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SUBDIRECTLY IRREDUCIBLE GENERALIZED

ALMOST DISTRIBUTIVE FUZZY LATTICES

Berhanu Assaye Alaba and Yohannes Gedamu Wondifraw

Abstract. In this paper we introduce the concept of ideals, filters and con-

gruences in a GADFL and we give an equivalent condition for a GADFL to
become an ADFL interms of ideals, filters and congruence relations. We also
characterize Subdirectly Irreducible GADFLs.

1. Introduction

The concept of Generalized Almost Distributive Lattices(GADLs) was intro-
duced by G. C. Rao, Ravi Kumar Bandaru and N. Rafi [5] as a generalization of
an Almost Distributive Lattices(ADLs) [6] which was a common abstraction of al-
most all the existing ring theoretic generalization of a Boolean algebra on one hand
and distributive lattices on the other. On the other hand, L. A. Zadeh [7] in 1965
introduced the notion of fuzzy set. Again in 1971, L. A. Zadeh [8] defined a fuzzy
ordering as a generalization of the concept of ordering, that is, a fuzzy ordering is
a fuzzy relation that is transitive. In particular, a fuzzy partial ordering is a fuzzy
ordering that is reflexive and antisymmetric. In 1994, N. Ajmal and K. V. Thomas
[1] defined a fuzzy lattice as a fuzzy algebra and characterized fuzzy sublattices.
In 2009, I. Chon [4], considering the notion of fuzzy order of Zadeh , introduced
a new notion of fuzzy lattices and studied the level sets of fuzzy lattices. He also
introduced the notions of distributive and modular fuzzy lattices and considered
some basic properties of fuzzy lattices. In 2017, Berhanu et al. [2] introduce the
concept of an Almost Distributive Fuzzy Lattices (ADFLs) as a generalization of
Distributive Fuzzy Lattices and characterized some properties of an ADL using
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the fuzzy partial order relations and fuzzy lattices defined by I. Chon. Later on
Berhanu and Yohannes [3] introduce the concept of Generalized Almost Distribu-
tive Fuzzy Lattices (GADFLs) as a generalization of ADFLs. As a continuation in
this paper we introduce the concept of Subdirectly Irreducible GADFLs.

2. Preliminaries

First we recall certain definitions and properties of Fuzzy Partial Order Re-
lations, Almost Distributive Fuzzy Lattices and Generalized Almost Distributive
Fuzzy Lattices that are required in this paper.

Definition 2.1. ([4]) Let X be a set. A function A : X × X −→ [0, 1] is
called a fuzzy relation in X. The fuzzy relation A in X is reflexive iff A(x, x) = 1
for all x ∈ X, A is transitive iff A(x, z) > supy∈X min(A(x, y), A(y, z)), and A is
antisymmetric iff A(x, y) > 0 and A(y, x) > 0 implies x = y. A fuzzy relation A is
fuzzy partial order relation if A is reflexive, antisymmetric and transitive. A fuzzy
partial order relation A is a fuzzy total order relation iff A(x, y) > 0 or A(y, x) >
0 for all x, y ∈ R. If A is a fuzzy partial order relation in a set X, then (X,A)
is called a fuzzy partially ordered set or a fuzzy poset. If B is a fuzzy total order
relation in a set X, then (X,B) is called a fuzzy totally ordered set or a fuzzy chain.

Definition 2.2. ([2]) Let (R,∨,∧, 0) be an algebra of type (2, 2, 0) and (R,A)
be a fuzzy poset. Then we call (R,A) is an Almost Distributive Fuzzy Lattice
(ADFL) if the following axioms are satisfied:

(F1) A(a, a ∨ 0) = A(a ∨ 0, a) = 1

(F2) A(0, 0 ∧ a) = A(0 ∧ a, 0) = 1

(F3) A((a ∨ b) ∧ c, (a ∧ c) ∨ (b ∧ c)) = A((a ∧ c) ∨ (b ∧ c), (a ∨ b) ∧ c) = 1

(F4) A(a ∧ (b ∨ c), (a ∧ b) ∨ (a ∧ c)) = A((a ∧ b) ∨ (a ∧ c), a ∧ (b ∨ c)) = 1

(F5) A(a ∨ (b ∧ c), (a ∨ b) ∧ (a ∨ c)) = A((a ∨ b) ∧ (a ∨ c), a ∨ (b ∧ c)) = 1

(F6) A((a ∨ b) ∧ b, b) = A(b, (a ∨ b) ∧ b) = 1

for all a,b,c ∈ R.

From the definitions of ADL and ADFL, The following theorem is direct.

Theorem 2.1. ([2]) Let (R,A) be a fuzzy poset. Then R is an ADL iff (R,A)
is an ADFL.

Theorem 2.2. ([2]) Let (R,A) be an ADFL . Then

a = b⇔ A(a, b) = A(b, a) = 1.

Definition 2.3. ([2]) Let (R,A) be an ADFL. Then for any a, b ∈ R

a 6 b if and only if A(a, b) > 0.

