EDGE PAIR SUM LABELING OF SOME SUBDIVISION OF GRAPHS

P. Jeyanthi and T. Saratha Devi

Abstract. An injective map \(f : E(G) \rightarrow \{ \pm 1, \pm 2, \cdots, \pm q \} \) is said to be an edge pair sum labeling of a graph \(G(p, q) \) if the induced vertex function \(f^*: V(G) \rightarrow \mathbb{Z} - \{0\} \) defined by \(f^*(v) = \sum_{e \in E_v} f(e) \) is one-one, where \(E_v \) denotes the set of edges in \(G \) that are incident with a vertex \(v \) and \(f^*(V(G)) \) is either of the form \(\{ \pm k_1, \pm k_2, \cdots, \pm k_{\frac{p}{2}} \} \) or \(\{ \pm k_1, \pm k_2, \cdots, \pm k_{\frac{p-1}{2}} \} \cup \{ \pm k_{\frac{p+1}{2}} \} \) according as \(p \) is even or odd. A graph which admits edge pair sum labeling is called an edge pair sum graph. In this paper, we prove that the subdivision of graph such as bistar \(S(B_{m,n}) \), path \(P_n \odot k_1 \), triangular snake \(S(T_n) \) if \(n \) is odd, double triangular snake \(D(T_n) \), double quadrilateral snake \(D(Q_n) \), double alternative triangular snake \(DA(T_n) \) and double alternative quadrilateral snake \(DA(Q_n) \) are edge pair sum graph.

1. preliminaries

A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions. There are several types of labeling and for a dynamic survey of various graph labeling problems along with extensive bibliography we refer to Gallian [1]. The concept of edge pair sum labeling has been introduced in [3] and further studied in [4-12]. This is the further extension work on edge pair sum labeling. Through out this paper we consider finite, simple and undirected graph \(G = (V(G), E(G)) \) with \(p \) vertices and \(q \) edges. \(G \) is also called a \((p, q)\)

2010 Mathematics Subject Classification. 05C78.
Key words and phrases. edge pair sum graph, edge pair sum labeling, bistar graph, triangular snake graph, double triangular snake graph, double quadrilateral graph, double alternative triangular snake, double alternative quadrilateral snake graph.
The double triangular snake $D(T_n)$ is a graph obtained from a path P_n with vertices $v_1, v_2, ..., v_n$ by joining v_i and v_{i+1} to the new vertices w_i and u_i for $i = 1, 2, ..., n-1$.

The double quadrilateral snake $D(Q_n)$ is a graph obtained from a path P_n with vertices $u_1, u_2, ..., u_n$ by joining u_i and u_{i+1} to the new vertices v_i, x_i and w_i, y_i respectively and then joining v_i, w_i and x_i, y_i for $i = 1, 2, ..., n-1$.

A double alternate triangular snake $DA(T_n)$ consists of two alternate triangular snakes that have a common path. That is, a double alternate triangular snake is obtained from a path $u_1, u_2, ..., u_n$ by joining u_i and u_{i+1} (alternatively) to the two new vertices v_i and w_i for $i = 1, 2, ..., n-1$.

A double alternate quadrilateral snake $DA(Q_n)$ consists of two alternate quadrilateral snakes that have a common path. That is, a double alternate quadrilateral snake is obtained from a path $u_1, u_2, ..., u_n$ by joining u_i and u_{i+1} (alternatively) to the new vertices v_i, x_i and w_i, y_i respectively and adding the edges $v_i w_i$ and $x_i y_i$ for $i = 1, 2, ..., n-1$.

Let G be a graph. The subdivision graph $S(G)$ is obtained from G by subdividing each edge of G with a vertex.

2. Main Results

In this section, we prove that subdivision of bistar $S(B_{m,n})$, $P_n \odot k_1$, triangular snake $S(T_n)$ if n is odd, double triangular snake $D(T_n)$, double quadrilateral snake $D(Q_n)$, double alternative triangular snake $DA(T_n)$ and double alternative quadrilateral snake $DA(Q_n)$ are edge pair sum graph.

Theorem 2.1. The subdivision of bistar graph $S(B_{m,n})$ is an edge pair sum graph.

Proof. Let

$$V(S(B_{m,n})) = \{u, v, w, u_i : 1 \leq i \leq 2m, v_i : 1 \leq i \leq 2n\}$$

and

$$E(S(B_{m,n})) = \{e_{1}'' = uw, e_2'' = vw, e_{2i-1} = uv_{2i-1}, e_{2i} = u_{2i-1}v_{2i} : 1 \leq i \leq m, e_{2i-1} = v_{2i-1}, e_{2i} = v_{2i-1}v_{2i} : 1 \leq i \leq n\}$$

are the vertices and edges of the graph $S(B_{m,n})$.

