(k)+1))∣∣∣d(u2n(k)+1, u2n(k))d(u2m(k)+2, u2m(k)+1)

1 + d(u2n(k)+1, u2m(k)+2)

∣∣∣
6 |d(u2n(k), u2n(k)+1)|+ |d(u2m(k)+2, u2m(k)+1)|

+(µ1 + µ2)(d(u2n(k), u2m(k)+1))|d(u2n(k), u2m(k)+1)|
+µ2(d(u2n(k), u2m(k)+1))∣∣∣d(u2n(k)+1, u2n(k))d(u2m(k)+2, u2m(k)+1)

1 + d(u2n(k)+1, u2m(k)+2)

∣∣∣
6 |d(u2n(k), u2n(k)+1)|+ |d(u2m(k)+2, u2m(k)+1)|

+|d(u2n(k), u2m(k)+1)|+∣∣∣d(u2n(k)+1, u2n(k))d(u2m(k)+2, u2m(k)+1)

1 + d(u2n(k)+1, u2m(k)+2)

∣∣∣.
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Letting k → ∞, we have

ϵ0 6
(
lim
k→∞

(µ1 + µ2)(d(u2n(k), u2m(k)+1))
)
ϵ0 6 ϵ0,

which implies that

lim
k→∞

(µ1 + µ2)(d(u2n(k), u2m(k)+1)) = 1.

Therefore, limk→∞ |d(u2n(k), u2m(k)+1)| = 0 (as (µ1 + µ2) ∈ Γ), which in view of
(3.9) contradicts ϵ0 > 0. Thus, we conclude that {un} is a Cauchy sequence. By
the completeness of TX ∪QX, there exists u ∈ TX ∪QX such that {un} converges
to u.

Next, we claim that Tu = u. If Tu ̸= u, then |d(u, Tu)| > 0. Consider

d(u, Tu) - d(u, u2n+2) + d(u2n+2, Tu)

= d(u, u2n+2) + d(Tu,Qu2n+1)

- d(u, u2n+2) + µ1(d(u, u2n+1))d(u, u2n+1)

+µ2(d(u, u2n+1))
d(Tu, u)d(Qu2n+1, u2n+1)

1 + d(Tu,Qu2n+1)

= d(u, u2n+2) + µ1(d(u, u2n+1))d(u, u2n+1)

+µ2(d(u, u2n+1))
d(Tu, u)d(u2n+2, u2n+1)

1 + d(Tu, u2n+2)
,

yielding thereby

|d(u, Tu)| 6 |d(u, u2n+2)|+ |µ1(d(u, u2n+1))||d(u, u2n+1)|

+|µ2(d(u, u2n+1))|
∣∣∣d(Tu, u)d(u2n+2, u2n+1)

1 + d(Tu, u2n+2)

∣∣∣
6 |d(u, u2n+2)|+ |d(u, u2n+1)|+

∣∣∣d(Tu, u)d(u2n+2, u2n+1)

1 + d(Tu, u2n+2)

∣∣∣.
Letting n → ∞, we have |d(u, Tu)| 6 0, a contradiction. Thus, we conclude that
Tu = u. Similarly, one can prove that Qu = u. Hence, Tu = Qu = u, i.e., u is a
common fixed point of the pair (T,Q).
Finally, we prove that u is unique. Assume that u′ is another common fixed point
of the pair (T,Q). On using (3.10) with u = u and v = u′, we have

d(u, u′) = d(Tu,Qu′)

- µ1(d(u, u
′))d(u, u′) + µ2(d(u, u

′))
d(Tu, u)d(Qu′, u′)

1 + d(Tu,Qu′)

= µ1(d(u, u
′))d(u, u′).