Theorem 2.3. ([2]) If (R,A) is an ADFL then

a ∧ b = a if and only if A(a, b) > 0.
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Lemma 2.1. ([2]) Let (R,A) be an ADFL. Then for each a and b in R

(1) A(a ∧ b, b) > 0 and A(b ∧ a, a) > 0

(2) A(a, a ∨ b) > 0 and A(b, b ∨ a) > 0.

Definition 2.4. ([3]) Let (R,∨,∧) be an algebra of type (2, 2) and (R,A)
be a fuzzy poset. Then we call (R,A) is a Generalized Almost Distributive Fuzzy
Lattice if it satisfies the following axioms:

(FG1) A((a ∧ b) ∧ c, a ∧ (b ∧ c)) = A(a ∧ (b ∧ c), (a ∧ b) ∧ c) = 1

(FG2) A(a ∧ (b ∨ c), (a ∧ b) ∨ (a ∧ c)) = A((a ∧ b) ∨ (a ∧ c), a ∧ (b ∨ c)) = 1

(FG3) A(a ∨ (b ∧ c), (a ∨ b) ∧ (a ∨ c)) = A((a ∨ b) ∧ (a ∨ c), a ∨ (b ∧ c)) = 1

(FA1) A(a ∧ (a ∨ b), a) = A(a, a ∧ (a ∨ b)) = 1

(FA2) A((a ∨ b) ∧ a, a) = A(a, (a ∨ b) ∧ a) = 1

(FA3) A((a ∧ b) ∨ b, b) = A(b, (a ∧ b) ∨ b) = 1

for all a, b, c ∈ R.

Example 2.1. ([3]) Let R = {a, b, c}. Define two binary operations ∨ and ∧
on R as follows:

∨ a b c
a a b a
b b b b
c c c c

and

∧ a b c
a a a c
b a b c
c a a c

Define a fuzzy relation A : R×R −→ [0, 1] as follows:

A(a, a) = A(b, b) = A(c, c) = 1, A(b, a) = A(b, c) = A(c, a) = A(c, b) = 0,
A(a, b) = 0.2 and A(a, c) = 0.4.

Clearly (R,A) is a fuzzy poset. Here (R,A) is a GADFL since it satisfies the above
six axioms of a GADFL but it is not an ADFL. Since

A((c ∨ b) ∧ b, (c ∧ b) ∨ (b ∧ b)) = A(c ∧ b, a ∨ b) = A(a, b) = 0.2 ̸= 1

and
A((c ∧ b) ∨ (b ∧ b), (c ∨ b) ∧ b) = A(a ∨ b, c ∧ b) = A(b, a) = 0 ̸= 1.

Hence

A((c ∨ b) ∧ b, (c ∧ b) ∨ (b ∧ b)) ̸= A((c ∧ b) ∨ (b ∧ b), (c ∨ b) ∧ b).

Definition 2.5. ([3]) Let (R,A) be a GADFL. Then (R,A) is said to be
associative if the operation ∨ in R is associative.

Theorem 2.4. ([3]) Let (R, A) be a GADFL. Then the following are equivalent.

(1) (R,A) is an Almost Distributive Fuzzy Lattice;

(2) A((a ∨ b) ∧ c, (a ∧ c) ∨ (b ∧ c)) > 0 and A((a ∧ c) ∨ (b ∧ c), (a ∨ b) ∧ c)> 0 ;

(3) A((a ∨ b) ∧ b, b) > 0 and A(b, (a ∨ b) ∧ b) > 0;
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(4) A((a ∨ b) ∧ c, (b ∨ a) ∧ c) > 0 and A((b ∨ a) ∧ c, (a ∨ b) ∧ c) > 0;

for all a, b, c ∈ R.

3. Ideals and Congruences in a GADFL

In this section, we introduce the concept of an ideal and filter in a GADFL. Also
we give the definition of a congruence in a GADFL. We give an equivalent condition
for a GADFL to become an ADFL in terms of ideals, filters and congruence relations
of (R,A).

Definition 3.1. Let (R,A) be a GADFL. A non empty subset IA of R is said
to be an ideal of (R,A), if it satisfies the following conditions:

(i) If x ∈ R, y ∈ IA and A(x, y) > 0, then x ∈ IA

(ii) If x, y ∈ IA, then x ∨ y ∈ IA.

Definition 3.2. Let (R,A) be a GADFL. A non empty subset FA of R is said
to be a filter of (R,A), if it satisfies the following conditions:

(i) If x ∈ R, y ∈ FA and A(y, x) > 0, then x ∈ FA

(ii) If x, y ∈ FA, then x ∧ y ∈ FA.

Theorem 3.1. Let (R,A) be a GADFL. Then the following are equivalent:

(1) For x ∈ R, if a ∈ IA with A(x, a) > 0 then x ∈ IA

(2) If a ∈ IA and x ∈ R then a ∧ x ∈ IA.