Define

$$f : E(S(B_{m,n})) \rightarrow \{\pm 1, \pm 2, \pm 3, ..., \pm 2(m + n + 1)\}$$
by considering the following three cases:

Case (i). \(m \) and \(n \) are even.

\[
f(e_1^{'}) = -2, \quad f(e_2^{'}) = 1,
\]

for \(1 \leq i \leq \frac{m}{2} \)

\[
f(e_{2i-1}) = (2i + 1) = -f(e_{m-1+2i}), \quad f(e_{2i}) = (m + 1 + 2i) = -f(e_{m+2i});
\]

for \(1 \leq i \leq \frac{n}{2} \)

\[
f(e_{2i-1}^{'}) = (2m + 1 + 2i) = -f(e_{n-1+2i}^{'}), \quad f(e_{2i}^{'}) = (2m + n + 1 + 2i) = -f(e_{n+2i}^{'}).\]

For each edge label \(f \) the induced vertex label \(f^* \) is defined as follows:

\[
f^*(u) = -2, \quad f^*(w) = -1 = -f^*(v),
\]

for \(1 \leq i \leq \frac{m}{2} \)

\[
f^*(u_{2i-1}) = (m + 2 + 4i) = -f^*(u_{m-1+2i}),
\]

\[
f^*(u_{2i}) = (m + 1 + 2i) = -f^*(u_{m+2i}),
\]

for \(1 \leq i \leq \frac{n}{2} \)

\[
f^*(v_{2i-1}) = (4m + n + 2 + 4i) = -f^*(v_{n-1+2i}),
\]

\[
f^*(v_{2i}) = (2m + n + 1 + 2i) = -f^*(v_{n+2i}).
\]

Then

\[
f^*(V(B_{m,n})) = \{ \pm 1, \pm (m + 6), \pm (m + 10), \pm (m + 14), ..., \pm (3m + 2), \pm (m + 3), \pm (m + 5), \pm (m + 7), ..., \pm (2m + 1), \pm (4m + n + 6), \pm (4m + n + 10), \pm (4m + n + 14), ..., \pm (4m + 3n + 2), \pm (2m + n + 3), \pm (2m + n + 5), \pm (2m + n + 7), ..., \pm (2m + 2n + 1) \} \cup \{-2\}.
\]

It can be verified that \(f \) is an edge pair sum labeling of \(S(B_{m,n}) \) if \(m \) and \(n \) are even. Hence \(S(B_{m,n}) \) is an edge pair sum graph if \(m \) and \(n \) are even.

Case (ii). \(m \) and \(n \) are odd.

\[
f(e_1) = -3 = -f(e_1^{'}), \quad f(e_2) = -5 = -f(e_2^{'}), \quad f(e_1^{'}) = 2, \quad f(e_2^{'}) = -1,
\]

for \(1 \leq i \leq \frac{m-1}{2} \)

\[
f(e_{2i+1}) = (2i + 5) = -f(e_{m+2i}),
\]

\[
f(e_{2i+2}) = (m + 4 + 2i) = -f(e_{m+1+2i}),
\]

for \(1 \leq i \leq \frac{n-1}{2} \)

\[
f(e_{2i+1}^{'}) = (2m + 3 + 2i) = -f(e_{n+2i}^{'},)
\]

\[
f(e_{2i+2}^{'}) = (2m + n + 2 + 2i) = -f(e_{n+1+2i}).
\]

For each edge label \(f \) the induced vertex label \(f^* \) is defined as follows:

\[
f^*(v) = 2, \quad f^*(w) = 1 = -f^*(u),
\]

\[
f^*(u_1) = -8 = -f^*(v_1), \quad f^*(u_2) = -5 = -f^*(v_2),
\]
for $1 \leq i \leq \frac{m-1}{2}$

$$f^*(u_{2i+1}) = (m + 9 + 4i) = -f^*(u_{m+2i}),$$

$$f^*(u_{2i+2}) = (m + 4 + 2i) = -f^*(u_{m+1+2i}),$$

for $1 \leq i \leq \frac{n-1}{2}$

$$f^*(v_{2i+1}) = (4m + n + 5 + 4i) = -f^*(v_{n+2i}),$$

$$f^*(v_{2i+2}) = (2m + n + 2 + 2i) = -f^*(v_{n+1+2i}).$$

Then

$$f^*(V(B_{m,n})) =$$

$$\{\pm 1, \pm 5, \pm 8, \pm (m + 13), \pm (m + 17), \pm (m + 21), ..., \pm (3m + 7), \pm (m + 6), \pm (m + 8), \pm (m + 10), ..., \pm (2m + 3), \pm (4m + n + 9), \pm (4m + n + 13), \pm (4m + n + 17), ..., \pm (4m + 3n + 3), \pm (2m + n + 4), \pm (2m + n + 6), \pm (2m + n + 8), ..., \pm (2m + 2n + 1) \} \cup \{2\}.$$

