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POSITIVE SOLUTIONS TO
SINGULAR SEMIPOSITONE
SECOND ORDER DYNAMIC SYSTEMS

Arzu Denk Oguz and Fatma Serap Topal

ABSTRACT. By employing the Schauder’s fixed point theorem, we study the
existence of positive solutions for a singular semipositone dynamic system on
time scales. New existence results are established, which is in essence different
from the known results.

1. Introduction

Boundary value problems for an ordinary differential system arise from many
fields in physics, biology and chemistry, which play an important role in both
theory and application. A brief discussion of the chemical interpretation of some
of the boundary value conditions can be found in Aris [3]. There were many works
to be done for a variety of nonlinear boundary value problems [20] and nonlinear
ordinary differential systems [10, 11, 16, 19] and the references therein. In literature,
most papers only focus on attention to the case where the nonlinearity takes non-
negative values (positone problems) and has no any singularities. However, singular
semipositone boundary value problems for nonlinear ordinary differential systems
has started to study in recent years [4, 7, 9, 13, 14].

The theory of measure chains was introduced and developed by Aulbach and
Hilger in 1988. It has been created in order to unify continuous and discrete analy-
sis, and it allows a simultaneous treatment of differential and difference equations,
extending those theories to so-called dynamic equations. The study of time scales
has led to many important applications, for example, in the study of insect popu-
lation models, neural networks, heat transfer and epidemic models. We refer the
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22 ARZU DENK OGUZ AND FATMA SERAP TOPAL

reader to the excellent introductory text by Bohner and Peterson [5] as well as their
recent research monograph [6]. In recent years, several authors studied positone
and semipositone boundary value problems on time scales and we want to mention
some papers in literature [1, 2, 17, 18, 21] and the references therein, but there is
only a few study on boundary value problems for dynamic systems on time scales
8, 12, 15].

As far as we know, singular semipositone boundary value problems for an sec-
ond order dynamic system are seldom investigated. This paper attempt to fill part
of this gap in the literature.

In this paper, we shall consider the nonlinear singular semipositone dynamic
system of m-point boundary value problem (SSS)(1.1),

where «, 8,7, 0, &, o, B (for k € {1,2,...,m—2}) are complex constants such that
lael + 18] # 0, |y| + |8] # 0 and &, € T\{a,b}, ¢ : T — C is a continuous function,
p: T — Cis V— differentiable on Ty, pV : Ty — C is continuous, p(t) # 0 for
allt €T, f1, fa:(a,b) x [0,00) = (0,00) are continuous and may be singular at
t =a,band hy , hs : (a,b) = (—00,00) are continuous. By an interval (a,b), we
mean the intersection of the real interval (a,b) with the given time scale T.

Different from the previous papers, in this paper we not only allow f; and fs to
have finitely many singularities, but also allow the nonlinearity terms hy and hs to
change sign and may tend to negative infinity. Besides these, we give the problem
with more general boundary conditions.

We shall organize this paper as follows. In Section 2, we present some lemmas
to be used later. In Section 3, we state our results and give their proofs.

2. The Preliminary Lemmas

To prove the main results in this paper, we will employ several lemmas.
These lemmas are based on the Green’s function of the following boundary value
problem
~[p(Ou )Y +q(t)u(t) =0, t € (a,b),
au(a) — Bul®l(a) = 0,
yu(b) + sul®(b) = 0.
The Green’s function for the above problem is given by

L ¢uls)da(t), a<s<t<b,
G(t’s)_d{ o1(H0s(s) a<t<s<b.

where ¢, ¢2 are the solutions of the linear problems
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[p(t)é7 (1) q(t)d>1(t) =0, t€(a,b),
d1(a) = B, ¢} (a) = a,

and
()65 ()]Y — q(t)ga(t) =0, t € (a,b),
$2(b) = 8, @5 (b) = —,

respectively, d = — Wy (1, 62) = p(£)[67 (£)a(t) — 61(t)05 ().
Let we define

g | "Xl adi@) A= 0 anda(ér)
d—S0 2 B (€x)  —n ) Besa(&r) |

and assume that the following conditions are satisfied:

(Ha) a,v>0,08,0>0,a Br>0forke{l,2 ., m-2},
(H3) Ifg(t) =0, then a+v >0,
(Hi) Q<0,d— Y37 arga(&r) > 0,d— Y057 Budn (&) > 0

LEMMA 2.1. [5] Under the conditions (Hy) and (Hsz), the solutions ¢1(t) and
¢2(t) posses the following properties:
oi(t), ea(t) 20, o) >0, o) <0, telad).
LEMMA 2.2. [5] If the conditions (Hy) — (Hs) are hold, then G(t,s) > 0 for
t,s € [a,b].
LEMMA 2.3. Assume that (Hy) — (Hs3) hold. Then
g(t)G(s,8) < G(t,s) < G(s,s), t,s€]a,b],
where g is defined by
_ P1(t) a(t)
t) ;= min , .
o) = W {50 6ala)’
Proor. It follows from Lemma 2.1 that ¢;(¢) is increasing and ¢o(t) is de-
creasing on ¢ € [a,b]. Then we have G(t,s) < G(s,s). Besides this inequality, for
all ¢, s € [a,b], we have

Gt e o, $a(t)
L) ) da(s) O do(a) S
o~ a2y aw e
¢i(s)’ pi(b)” T
O
We consider the following boundary value problem
—[p(t)u ()] +q() ()—y() € (a,b), B (2.1)
au(a) — Z apu(&r),  yu(d) +oul®l(b) Z Bru(&x
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LEMMA 2.4. [18] Let the conditions (Hy) — (Hs) be hold. Assume that § :# 0.
Then fory € C([a,b]), the boundary value problem (2.1)—(2.2) has a unique solution