This implies that

|d(u, u′)| 6 µ1(d(u, u
′))|d(u, u′)| < |d(u, u′)|.

a contradiction. Hence, u is a unique common fixed point of the pair (T,Q). �

Remark 3.1. Conclusions of Theorems 3.1 remain true if the completeness of
TX ∪QX is replaced by the completeness of X.
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On setting T = Q in Theorem 3.1 we get the following fixed point result:

Corollary 3.1. Let T be a self-mapping defined on a complex metric space
(X, d) and µ1, µ2 : C+ → [0, 1) given mappings such that µ1+µ2 ∈ Γ. Assume that
TX (or X) is complete space and for all u, v ∈ X,

(3.10) d(Tu, Tv) - µ1

(
d(u, v)

)
d(u, v) + µ2

(
d(u, v)

)d(Tu, u)d(Tv, v)
1 + d(Tu, Tv)

.

Then T has a unique fixed point.

Applying Corollary 3.1, we prove the existence and uniqueness of a point of
coincidence and a common fixed point for two weakly compatible self-mappings
defined on a complex metric space as under.

Theorem 3.2. Let (T,Q) be a pair of self-mappings on a complex metric space
(X, d) and µ1, µ2 : C+ → [0, 1) be given mappings such that µ1 + µ2 ∈ Γ. Assume
that for all u, v ∈ X,
(3.11)

d(Tu, Tv) - µ1

(
d(Qu,Qv)

)
d(Qu,Qv) + µ2

(
d(Qu,Qv)

)d(Tu,Qu)d(Tv,Qv)

1 + d(Tu, Tv)
.

If TX ⊆ QX and either TX (or QX) is complete space, then the pair (T,Q) has
a unique point of coincidence in X. Moreover, if (T,Q) is weakly compatible pair,
then it has a unique common fixed point.

Proof. On using Lemma 2.2, there exists A ⊆ X such that Q(A) = Q(X) and
Q : A → X is one-to-one. Define a mapping M : Q(A) → Q(A) by M(Qu) = Tu
for all Qu ∈ Q(A). As Q is one-to-one on A and TX ⊆ QX, M is well defined. We
observe that M ◦Q = T , hence, on using (3.11), we have

d(M(Qu),M(Qv)) - µ1

(
d(Qu,Qv)

)
d(Qu,Qv)

+µ2

(
d(Qu,Qv)

)d(M(Qu), Qu)d(M(Qv), Qv)

1 + d(M(Qu),M(Qv))
,(3.12)

for all Qu,Qv ∈ Q(A). Since either M(QX) = M ◦Q(X) = T (X) or Q(A) = Q(X)
is complete and (3.12) holds, then by Corollary 3.1 M has a unique fixed point in
Q(A) = Q(X). Therefor, there exists a unique u ∈ Q(A) = Q(X) such that
Mu = u. Since u ∈ Q(A) = Q(X) and Q is one-to-one on A, then there exists a
unique u′ ∈ X such that u = Qu′. So that M(Qu′) = Qu′, that is, Tu′ = Qu′ = u.
Thus, the pair (T,Q) has a unique point of coincidence.
Next, assume that (T,Q) is weakly compatible pair. As u = Qu′ = Tu′, we have

Tu = TQu′ = QTu′ = Qu,

proving that u is a coincidence point of the pair (T,Q). We assert that Tu = u. If
not, then on setting u = u and v = u′ in (3.11), we have

d(Tu, Tu′) - µ1

(
d(Qu,Qu′)

)
d(Qu,Qu′) + µ2

(
d(Qu,Qu′)

)d(Tu,Qu)d(Tu′, Qu′)

1 + d(Tu, Tu′)
,

yielding thereby
d(Tu, u) - µ1

(
d(Tu, u)

)
d(Tu, u),
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which implies that

|d(Tu, u)| 6 |µ1

(
d(Tu, u)

)
||d(Tu, u)|

< |d(Tu, u)|,
a contradiction. Hence u = Tu. Since Tu = Qu, therefore u is a common fixed
point of the pair (T,Q).
Finally, the uniqueness of the common fixed point u of (T,Q) is a direct consequence
of the uniqueness of the point of coincidence of (T,Q). This completes the proof. �

As a consequence of Theorem 3.1, we have the following result for two finite
families of self-mappings defined on a complex valued metric space.