Proof. (1) ⇒ (2). Suppose (1). For a ∈ IA and x ∈ R we need to show
a∧ x ∈ IA. Since (x∧ a)∨ a = a then x∧ a 6 a and hence A(x∧ a, a) > 0 then by
(1) x ∧ a ∈ IA. Now

A(a∧x, x∧a) = A(a∧x∧x, x∧a) = A(x∧x, x∧a) = A(x, x∧a) = A(x∧a, x∧a) = 1.

Similarly, A(x ∧ a, a ∧ x) = 1. Hence a ∧ x = x ∧ a ∈ IA.

(2) ⇒ (1). Suppose (2). For x ∈ R, a ∈ IA with A(x, a) > 0 implies that x∧a = x.
Hence x = x ∧ a = x ∧ a ∧ a = a ∧ x ∧ a ∈ IA by (2). Therefore x ∈ IA. �

Theorem 3.2. Let (R,A) be a GADFL and a ∈ R. Define

(a]A = {x ∈ R | A(x, a ∧ x) > 0}.
Then (a]A is the smallest ideal of (R,A) containing a and is called the principal
ideal generated by a.

Proof. Since A(a, a ∧ a) = A(a, a) = 1. then a ∈ (a]A. Therefore (a]A
̸= ∅. Now, let r ∈ (a]A and y ∈ R such that A(y, r) > 0. Since r ∈ (a]A we
have A(r, a ∧ r) > 0 for x ∈ R and A(y, r) > 0 implies that y ∧ r = y. Now,
A(y, a∧y) = A(y, a∧y∧ r) = A(y, y∧a∧ r) = A(y, y∧ r) = A(y, y) > 0. Therefore
y ∈ (a]A. Again, let r, s ∈ (a]A. Then A(r, a ∧ r) > 0 and A(s, a ∧ s) > 0. for
r, s ∈ R. Now, A(r∨ s, a∧ (r∨ s)) = A(r∨ s, (a∧ r)∨ (a∧ s)) = A(r∨ s, r∨ s) > 0.
Then r ∨ s ∈ (a]A. Therefore (a]A is an ideal of (R,A) containing a. To show
(a]A is the smallest. Let IA be any ideal of (R,A) containing a. Let r ∈ (a]A then
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A(r, a∧ r) > 0 for r ∈ R. Now as a ∈ IA and r ∈ R then a∧ r = r ∈ IA as IA is an
ideal. Hence (a]A ⊆ IA. Therefore (a]A is the smallest ideal of (R,A) containing
a. �

Similarly we can prove that

[a)A = {x ∈ R | A(a ∨ x, x) > 0 and A(x, a ∨ x) > 0}
is the smallest filter of (R,A) containing a and is called the principal filter generated
by a.

Now we discuss some important properties of the principle ideals (filters) of
(R,A).

Lemma 3.1. Let (R,A) be a GADFL and a, b ∈ R. Then

(i) a ∈ (b]A if and only if A(a, b ∧ a) > 0;

(ii) a ∈ [b)A if and only if A(b ∨ a, a) > 0 and A(a, b ∨ a) > 0;

(iii) A(a, b) > 0 ⇒ (a]A ⊆ (b]A;

(iv) a ∈ (b]A ⇒ (a]A ⊆ (b]A.

Proof. The proofs of (i) and (ii) are trivial.

(iii) Suppose A(a, b) > 0 and x ∈ (a]A then A(x, a ∧ x) > 0. Now

A(x, b ∧ x) = A(x, b ∧ a ∧ x) = A(x, a ∧ b ∧ x) = A(x, a ∧ x) > 0

. Hence x ∈ (b]A. Therefore (a]A ⊆ (b]A.

(iv) Let a ∈ (b]A and x ∈ (a]A. Then A(a, b∧ a) > 0 and A(x, a∧ x) > 0. Now

A(x, b ∧ x) = A(x, b ∧ a ∧ x) = A(x, a ∧ x) > 0.

Hence x ∈ (b]A. Therefore (a]A ⊆ (b]A. �
Theorem 3.3. Let (R,A) be a GADFL and a, b ∈ R. Then (a∧ b]A = (b∧a]A.

Proof. Suppose (R,A) is a GADFL and a, b ∈ R.

(⇒) Let x ∈ (a ∧ b]A. Then A(x, a ∧ b ∧ x) > 0. Now

A(x, b ∧ a ∧ x) = A(x, a ∧ b ∧ x) > 0.

Therefore x ∈ (b ∧ a]A
(⇐) Assume that x ∈ (b ∧ a]A. Then A(x, b ∧ a ∧ x) > 0. Now

A(x, a ∧ b ∧ x) = A(x, b ∧ a ∧ x) > 0.

Therefore x ∈ (a ∧ b]A. Hence (a ∧ b]A = (b ∧ a]A. �
If (R,A) is an ADFL and a, b ∈ R, then (a ∨ b]A = (b ∨ a]A. But if this

condition holds in a GADFL then the GADFL becomes an ADFL. We prove this
in the following theorem.