It can be verified that f is an edge pair sum labeling of $S(B_{m,n})$ if m and n are odd. Hence $S(B_{m,n})$ is an edge pair sum graph if m and n are odd.

Case (iii). m is odd and n is even.

$$f(e_1) = -1 = -f(e_2''), f(e_2) = 3, f(e_1'') = -2,$$

for $1 \leq i \leq \frac{m-1}{2}$

$$f(e_{2i+1}) = (2i + 3) = -f(e_{m+2i}),$$

$$f(e_{2i+2}) = (m + 2 + 2i) = -f(e_{m+1+2i}),$$

for $1 \leq i \leq \frac{n}{2}$

$$f(e_{2i-1}') = (2m + 1 + 2i) = -f(e_{n-1+2i}'),$$

$$f(e_{2i}') = (2m + n + 1 + 2i) = -f(e_{n+2i}').$$

For each edge label f the induced vertex label f^* is defined as follows:

$$f^*(u_1) = 2, f^*(w) = -1 = -f^*(v), f^*(u_2) = 3 = -f^*(u),$$

for $1 \leq i \leq \frac{m-1}{2}$

$$f^*(u_{2i+1}) = (m + 5 + 4i) = -f^*(u_{m+2i}),$$

$$f^*(u_{2i+2}) = (m + 2 + 2i) = -f^*(u_{m+1+2i}),$$

for $1 \leq i \leq \frac{n}{2}$

$$f^*(v_{2i-1}) = (4m + n + 2 + 4i) = -f^*(v_{n-1+2i}),$$

$$f^*(v_{2i}) = (2m + n + 1 + 2i) = -f^*(v_{n+2i}).$$

Then

$$f^*(V(B_{m,n})) =$$

$$\{\pm 1, \pm 3, \pm (m + 9), \pm (m + 13), \pm (m + 17), ..., \pm (3m + 3), \pm (m + 4), \pm (m + 6), \pm (m + 8), ..., \pm (2m + 1), \pm (4m + n + 6), \pm (4m + n + 10), \pm (4m + n + 14), ..., \pm (4m + 3n + 2), \pm (2m + n + 3), \pm (2m + n + 5), \pm (2m + n + 7), ..., \pm (2m + 2n + 1) \} \cup \{2\}.$$
It can be verified that f is an edge pair sum labeling of $S(B_{m,n})$ if m is odd and n is even. Hence $S(B_{m,n})$ is an edge pair sum graph if m is odd and n is even.

An example for the edge pair sum labeling of $S(B_{3,4})$ is given in Figure 1.

![Figure 1: Edge pair sum labeling of $S(B_{3,4})$](image)

Theorem 2.2. The subdivision of $(P_n \circ K_1)$ graph is an edge pair sum graph.

Proof. Let

$$V(S(P_n \circ K_1)) = \{v_i, w_i : 1 \leq i \leq n, u_i : 1 \leq i \leq 2n - 1\}$$

and

$$E(S(P_n \circ K_1)) = \{e_i = v_iu_{2i-1}, e''_i = v_iw_i : 1 \leq i \leq n, e_i = u_iu_{i+1} : 1 \leq i \leq 2n-2\}$$

are the vertices and edges of the graph $S(P_n \circ K_1)$.

Define an edge labeling $f : E((P_n \circ K_1)) \rightarrow \{\pm 1, \pm 2, \pm 3, ..., \pm (4n-2)\}$ by considering the following two cases:

Case (i). n is odd.