Theorem 3.3. Let {Ti}m1 and {Qj}n1 be two finite pairwise commuting families
of self-mappings defined on a complex metric space (X, d). Let T = T1T2...Tm and
Q = Q1Q2...Qn satisfying inequality (3.1) with µ1 and µ2 as in Theorem 3.1. If
TX ∪ QX is complete subspace of X, then the component maps of the families
{Ti}m1 and {Qj}n1 have a unique common fixed point.

Proof. In view of Theorem 3.1, we conclude that the pair (T,Q) has a unique
common fixed point u in X. Now, we prove that u is also a common fixed point of
the component maps of the families {Ti}m1 and {Qj}n1 . Due to the componentwise
commutativity of the families {Ti}m1 and {Qj}n1 , we have

Tiu = TiQu = TiQ1Q2...Qnu = Q1TiQ2...Qnu

= Q1Q2Ti...Qnu = ... = Q1Q2...TiQnu

= Q1Q2...QnTiu = QTiu, for each 1 6 i 6 m.

Similarly Tiu = TTiu (for each 1 6 i 6 m), showing that Tiu (for each i) is a
common fixed point of the pair (T,Q). Since u is unique common fixed point of
(T,Q), we get that Tiu = u (for each i). Using similar arguments, one can prove
that Qju = u (for each 1 6 j 6 n). Proving that u is also a common fixed point of
the component maps of the families {Ti}m1 and {Qj}n1 .
Finally, if u′ is another common fixed point of the component maps of the families
{Ti}m1 and {Qj}n1 then one can prove that u′ is also a common fixed point of the
pair (T,Q), which contradicts the fact that (T,Q) has a unique common fixed
point. Hence, the component maps of the families {Ti}m1 and {Qj}n1 have a unique
common fixed point. This completes the proof. �

By setting T1 = T2 = ... = Tm = T and Q1 = Q2 = ... = Qn = Q in Theorem
3.3, we derive the following corollary:

Corollary 3.2. Let (T,Q) be a pair of self-mappings on a complex metric
space (X, d) and µ1, µ2 : C+ → [0, 1) given mappings such that µ1 + µ2 ∈ Γ.
Assume that for all u, v ∈ X,

(3.13) d(Tmu,Qnv) - µ1

(
d(u, v)

)
d(u, v) + µ2

(
d(u, v)

)d(Tmu, v)d(Qnv, u)

1 + d(Tmu,Qnv)
.

If either TmX ∪ QnX or X is complete space, then the pair (T,Q) has a unique
common fixed point.
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Setting µ2(w) ≡ 0 ∀w ∈ C+ and m = n in Corollary 3.2, we deduce the
following corollary which generalizes Corollary 2.8 of Rouzkard and Imdad [6].

Corollary 3.3. Let T be a self-mapping on a complex metric space (X, d)
and µ ∈ Γ. Assume that for all u, v ∈ X,

(3.14) d(Tmu, Tmv) - µ
(
d(u, v)

)
d(u, v).

If either TmX or X is complete space, then T has a unique fixed point.

Now, we furnish an example to exhibit the utility of Corollary 3.3.

Example 3.1. Define d : C× C → C+ as follows:

d(w1, w2) = |Re(w1)−Re(w2)|+ i|Im(w1)− Im(w2)| ∀w1, w2 ∈ C.

Then (C, d) is a complex valued metric space. Define T : C → C by

T (w) =


0, if Re(w), Im(w) ∈ Q;
w, if Re(w), Im(w) ∈ Qc;
5 + i, if Re(w) ∈ Q, Im(w) ∈ Qc;
5, if Re(w) ∈ Qc, Im(w) ∈ Q.

Now, for u = 1√
7
and v = 1, we have

d
(
T
( 1√

7

)
, T (0)

)
= d(5, 0) = 5 �

1√
7
µ
(
d(u, v)

)
= µ

(
d(u, v)

)
d(

1√
7
, 0),

for any mapping µ : C+ → [0, 1). Notice that T 2w = 0 for all w ∈ C and if we
define µ : C+ → [0, 1) by µ(w) = 1

1+|w| for all w ∈ C+, then we have

0 = d(T 2u, T 2v) - µ
(
d(u, v)

)
d(u, v) =

1

1 + |d(u, v)|
d(u, v),

for all u, v ∈ C. Hence, Corollary 3.3 ensures the existence and uniqueness of a
fixed point of T (namely w = 0).