Theorem 3.4. Let (R,A) be a GADFL, R with 0. Then the following are
equivalent:

(1) (R,A) is an Almost Distributive Fuzzy Lattice
(2) For any a, b ∈ R, (a ∨ b]A is the supremum of (a]A and (b]A in (IA(R), ⊆),
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where IA(R) is the set of all ideals in (R,A)

(3) (a ∨ b]A = (b ∨ a]A for all a, b ∈ R.

Proof. (1) ⇒ (2). Assume (1). Let a, b ∈ R. Since

A(a, a ∨ b) > 0 ⇒ (a]A ⊆ (a ∨ b]A (lemma 3.1(iii))

and

A(b, b ∨ a) > 0 ⇒ (b]A ⊆ (b ∨ a]A = (a ∨ b]A

as (R,A) is an ADFL. Therefore (a ∨ b]A is an upper bound of (a]A and (b]A. Let
JA be any ideal of (R,A) such that (a]A ⊆ J and (b]A ⊆ JA. Clearly a ∈ JA and b ∈
JA. Therefore a∨ b ∈ JA and hence (a∨ b]A ⊆ JA. Thus (a∨ b]A is the supremum
of (a]A and (b]A in (IA(R), ⊆).

(2) ⇒ (3). Assume (2). Then (a ∨ b]A and (b ∨ a]A both are supremums of (a]A
and (b]A in the poset (IA(R), ⊆). Therefore (a ∨ b]A = (b ∨ a]A by uniqueness of
supremum.

(3) ⇒ (1). Assume (3). Let a, b ∈ R. Since from GADFL A(b, (b∨ a)∧ b) > 0 then
b ∈ (b ∨ a]A = (a ∨ b]A. Hence A(b, (a ∨ b) ∧ b) > 0 and since A((a ∨ b) ∧ b, b) > 0.
Therefore (R,A) is an Almost Distributive Fuzzy Lattice. �

Definition 3.3. Let (R,A) be a GADFL. An equivalence relation Θ on (R,A)
is called a congruence on (R,A) if, for a, b, c, d ∈ R, holds

(a, b), (c, d) ∈ Θ ⇒ (a ∨ c, b ∨ d), (a ∧ c, b ∧ d) ∈ Θ.

Theorem 3.5. Let FA be a filter of a GADFL (R,A). Then the relation

φFA = {(x, y) ∈ R×R | A(a∧ x, a∧ y) = A(a∧ y, a∧ x) = 1, for some a ∈ FA }
is a congruence relation on (R,A).

Proof. Clearly φFA is an equivalence relation on (R,A).
Now, let (x, y), (u, v) ∈ φFA then

A(a ∧ x, a ∧ y) = A(a ∧ y, a ∧ x) = 1

and

A(b ∧ u, b ∧ v) = A(b ∧ v, b ∧ u) = 1

for some a, b ∈ FA. Hence a, b ∈ FA ⇒ a ∧ b ∈ FA and

A(a ∧ b ∧ x ∧ u, a ∧ b ∧ y ∧ v) = A(a ∧ x ∧ b ∧ u, a ∧ b ∧ y ∧ v) =
A(a ∧ y ∧ b ∧ u, a ∧ b ∧ y ∧ v) = A(a ∧ y ∧ b ∧ v, a ∧ b ∧ y ∧ v) =

A(a ∧ b ∧ y ∧ v, a ∧ b ∧ y ∧ v) = 1.

Similarly A(a ∧ b ∧ y ∧ v, a ∧ b ∧ x ∧ u) = 1. Therefore (x ∧ u, y ∧ v) ∈ φFA .
Also,
A((a ∧ b) ∧ (x ∨ u), (a ∧ b) ∧ (y ∨ v)) = A(a ∧ b ∧ (x ∨ u), (a ∧ b) ∧ (y ∨ v))
= A((a∧b∧x)∨(a∧b∧u)), (a∧b)∧(y∨v)) = A((b∧a∧x)∨(a∧b∧u)), (a∧b)∧(y∨v))
= A((b∧a∧y)∨(a∧b∧u)), (a∧b)∧(y∨v)) = A((b∧a∧x)∨(a∧b∧v)), (a∧b)∧(y∨v))
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= A((a∧ b∧ y)∨ (a∧ b∧ v)), (a∧ b)∧ (y ∨ v)) = A((a∧ b)∧ (y ∨ v), (a∧ b)∧ (y ∨ v))
= 1.

Similarly
A((a ∧ b) ∧ (y ∨ v), (a ∧ b) ∧ ∧(x ∨ u)) = 1.

Therefore
(x ∨ u, y ∨ v) ∈ φFA

and hence φFA is a congruence relation on (R,A). �

Lemma 3.2. Let (R,A) be a GADFL. Then for any a ∈ R, φ[a)A = φaA .