$$f(e'_{\frac{n+1}{2}}) = 2, \quad f(e''_{\frac{n+1}{2}}) = -4,$$

for $1 \leq i \leq \frac{n-1}{2}$

$$f(e_i) = (2i - 1), \quad f(e'_{\frac{n+1}{2}+i}) = -(n - 2i), \quad f(e''_{\frac{n+1}{2}+i}) = (4 + 2i)$$

and

$$f(e''_{\frac{n+1}{2}+i}) = -(n + 5 - 2i),$$

for $1 \leq i \leq (n - 1)$

$$f(e_i) = (n + 2 + 2i)$$

and

$$f(e_{n-1+i}) = -(3n + 2 - 2i).$$

For each edge label f the induced vertex label f^* is defined as follows:
Then the induced vertex labeling is as follows:

\[f^*(w_{\frac{2i+1}{2}}) = -4, \quad f^*(v_{\frac{2i+1}{2}}) = -2 = -f^*(u_n), \quad f^*(u_1) = (n+5) = -f^*(u_{2n-1}), \]

for \(1 \leq i \leq \frac{n-1}{2} \)

\[f^*(w_i) = (4+2i), \quad f^*(v_{\frac{2i+1}{2}+1}) = -(n+5-2i), \quad f^*(v_i) = (4i+3), \]

\[f^*(v_{\frac{2i+1}{2}+1}) = -(2n+5-4i), \quad f^*(u_{2i}) = (2n+2+8i) \text{ and} \]

\[f^*(u_{n-1+2i}) = -(6n+6-8i), \]

for \(1 \leq i \leq \frac{n-3}{2} \)

\[f^*(u_{2i+1}) = (2n+7+10i) \text{ and} \quad f^*(u_{n+2i}) = -(7n+2-10i). \]

Hence we get

\[f^*(V(P_n \circ K_1)) = \{ \pm 2, \pm 6, \pm 8, \pm 10, \ldots, \pm (n+3), \pm 7, \pm 11, \pm 15, \ldots, \pm (2n+1), \pm (2n+17), \pm (2n+27), \pm (2n+37), \ldots, \pm (7n-8), \pm (2n+10), \pm (2n+18), \pm (2n+26), \ldots, \pm (6n-2), \pm (n+5) \} \bigcup \{-4\}. \]

It can be verified that \(f \) is an edge pair sum labeling of \((P_n \circ K_1)\) if \(n \) is odd. Hence \((P_n \circ K_1)\) is an edge pair sum graph if \(n \) is odd.

Case (ii). \(n \) is even.

Subcase (a). \(n = 2 \).

\[f(e'_1) = 4 = -f(e'_2), \quad f(e'_2) = 2 = -f(e_1), \quad f(e'_1) = -3 \text{ and} \quad f(e_2) = 1. \]

Then the induced vertex labeling is as follows:

\[f^*(u_1) = 2 = -f^*(v_2), \quad f^*(v_2) = -1 = -f^*(v_1), \quad f^*(v_3) = 3 = -f^*(w_1) \text{ and} \]

\[f^*(w_2) = -4. \]

Then \(f^*(V(P_n \circ K_1)) = \{ \pm 1, \pm 2, \pm 3 \} \bigcup \{-4\}. \)

Hence \(f \) is an edge pair sum labeling if \(n = 2 \).

Subcase (b). \(n \geq 4 \).

\[f(e_{\frac{2i+1}{4}}) = 3n, \quad f(e_{\frac{2i+2}{4}}) = -(3n-3), \]

for \(1 \leq i \leq n-2 \)

\[f(e_i) = -(2n+1-2i) \text{ and} \quad f(e_{\frac{2i+4}{4}+1}) = (3+2i), \]

for \(1 \leq i \leq \frac{n}{2} \)

\[f(e'_i) = -(2n-2+2i), \quad f(e_{\frac{2i+1}{4}+i}) = (3n-2i), \quad f(e''_i) = -(3n-3+2i) \text{ and} \]

\[f(e_{\frac{2i+1}{4}+1}) = (4n-1-2i). \]

For each edge label \(f \) the induced vertex label \(f^* \) is defined as follows:

for \(1 \leq i \leq \frac{n-1}{2} \)

\[f^*(w_i) = -(3n-3+2i), \quad f^*(v_{\frac{2i+1}{4}+1}) = (4n-1-2i), \quad f^*(v_i) = -(5n-5+4i), \]

\[f^*(v_{\frac{2i+1}{4}+1}) = (7n-1-4i), \quad f^*(u_i) = -(4n-1) = -f^*(u_n), \]

\[f^*(u_n) = 3 = -f^*(u_{n-1}), \]

for \(1 \leq i \leq \frac{n-2}{2} \)
The subdivision of triangular snake graph

Let \(f(u_{2i}) = -(4n + 4 - 8i) \) and \(f(u_{n+2i}) = (4 + 8i) \),
for \(1 \leq i \leq \frac{n-4}{2} \).

\(f(u_{2i+1}) = -6(n - 8) \) and \(f(u_{n+2i+1}) = (3n + 6 + 6i) \) and \(f(u_{n+1}) = 6 \).