4. Fredholm Integral Equations

In this section, we apply Theorem 3.1 to prove the existence and uniqueness of
a common solution of the following system of linear Fredholm integral equations of
the second kind:

(4.1)
u(t) = f1(t) + β

∫ b

a
K1(t, s)F1(u(s))ds,

u(t) = f2(t) + β
∫ b

a
K2(t, s)F2(u(s))ds,

where t, s ∈ [a, b], β ∈ R, f1, f2,K1,K2, F1 and F2 are given continuous functions,
and u is unknown function to be determined.
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For simplification, we use the following symbols:

zi

(
u(t)

)
=

∫ b

a

Ki(t, s)Fi(u(s))ds,

Γuv(t) = ||u(t)− v(t)||ei,
Λuv(t) = ||f1(t) +z1

(
u(t)

)
− u(t)||ei,

Υuv(t) = ||f2(t) +z2

(
v(t)

)
− v(t)||ei,

Ωuv(t) = ||f1(t) +z1

(
u(t)

)
− f2(t)−z2

(
v(t)

)
||ei

and X = C([a, b],R) is the space of all real valued continuous functions defined on
[a, b].

Define two mappings on X as follows:

Tu(t) = f1(t) +z1

(
u(t)

)
= f1(t) +

∫ b

a

K1(t, s)F1(u(s))ds,(4.2)

Qu(t) = f2(t) +z2

(
u(t)

)
= f2(t) +

∫ b

a

K2(t, s)F2(u(s))ds.(4.3)

Observe that the system (4.1) of linear Fredholm integral equations of the
second kind has a unique common solution if and only if the the pair (T,Q) given
in (4.2) and (4.3) has a unique common fixed point.

Theorem 4.1. The system (4.1) of linear Fredholm integral equations of the
second kind has a unique common solution if

(i) there exist two mappings µ1, µ2 : C+ → [0, 1) such that µ1 + µ2 ∈ Γ,

(ii) for all u, v ∈ X and t ∈ [a, b]

Ωuv(t) - µ1

(
max
t∈[a,b]

Γuv(t)
)
Γuv(t) + µ2

(
max
t∈[a,b]

Γuv(t)
) Λuv(t)Υuv(t)

1 + maxt∈[a,b] Ωuv(t)
.

Proof. Define a mapping d : X ×X → C+ by

d(u, v) = max
t∈[a,b]

||u(t)− v(t)||ei.

Then (X, d) forms a complete complex valued metric space.

Now, from assumption (ii) (for all u, v ∈ X and t ∈ [a, b]), we have

Ωuv(t) - µ1

(
max
t∈[a,b]

Γuv(t)
)
Γuv(t) + µ2

(
max
t∈[a,b]

Γuv(t)
) Λuv(t)Υuv(t)

1 + maxt∈[a,b] Ωuv(t)

- µ1

(
max
t∈[a,b]

Γuv(t)
)
max
t∈[a,b]

Γuv(t)

+µ2

(
max
t∈[a,b]

Γuv(t)
)maxt∈[a,b] Λuv(t)maxt∈[a,b] Υuv(t)

1 + maxt∈[a,b] Ωuv(t)
,
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which implies that

max
t∈[a,b]

Ωuv(t) - µ1

(
max
t∈[a,b]

Γuv(t)
)
max
t∈[a,b]

Γuv(t)

+µ2

(
max
t∈[a,b]

Γuv(t)
)maxt∈[a,b] Λuv(t)maxt∈[a,b] Υuv(t)

1 + maxt∈[a,b] Ωuv(t)
,

implying thereby

d(Tu,Qv) - µ1

(
d(u, v)

)
d(u, v) + µ2

(
d(u, v)

)d(Tu, u)d(Qv, v)

1 + d(Tu,Qv)
.

Thus, all the conditions of Theorem 3.1 are satisfied so that the pair (T,Q) has
a unique common fixed point in X. Hence, the system (4.1) of linear Fredholm
integral equations of the second kind has a unique common solution. �
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