Proof. Clearly φaA ⊆ φ[a)A . Let (x, y) ∈ φ[a)A . Then

A(t ∧ x, t ∧ y) = A(t ∧ y, t ∧ x) = 1

for some t ∈ [a)A. Now, t ∈ [a)A ⇒ a∨ t = t by lemma 3.1(ii) and hence a∧ t = a.
Since

A(a ∧ x, a ∧ y) = A(a ∧ t ∧ x, a ∧ y) = A(a ∧ t ∧ y, a ∧ y) = A(a ∧ y, a ∧ y) = 1

⇒ A(a ∧ x, a ∧ y) = 1.

Similarly A(a ∧ y, a ∧ x) = 1. Hence (x, y) ∈ φaA . Therefore φ[a)A ⊆ φaA and
hence φ[a)A = φaA . �

In general, for any a ∈ R,

ψaA
= { (x, y) ∈ R×R | A(x ∧ a, y ∧ a) = A(y ∧ a, x ∧ a) = 1}

is an equivalence relation but not a congruence relation on (R,A). For in example
2.1, ψbA = {(a, a), (b, b), (c, c),(a, c), (c, a)} is not congruence relation on (R,A)
because for (a, c), (b, b) ∈ ψbA , we have

A((a ∨ b) ∧ b, (c ∨ b) ∧ b) = A(b ∧ b, c ∧ b) = A(b, a) = 0

and
A((c ∨ b) ∧ b, (a ∨ b) ∧ b) = A(b ∧ b, c ∧ b) = A(a, b) = 0.2.

Hence A((a ∨ b) ∧ b, (c ∨ b) ∧ b) ̸= A((c ∨ b) ∧ b, (a ∨ b) ∧ b). Then (a ∨ b, c ∨ b) is
not in ψbA . Therefore ψbA is not a congruence relation.

Also for any filter FA of (R,A),

ψFA
= {(x, y) ∈ R×R | A(x ∧ a, y ∧ a) = A(y ∧ a, x ∧ a) = 1, for some a ∈ FA}

is an equivalence relation but not a congruence relation on (R,A).

Lemma 3.3. Let (R,A) be a GADFL. Then for any a ∈ R,

ψaA
= {(x, y) ∈ R×R | A(x ∧ a, y ∧ a) = A(y ∧ a, x ∧ a) = 1} = ψ[a)A .

Proof. Clearly ψaA ⊆ ψ[a)A . Let (x, y) ∈ ψ[a)A . Then

A(x ∧ t, y ∧ t) = A(y ∧ t, x ∧ t) = 1 for some t ∈ [a)A.

Now, t ∈ [a)A implies a ∨ t = t by lemma 3.1(ii) and hence a ∧ t = a. Also,

A(x ∧ a, y ∧ a) = A(x ∧ a ∧ t, y ∧ a) = A(a ∧ x ∧ t, y ∧ a)
= A(a ∧ y ∧ t, y ∧ a) = A(y ∧ a ∧ t, y ∧ a) = A(y ∧ a, y ∧ a) = 1.
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Similarly A(y∧a, x∧a) = 1. Hence (x, y) ∈ ψaA . Thus ψ[a)A ⊆ ψaA . Therefore
ψaA

= ψ[a)A . �

Theorem 3.6. Let (R,A) be an associative GADFL, R with 0. Then for any
ideal IA of (R,A), the relation

ϑIA = {(x, y) ∈ R×R | A(a ∨ x, a ∨ y) = A(a ∨ y, a ∨ x) = 1, for some a ∈ IA}
is the smallest congruence on (R,A) containing IA × IA.

Proof. Clearly ϑIA is a congruence relation on (R,A). Also, for any x, y ∈ IA,
we have x ∨ y ∈ IA and (x, y) ∈ IA × IA. Now

A((x∨ y)∨x, (x∨ y)∨x) = A(x∨ y, x∨ y) = 1 and A((x∨ y) ∨y, (x∨ y) ∨x) = 1.

Hence (x, y) ∈ ϑIA . Therefore IA × IA ⊆ ϑIA . Now, let ϑA be any congruence on
(R,A) containing IA × IA. Then

(x, y) ∈ ϑIA ⇒ A(a ∨ x, a ∨ y) = A(a ∨ y, a ∨ x) = 1,

for some a ∈ IA. Since 0 ∈ IA and a ∈ IA then

(0, a) ∈ IA × IA ⇒ (0, a) ∈ ϑA

⇒ (0 ∨ x, a ∨ x) ∈ ϑA (since (x, x) ∈ ϑA and ϑA is congruence)

⇒ (x, a ∨ x) ∈ ϑA

and similarly

(y, a ∨ y) ∈ ϑA ⇒ (a ∨ y, y) ∈ ϑA

⇒ (x, y) ∈ ϑA (since ϑA is transitive and a ∨ x = a ∨ y).
Therefore ϑIA ⊆ ϑA. Thus ϑIA is the smallest congruence on (R,A) containing
IA × IA. �

Now we characterize an ADFL in terms of ψFA
and ψaA

.

Theorem 3.7. Let (R,A) be a GADFL. Then the following are equivalent.