We get \(f(V(P_n \odot K_1)) = \{ \pm 3, \pm (3n - 1), \pm (3n + 1), \pm (3n + 3), \ldots, \pm (4n - 3), \pm (5n - 1), \pm (5n+3), \pm (5n+7), \ldots, \pm (7n-5), \pm (4n-1), \pm 12, \pm 20, \pm 28, \ldots, \pm (4n-4), \pm (5n+12), \pm (3n + 18), \pm (3n + 24), \ldots, \pm (6n - 6) \} \cup \{6\} \).

It can be verified that \(f \) is an edge pair sum labeling of \((P_n \odot K_1)\) if \(n \geq 4 \).
Hence \((P_n \odot K_1)\) is an edge pair sum graph if \(n \geq 4 \).

The example for the edge pair sum labeling of \((P_3 \odot K_1)\) and \((P_2 \odot K_1)\) are shown in Figure 2.

\[
\begin{array}{c}
1 & 2 & 3 & 4 & 5 & 6 \\
7 & 9 & -9 & -7 & -2 & 1 \\
6 & 4 & -6 & -3 & -4 & 2 \\
\end{array}
\]

Figure 2: Edge pair sum labeling of \((P_3 \odot K_1)\) and \((P_2 \odot K_1)\)

Theorem 2.3. The subdivision of triangular snake graph \(S(T_n)\) is an edge pair sum graph if \(n \) is odd.

Proof. Let \(V(S(T_n)) = \{ w_i : 1 \leq i \leq (n-1), v_i : 1 \leq i \leq 2(n-1), u_i : 1 \leq i \leq (2n-1) \} \) and \(E(S(T_n)) = \{ e_{2i-1} = e_{2i-1}'w_i, e_{2i} = e_{2i}'v_i, e_{2i-1}' = u_{2i-1}v_{2i-1}, e_{2i}' = u_{2i+1}v_{2i} : 1 \leq i \leq n-1, e_i = u_iu_{i+1} : 1 \leq i \leq 2(n-1) \} \) are the vertices and edges of the graph \(S(T_n)\).

Define an edge labeling \(f : E(S(T_n)) \to \{ \pm 1, \pm 2, \pm 3, \ldots, \pm 6(n-1) \} \).

\[
f(e_{n-2}') = -6 = f(e_{n+1}''), f(e_{n+1}'') = 1, f(e''_n) = 2, f(e_{n-2}') = -5 = f(e''_{n+1}),\\ f(e_{n-1}') = -4 = f(e''_n), f(e_{n-2}) = -7 = f(e_{n+1}), f(e_{n-1}) = -8 = f(e_n),
\]

for \(1 \leq i \leq \frac{n-3}{2} \).
The subdivision of double triangular snake graph

For each edge label f the induced vertex label f^* is defined as follows:

$$f^*(w_{n-1}) = -9 = f^*(w_{n+1}), \quad f^*(v_{n-2}) = -11 = f^*(v_{n+1}),$$
$$f^*(v_{n-1}) = -3 = f^*(u_n), \quad f^*(v_n) = 6, \quad f^*(u_1) = -(6n - 5) = f^*(u_{2n-1}),$$
$$f^*(u_{2n-2}) = (6n - 3),$$

for $1 \leq i \leq \frac{n-3}{2}$

$$f^*(w_i) = -(6n + 3 - 12i), \quad f^*(w_{i+1}) = (9 + 12i), \quad f^*(v_{i-1}) = -(6n + 5 - 12i),$$
$$f^*(v_i) = -(6n + 1 - 12i), \quad f^*(v_{i+1}) = (7 + 12i), \quad f^*(v_{n+1}) = (11 + 12i),$$
$$f^*(u_{i+1}) = -(12n - 24i), \quad f^*(u_{n+1}) = (3 + 12i) \text{ and } f^*(u_{n+2}) = (12 + 24i),$$

for $1 \leq i \leq \frac{n-1}{2}$

$$f^*(u_{2i}) = -(6n + 9 - 12i).$$

Then

$$f^*(V(S(T_n))) = \{\pm 3, \pm 11, \pm 9, \pm 21, \pm 33, \pm 45, \ldots, \pm (6n - 9), \pm 23, \pm 35, \pm 47, \ldots, \pm (6n - 7), \pm 19, \pm 31, \pm 43, \ldots, \pm (6n - 11), \pm (6n - 5), \pm 15, \pm 27, \pm 39, \ldots, \pm (6n - 15), \pm 36, \pm 60, \pm 84, \ldots, \pm (12n - 24), \pm (6n - 3)\} \bigcup \{6\}.$$

It can be verified that f is an edge pair sum labeling of $S(T_n)$ if n is odd. Hence $S(T_n)$ is an edge pair sum graph if n is odd.