(i) (R,A) is an Almost Distributive Fuzzy Lattice

(ii) For any filter FA of (R,A), ψFA
is a congruence relation on (R,A)

(iii) ψaA is a congruence relation on (R,A) for all a ∈ R.

Proof. Suppose (R,A) is a GADFL.

(i) ⇒ (ii). Assume (i). Let FA be a filter of (R,A). Clearly ψFA
is an equivalence

relation. Let (a, b), (c, d) ∈ ψF . Then A(a ∧ x, b ∧ x) = A(b ∧ x, a ∧ x) = 1 and
A(c ∧ y, d ∧ y) = A(d ∧ y, c ∧ y) = 1 for some x, y ∈ FA. Since FA is a filter of
(R,A), x ∧ y ∈ FA. Now

A(a ∧ c ∧ x ∧ y, b ∧ d ∧ x ∧ ∧y) = A(a ∧ x ∧ c ∧ y, b ∧ d ∧ x ∧ ∧y)
= A(a ∧ x ∧ d ∧ y, b ∧ d ∧ x ∧ ∧y) = A(b ∧ x ∧ d ∧ y, b ∧ d ∧ x ∧ ∧y)
= A(b ∧ d ∧ x ∧ y, b ∧ d ∧ x ∧ ∧y) = 1.

Similarly
A(b ∧ d ∧ x ∧ y, a ∧ c ∧ x ∧ ∧y) = 1
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and hence (a ∧ c, b ∧ d) ∈ ψFA . Also,

A((a ∨ c) ∧ x ∧ y, (b ∨ d) ∧ x ∧ y) = A((a ∧ x ∧ y) ∨ (c ∧ x ∧ y), (b ∨ d) ∧ x ∧ y)
= A((b∧x∧y)∨(x∧c∧y), (b∨d)∧x∧y) = A([b∧(x∧y)]∨ [x∧d∧y], (b∨d)∧x∧y)
= A([b ∧ (x ∧ y)] ∨ [d ∧ (x ∧ y)], (b ∨ d) ∧ x ∧ y)
= A((b ∨ d) ∧ x ∧ y, (b ∨ d) ∧ x ∧ y) = 1.

Similarly A((b∨ d)∧ x∧ y, (a∨ c)∧ x∧ y) = 1. Therefore (a∨ c, b∨ d) ∈ ψFA .
Thus ψFA

is a congruence relation on (R,A).

(ii) ⇒ (iii) Follows from lemma 3.3.

(iii) ⇒ (i). Assume (iii). Let a, b ∈ R. Since

A(a ∧ b, (a ∧ b) ∧ b) = A((a ∧ b) ∧ b, a ∧ b) = 1.

then (a, a ∧ b ∈) ψbA . Also, A(b ∧ b, b ∧ b) = 1. Hence (b, b) ∈ ψbA . Since ψbA is a
congruence relation on (R,A), (a ∨ b, (a ∧ b) ∨ b) ∈ ψbA . Hence

A((a ∨ b) ∧b, [(a ∧ b) ∨ b] ∧b) = A([(a ∧ b) ∨ b] ∧b, (a ∨ b) ∧b) = 1 ⇒
A((a ∨ b) ∧ b, b ∧ b) = A(b ∧ b, (a ∨ b) ∧ b) = 1 ⇒
A((a ∨ b) ∧ b, b) > 0 and A(b, (a ∨ b) ∧ b) > 0.

Therefore (R,A) is an Almost Distributive Fuzzy Lattice. �

4. Subdirectly Irreducible GADFLs

In this section we characterize Subdirectly Irreducible associative GADFLs.

Definition 4.1. Let (R,A) be a GADFL,

△(R,A) = {(x, y) ∈ R×R|A(x, y) = A(y, x) = 1}
is called zero congruence in (R,A).

Definition 4.2. A GADFL (R,A) is said to be subdirectly irreducible if the
intersection of any family of nonzero congruences in (R,A) is again a nonzero
congruence.

Lemma 4.1. Let (R,A) be a GADFL. For any a ∈ R,

φaA = {(x, y) ∈ R×R | A(a ∧ x, a ∧ y) = A(a ∧ y, a ∧ x) = 1}
is a congruence relation on (R,A). Further, φaA = ∆(R,A) if and only if a is a left
identity element of R and φaA = R×R if and only if A(a, 0) = A(0, a) = 1.

Proof. Clearly φaA is an equivalence relation on (R,A). Let (u, v), (c, d) ∈
φaA . Then A(a ∧ u, a ∧ v) = A(a ∧ v, a ∧ u) = 1 and A(a ∧ c, a ∧ d) = A(a ∧ d,
a ∧ c) = 1. Now

A(a ∧ (u ∧ c), a ∧ (v ∧ d)) = A((a ∧ u) ∧ c, a ∧ (v ∧ d)) = A((a ∧ v) ∧ c, a ∧ (v ∧ d))
= A(a ∧ v ∧ c, a ∧ (v ∧ d)) = A(v ∧ a ∧ c, a ∧ (v ∧ d)) = A(v ∧ a ∧ d, a ∧ (v ∧ d))
= A(a ∧ (v ∧ d), a ∧ (v ∧ d)) = 1.

Similarly A(a ∧ (v ∧ d), a ∧ (u ∧ c)) = 1. Hence (u ∧ c, v ∧ d) ∈ φaA . Also,

A(a ∧ (u ∨ c), a ∧ (v ∨ d)) = A((a ∧ u) ∨ (a ∧ c), a ∧ (v ∨ d))
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= A((a ∧ u) ∨ (a ∧ d), a ∧ (v ∨ d)) = A(a ∧ (v ∨ d), a ∧ (v ∨ d)) = 1.

Similarly A(a∧ (v ∨ d), a∧ (u∨ c)) = 1. Hence (u∨ c, v ∨ d) ∈ φaA . Therefore
φaA is a congruence relation on (R,A).

Suppose φaA = ∆(R,A). Let x ∈ R. Then

A(a ∧ (a ∧ x), a ∧ x) = A(a ∧ a ∧ x, a ∧ x) = A(a ∧ x, a ∧ x) = 1.

Similarly A(a∧ x, a∧ (a∧ x)) = 1. Hence (a∧ x, x) ∈ φaA = ∆(R,A) and then
a ∧ x = x. Thus a is left identity element.

Conversely suppose a is left identity element and (x, y) ∈ φaA . Then

A(a ∧ x, a ∧ y) = A(a ∧ y, a ∧ x) = 1.

That is A(x, y) = A(y, x) = 1 and hence φaA = ∆(R,A). Also suppose φaA = R×R,
since (a, 0) ∈ R×R then (a, 0) ∈ φaA . Hence

A(a ∧ a, a ∧ 0) = A(a ∧ 0, a ∧ a) = 1 ⇒ A(a, 0) = A(0, a) = 1.

Conversely suppose A(a, 0) = A(0, a) = 1 then a = 0. Clearly φaA ⊆ R × R.
Now let (x, y) ∈ R × R. Since A(a ∧ x, a ∧ y) = A(0 ∧ x, 0 ∧ y) = A(0, 0) = 1.
Similarly A(a ∧ y, a ∧ x) = 1. Then (x, y) ∈ φaA . Therefore φaA = R×R. �

The following result can be easily verified.

Lemma 4.2. For any a ∈ R,

ϑaA = {(x, y) ∈ R×R | A(a ∨ x, a ∨ y) = A(a ∨ y, a ∨ x) = 1}

is an equivalent relation on (R,A).

In general, ϑaA
is not a congruence relation on (R,A). In example 2.1,

ϑaA = ∆(R,A) ∪ {(a, c), (c, a)}

is not a congruence relation on (R,A) because for (a, c), (b, b) ∈ ϑaA
, we have that

(a ∨ b, c ∨ b) = (b, c) is not in ϑaA . But if ∨ is associative in R, then ϑaA is a
congruence relation on (R,A). In fact we prove the following.

Theorem 4.1. Let (R,A) be a GADFL. Then ϑaA is a congruence on (R,A)
if and only if ∨ is associative. Further, ϑaA

= ∆(R,A) if and only if a is the zero
(least) element of R.

Proof. Suppose (R,A) is a GADFL.
Claim: (i) ϑaA

is a congruence on (R,A) if and only if ∨ is associative.

(ii) ϑaA = ∆(R,A) if and only if a is the zero(least) element of R.

(i) Suppose ϑaA is a congruence on (R,A), for all a ∈ R. Let a, b, c ∈ R, Since
A(a ∨ 0, a ∨ a) = A(a ∨ a, a ∨ 0) = 1. Then (0, a) ∈ ϑaA

. Now, (0, a) ∈ ϑaA
and

(b, b) ∈ ϑaA ⇒ (0∨ b, a∨ b) ∈ ϑaA ⇒ (b, a∨ b) ∈ ϑaA . Since (c, c) ∈ ϑaA then (b∨ c,
(a ∨ b) ∧ c) ∈ ϑaA

. Therefore A(a ∨ (b ∨ c), a ∨ [(a ∨ b) ∨ c]) = A(a ∨ [(a ∨ b) ∨ c],
a∨(b∨c)) = 1. Then a∨(b∨c) = a∨[(a∨b)∨c] = (a∨b)∨c (since a∧[(a∨b)∨c] = a
and a ∨ b = b⇔ a ∧ b = a). Thus ∨ is associative.
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Conversely suppose ∨ is associative. By lemma 4.4, ϑaA is an equivalence
relation on (R,A). Let (u, v) and (c, d) ∈ ϑaA

. Then

A(a ∨ u, a ∨ v) = A(a ∨ v, a ∨ u) = 1

and
A(a ∨ c, a ∨ d) = A(a ∨ d, a ∨ c) = 1.