Theorem 2.4. The subdivision of double triangular snake graph $S(D(T_n))$ is an edge pair sum graph.

Proof. Let

$$V(S(D(T_n))) = \{u_i : 1 \leq i \leq (2n - 1), v_i, v_i' : 1 \leq i \leq 2(n - 1), w_i w_i' : 1 \leq i \leq (n - 1)\}$$

and

$$E(S(D(T_n))) = \{e_i = u_i u_{i+1} : 1 \leq i \leq 2(n - 1), e_i = v_{i-1} v_{i-1}, e_i' = v_{i-1} v_{i-1}, e_i'' = v_{i-1} w_i, e_i''' = w_i w_i' : 1 \leq i \leq (n - 1)\}$$

are the vertices and edges of the graph $S(D(T_n))$.

Define $f : E(S(D(T_n))) \rightarrow \{\pm 1, \pm 2, \pm 3, \ldots, \pm 10(n - 1)\}$ by considering the following two cases:

Case (i). $n = 2$.

$$f(e_1) = -2, \quad f(e_2) = 1, \quad f(e'_1) = 4 = -f(e'_2), \quad f(e'_2) = 5 = -f(e'_3),$$
$$f(e'_3) = 6 = -f(e'_4) \text{ and } f(e'_4) = 7 = -f(e'_5).$$

For each edge label f the induced vertex label f^* is defined as follows:
For each edge label f the induced vertex label f^* is defined as follows:

- For $1 \leq i \leq (n-1)$:
 \[f^*(w_i) = (4n - 5 + 8i) = -f^*(w'_i), \]
 \[f^*(v_{2i-1}) = (4n - 7 + 8i) = -f^*(v'_{2i-1}), \]
 and
 \[f^*(v_{2i}) = (4n - 3 + 8i) = -f^*(v'_{2i}). \]

- For $1 \leq i \leq (n-3)$:
 \[f^*(u_{1+i}) = -4(n - i) \]
 and
 \[f^*(u_{n+1+i}) = (8 + 4i). \]

Then

\[f^*(V(S(D(T_n)))) = \{-1, \pm 9, \pm 11, \pm 13\} \cup \{-2\}. \]

Case (ii). $n \geq 3$.

For $1 \leq i \leq (n-2)$

- $f(e_i) = -(2n + 1 - 2i)$ and $f(e_{n+i}) = (3 + 2i)$,
- $f(e_{n-1}) = 2$,
- $f(e_n) = 1$,
- for $1 \leq i \leq (n-1)$ $f(e_{4i-3}) = (2n - 4 + 4i) = -f(e'_{4i-3}),$
- $f(e'_{4i-2}) = (2n - 3 + 4i) = -f(e''_{4i-2}),$
- $f(e'_{4i-1}) = (2n - 2 + 4i) = -f(e'''_{4i-1})$ and
- $f(e'_{4i}) = (2n - 1 + 4i) = -f(e''_{4i}).$

An example for the edge pair sum labeling of subdivision of double triangular snake graph $S(D(T_5))$ is shown in Figure 3.

Figure 3. Edge pair sum labeling of $S(D(T_5))$
Corollary 2.1. The subdivision of double alternative triangular snake graph \(S(DA(T_n)) \) is an edge pair sum graph.

Proof. The proof follows from the Theorem 2.4. \(\square \)

Theorem 2.5. The subdivision of double quadrilateral snake graph \(S(D(Q_n)) \) is an edge pair sum graph.

Proof. Let
\[
V(S(D(Q_n))) = \{ u_i : 1 \leq i \leq (2n - 1), v_{ij}, v'_{ij} : 1 \leq i \leq (n - 1), 1 \leq j \leq 5 \}
\]

and
\[
E(S(D(Q_n))) = \{ e_i = u_i u_{i+1} : 1 \leq i \leq (2n - 2), e_i = u_{2i-1} v_{i1}, e_i' = u_{2i-1} v'_{i1}, e_i'' = v_5 u_{2i+1}, e_i'' = v_{ij} e_{i1+j}, e_i'' = v_j e_{i1+j} : 1 \leq i \leq (n - 1), 1 \leq j \leq 4 \}
\]
are the vertices and edges of the graph \(S(D(Q_n)) \).