Now

A(a ∨ (u ∧ c), a ∨ (v ∧ d)) = A((a ∨ u) ∧ (a ∨ c), a ∨ (v ∧ d))
= A((a ∨ v) ∧ (a ∨ c), a ∨ (v ∧ d)) = A((a ∨ v) ∧ (a ∨ d), a ∨ (v ∧ d))
= A(a ∨ (v ∧ d), a ∨ (v ∧ d)) = 1.

Similarly A(a ∨ (v ∧ d), a ∨ (u ∧ c)) = 1. Hence (u ∧ c, v ∧ d) ∈ ϑaA
. Also,

A(a∨ (u∨ c), a∨ (v∨d)) = A((a∨u)∨ c, a∨ (v∨d)) = A((a∨ v)∨ c, a∨ (v∨d))
= A([(a ∨ v) ∨ a] ∨ c, a ∨ (v ∨ d)) = A((a ∨ v) ∨ (a ∨ c), a ∨ (v ∨ d))
= A((a ∨ v) ∨ (a ∨ d), a ∨ (v ∨ d)) = A([(a ∨ v) ∨ a] ∨ d), a ∨ (v ∨ d))
= A((a ∨ v) ∨ d, a ∨ (v ∨ d)) = A(a ∨ (v ∨ d), a ∨ (v ∨ d)) = 1.

Similarly A(a∨ (v ∨ d), a∨ (u∨ c)) = 1. Hence (u∨ c, v ∨ d) ∈ ϑaA
. Therefore

ϑaA is a congruence relation on (R,A).

(ii) Suppose ϑaA
= ∆(R,A). Then for any x ∈ R, we have

A(a ∨ a, a ∨ (a ∧ x)) = A(a ∨ (a ∧ x), a ∨ a) = A(a, a) = 1.

So that (a, a ∧ x) ∈ ϑaA
⇒ (a, a ∧ x) ∈ ∆(R,A) and hence a = a ∧ x. Thus a 6 x

for all x ∈ R. Hence a is the zero element of R.

Conversely suppose a is the zero element of R. Let (x, y) ∈ ϑaA
. Then

A(a ∨ x, a ∨ y) = A(a ∨ y, a ∨ x) = 1 ⇒ A(x, y) = A(y, x) = 1.

Hence ϑaA = ∆(R,A). �

In the following theorem we characterize a subdirectly irreducible associative
GADFL.

Theorem 4.2. Let (R,A) be an associative GADFL. Then (R,A) is subdirectly
irreducible if and only if every nonzero element of R is left identity and R contains
at most two nonzero elements.

Proof. Let (R,A) be an associative GADFL. Suppose (R,A) is subdirectly
irreducible.

Claim: (i) Every nonzero element of R is left identity

(ii) R contains at most two nonzero elements.

(i) Let ϑA be the smallest nonzero congruence relation on (R,A). Choose x, y ∈
R with x ̸= y such that (x, y ∈) ϑA. Assume that x and y both are not left identity
elements of R. Then φxA ̸= ∆(R,A) ̸= φxA , so that (x, y) ∈ φxA ∩φyA (since ϑA is
the smallest nonzero congruence on a subdirect irreducible (R,A)). Hence

A(x ∧ x, x ∧ y) = A(x ∧ y, x ∧ x) = 1
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and
A(y ∧ y, y ∧ x) = A(y ∧ x, y ∧ y) = 1 ⇒ x = x ∧ y

and y = y ∧ x. Thus A(x, y) > 0 and A(y, x) > 0 and hence x = y, which is a
contradiction. Thus at least one of x, y is a left identity element. Without loss of
generality, assume that x is a left identity element. Let a be a nonzero element of
R. Suppose a is not left identity element. Now x is left identity element implies
that A(x∧a, a) = A(a, x∧a) = 1. As a∧x∧a = x∧a∧a = x∧a = a so that a∧x
is a nonzero element of R. Therefore ϑ(a∧x)A ̸= ∆(R,A) (by theorem 4.1). Hence
(x, y) ∈ ϑ(a∧x)A . Also, since a is not left identity element, we get φaA is a nonzero
congruence(by lemma 4.1) and hence (x, y) ∈ φaA . Now

A(x, y) = A((a ∧ x) ∨ x, y) = A((a ∧ x) ∨ x, y)
= A((a ∧ x) ∨ y, y) = A((a ∧ y) ∨ y, y) = 1.

Similarly A(y, x) = 1. Hence A(x, y) = A(y, x) = 1 ⇒ x = y. Which is a
contradiction. Thus a is left identity element.

(ii) Suppose a, b, c ∈ R be three distinct nonzero elements of R. Then a, b, c
are left identity elements. Hence we get φA = ∆(R,A) ∪ {(a, b), (b, a)} and ψA =
∆(R,A) ∪ {(b, c), (c, b)} are two nonzero congruences on (R,A) such that φA ∩ ψA

= ∆(R,A). This contradicts the fact that (R,A) is subdirectly irreducible. Hence
R has at most two nonzero elements. Converse is trivial. �
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