Define
\[
f : E(S(D(Q_n))) \to \{ \pm 1, \pm 2, \pm 3, ..., \pm 14(n - 1) \}
\]
by considering the following two cases:

Case (i). \(n = 2 \).
\[
f(e_1) = -2, f(e_2) = 1, f(e_{11}) = 3 = -f(e'_{11}), f(e_{16}) = 8 = -f(e'_{16}),
\]
for \(1 \leq j \leq 4 \)
\[
f(e_{11+j}) = (3 + j) = -f(e'_{11+j})
\]
For each edge label \(f \) the induced vertex label \(f^* \) is defined as follows:
\[
f^*(u_1) = -2, f^*(u_2) = -1 = -f^*(u_3)
\]
for \(1 \leq j \leq 5 \)
\[
f^*(v_{ij}) = (5 + 2j) = -f^*(v'_{ij}).
\]
Then
\[
f^*(V(S(D(Q_n)))) = \{ \pm 1, \pm 7, \pm 9, \pm 11, \pm 13, \pm 15 \} \cup \{ -2 \}.
\]

Case (ii). \(n \geq 3 \).
\[
f(e_{n-1}) = 2, f(e_n) = 1,
\]
for \(1 \leq i \leq (n - 2) \)
\[
f(e_i) = -(2n - 2i + 1) \text{ and } f(e_{n+i}) = (3 + 2i),
\]
for \(1 \leq i \leq (n - 1) \),
\[
1 \leq j \leq 6, f(e_{ij}) = (2n - 7 + 6i + j) = -f(e'_{ij}).
\]
For each edge label \(f \) the induced vertex label \(f^* \) is defined as follows:
\[
f^*(u_1) = -(2n - 1) = -f^*(u_{2n-1}), f^*(u_{n-1}) = -3 = -f^*(u_n), f^*(u_{n+1}) = 6,
\]
for $1 \leq i \leq (n - 3)$,
\[
f^*(u_{1+i}) = -2(2n - 2i)\text{and} f^*(u_{n+1+i}) = (8 + 4i),
\]
for $1 \leq i \leq (n - 1)$ and $1 \leq j \leq 5$,
\[
f^*(v_{ij}) = (4n - 13 + 12i + 2j) = -f^*(v'_{ij}).
\]
Then $f^*(V(S(D(Q_n)))) = \{ \pm 3, \pm (2n-1), \pm 12, \pm 16, \pm 20, \ldots, \pm 4(n-1), \pm (4n-13+12i+2j) : 1 \leq i \leq (n-1), 1 \leq j \leq 5 \} \cup \{6\}$.

It can be verified that f is an edge pair sum labeling of $S(D(Q_n))$. Hence $S(D(Q_n))$ is an edge pair sum graph.

An example for the edge pair sum labeling of subdivision of double quadrilateral snake graph of $S(D(Q_3))$ is shown in Figure 4.

Figure 4:

Figure 4. Edge pair sum labeling of $S(D(Q_3))$

Corollary 2.2. The subdivision of double alternative quadrilateral snake graph $S(DA(Q_n))$ is an edge pair sum graph.

Proof. The proof follows from the Theorem 2.5.

Theorem 2.6. The subdivision of slanting graph $S(Sl_n)$ is an edge pair sum graph.

Proof. Let
\[
V(S(Sl_n)) = \{u_i, w_i : 1 \leq i \leq (2n - 1), v_i : 1 \leq i \leq (n - 1)\}
\]
and
\[
E(S(Sl_n)) = \{e_i = u_iu_{i+1}, e''_i = w_iw_{i+1} : 1 \leq i \leq (2n - 2), e'_i = u_{2i-1}v_i, e''_i = w_{2i+1}v_i : 1 \leq i \leq (n - 1)\}
\]
are the vertices and edges of the graph $S(Sl_n)$.

Define $f : E(S(Sl_n)) \rightarrow \{\pm 1, \pm 2, \pm 3, \ldots, \pm (6n-6)\}$ by considering the following two cases:

Case (i). n is odd.

For $1 \leq i \leq (2n-2)$
\[f(e_i) = (2i-1), \quad f(e_i'') = -(4n-3-2i), \]

for $1 \leq i \leq (n-1)$
\[f(e_i') = 4n+2i-5, \quad f(e_i') = -(6n-5-2i). \]

For each edge label f the induced vertex label f^* is defined as follows:
\[f^*(u_1) = (4n-2) = -f^*(w_{2n-1}), \]

for $1 \leq i \leq (n-1)$
\[f^*(u_2i) = (8i - 4), \]

for $1 \leq i \leq (n-2)$
\[f^*(u_{2i+1}) = (4n-3+10i), \]

for $1 \leq i \leq \frac{n-1}{2}$
\[f^*(u_{\frac{n-1}{2}+1}) = (4i - 2) \text{ and } f^*(v_i) = -(2n-4i), \quad f^*(u_{2n-1}) = (4n-5) = -f^*(w_1), \]

for $1 \leq i \leq (n-1)$
\[f^*(w_2i) = -(8n-4-8i) \]

and for $1 \leq i \leq (n-2)$
\[f^*(w_{2i+1}) = -(14n-13-10i). \]

Then
\[f^*(V(S(Sl_n))) = \{ \pm 2, \pm 6, \pm 10, \ldots, \pm (2n-4), \pm 4, \pm 12, \pm 20, \ldots, \pm (8n-12), \pm (4n-2), \pm (4n-5), \pm (4n+7), \pm (4n+17), \ldots, \pm (14n-23) \}. \]

It can be verified that f is an edge pair sum labeling of $S(Sl_n)$ if n is odd.

Hence $S(Sl_n)$ is an edge pair sum graph if n is odd.

Case (ii). n is even.

Subcase (a). $n = 2$.

\[f(e_1) = 3 = -f(e_2), \quad f(e_2) = 4 = -f(e_1''), \quad f(e_1') = 1 \text{ and } f(e_1') = -2. \]

For each edge label f the induced vertex label f^* is defined as follows:
\[f^*(u_1) = 1 = -f^*(v_1), \quad f^*(u_3) = 4 = -f^*(w_1), \quad f^*(u_2) = 7 = -f^*(w_2) \text{ and } \]
\[f^*(w_3) = -2. \]

Then
\[f^*(V(S(DQ_n))) = \{ \pm 1, \pm 4, \pm 7 \} \bigcup \{-2\}. \]

Hence f is an edge pair sum labeling if $n = 2$.

Subcase (b). $n \geq 4$.

for $1 \leq i \leq (2n-2)$
\(f(e_i) = (2i - 1) \) and \(f(e''_i) = -(4n - 3 - 2i), f(e'_2) = -(4n - 3), f(e''_2) = (4n + 2), \)
for \(1 \leq i \leq n - 2 \)
\[
\begin{align*}
 f(e'_i) & = (4n - 3 + 2i), \\
 f(e''_{i+1}) & = (5n - 5 + 2i), \\
 f(e''_i) & = -(6n - 5 - 2i), \\
 f(e''_{2i}) & = -(5n - 3 - 2i).
\end{align*}
\]
For each edge label \(f \) the induced vertex label \(f^* \) is defined as follows:
\[
\begin{align*}
 f^*(u_1) & = 4n = -f^*(w_{2n-1}), \\
 f^*(u_{n-1}) & = (4n - 5) = -f^*(w_1), \\
 f^*(u_2i) & = (8i - 4), \\
 f^*(u_{n-1}) & = -5 = -f^*(v_2), \\
 f^*(u_{2i+1}) & = (4n - 1 + 10i), \\
 f^*(v_{2i}) & = -(8n - 4 - 8i), \\
 f^*(v_{2i+1}) & = (-14n + 13 + 10i), \\
 f^*(w_{n+1+2i}) & = (9n + 11 + 10i), \\
 f^*(w_{n+1}) & = 10.
\end{align*}
\]
Then
\[
f^*(V(S(Sl_n))) = \\
\{ \pm 2, \pm 6, \pm 10, \ldots, \pm (2n - 6), \pm 4, \pm 12, \pm 20, \ldots, \pm (8n - 12), \pm 5, \pm 4n, \pm (4n - 5), \pm (4n + 9), \pm (4n + 19), \pm (4n + 29), \ldots, \pm (9n - 21), \pm (9n - 3), \pm (9n + 7), \pm (9n + 17), \ldots, \pm (14n - 23) \} \cup \{10\}.
\]
It can be verified that \(f \) is an edge pair sum labeling of \(S(Sl_n) \) if \(n \) is even. Hence \(S(Sl_n) \) is an edge pair sum graph if \(n \) is even.

The subdivision of slanting of \(S(Sl_4) \) and \(S(Sl_3) \) are shown in Figure 5.
References

Received 13.05.2017; Revised version 30.06.2017; Available online 10.07.2017.

Research Centre, Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur, Tamilnadu, India.

E-mail address: jeyajeyanthi@rediffmail.com

Department of Mathematics, G. Venkataswamy Naidu College, Kovilpatti-628502, Tamil Nadu, India.

E-mail address: rajanvino03@gmail.com