/ G(t, $)y(5)Vs + A(W)n (1) + B(y)galt),

where

Aly) = 1| T on fy GlEn9)y(s)Vs d = T4 axda(é)
Q| ST 28 PG su(s)Vs  — 0 Bron(r)

and

Bly) = 1| Tk ki) I e fy GG s)y(s)Vs
Q d—kaijl(ék) S 125kf G(&, s)y(s)Vs

LEMMA 2.5. If f; G(s,8)y(s)Vs < oo, then the following inequalities are sat-
isfied:

Aly) < Af;’ G(s,5)y(s)Vs,  Bly) < B [ G(s,s)y(s)Vs,

where
A— > ke 12ak d—zzg%ékﬂﬁz(ﬁk) ‘
St Be =20l Brda(r)
and
B = 1‘ Zk 1 ak@sl(&c) Zk L Qg
d— S0 Bron(&r) et B
PROOF. It can be easily proven with simple calculation. O

3. Main Result

In this section, we apply Schauder’s fixed point theorem to prove the ex-
istence of at least one positive solution for the SSS (1.1). For that purpose, let us
do some preparations. We shall work in the space E = C([a, b]) x C([a, b]).

In the following, we define the closed, convex set by
M = {(ul,u2) cF:r < ul(t) < Ry, ro < ’U,g(t) < Ry, te [a,b]},
where Ry, Ro, 71,72 are positive constants to be fixed properly such that Ry > 7
and Ry > 719 .
We define the functions ¢; : [a,b] — R by

/ G(t, $)hi(s)Vs + A(hi)n (1) + B(hi)balt), =12,

which is the unique solution of

—Ipul )Y + q(t)ui(t) = hy(t), te (a,b), i=1,2
aui(a)—Bul(a) = S 7 anui(&r),  yui(b b)-+6ul®) (5) = Sy Brui(Sr).

Using Lemma 2.3 and 2.5, we find
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b
i) < / G(t, ) ha()|Vs + A(lha])b1 (1) + B(hi])balt)
b b
<Gt 1) / Ihi(5)[ Vs + Ay (D) / Gs, )[i(3)|V's
b
+B¢2(a)/ G(s,8)|hi(s)|Vs
b 1 b
<G(t1) / i (3) Vs + A () / Gt 8)|hu(s) Vs

9(t)
b
+B¢2(a)ﬁ/ G(t,s)|hi(s)|Vs

b
<Gt D) / hi(s)| Vs, i=1,2,

A
where f(t) =1+ mqbl(b) +—

Now, let us define the operator F'(u1,us) = (Fiu1, Fous) : B — E by

b
Fruy(t) == / G(t, s)[f1(s,u2(s)) + h1(s)|Vs + A(f1 + h1)p1(t)

"LB(f1 + h)ga(t)

b
- / Gt 5) (5, us()) Vs + A(F1)b1(8) + B(f1)dalt) + o1 (1)

and
b

Fyus(t) := / G(t, )[fo(5,11()) + ha(8)]Vs + A(fo + h)bi (1)
+B(f2 + ha)pa(t)

b
= / G(t,s) fa(s,u1(s))Vs + A(f2)p1(t) + B(f2)da(t) + pa(t).

It is well known that the existence of the solution to the system (1.1) is equiva-
lent to the existence of fixed point of the operator F'. So we shall seek a fixed point
of F .

Given v € L'(a,b), we write v = 0 if v > 0 for a.e. ¢ € [a,b] and it is positive
in a set of positive measure.

In the rest of the paper, we assume that the following condition is satisfied;
(Hs) Forall u> 0, a.e. t € (a,b), there exist b;, b; € L*(a,b) and 0 < o; < 1 such
that b;, i)l > 0 and

bi(t) bi(t)

0< 22 < filtw) <

. i=1,2.

ui

For convenience, we introduce the following notations
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/Gts s, /Gts i=1,2.

Also, for the function ¢ € L'[a, b], we denote the maximum and minimum by

P(t) ()

P* = max —= and Y, = min ——=,

telab] f(t) tela,b] f(t)

THEOREM 3.1. Assume that the conditions (Hy) — (Hs) hold. If p1. = 0,

pax = 0, then the SSS (1.1) has at least one positive solution.

i=1,2.

PROOF. We use Schauder’s fixed point theorem to prove that F has a fixed
point in the closed, convex set M. First, we shall show that F(M) C M. Let
(u1,u2) € M, then by using the definition of B4, the assumption (Hs) and the
nonnegativity of Green’s function, A, B, f1,¢1, ¢1, ¢2, we obtain

b
Frug(t) = / G(t,8) f1(s,u2(8))Vs + A(f1)é1(t) + B(f1)d2(t) + @1()

b b 7 s b Al S
> [ 69 il uas) Vs > / Glt9) it kvs > | G(t,s)bR(gl)Vs

1

= Riglﬁ ( ) Bl*f( ) Bl*

R"‘1 RO‘1

and from the definition of ¢}, Lemma 2.3 and 2.5, we get
Frug(t / G(t,s)f1(s,u2(s))Vs + A(f1)¢1(t) + B(f1)¢2(t) + ¢1(t)
L/G

/G al Vst Adi (b /G Tif)vs
iy

v A(u; J61.() +B<7;>¢2<a> + 91/ (1)

+ Bon(a) / G(s,5) i f(t)
PARCIE (b) b bs)
</a G(t, ) E Vs+ /aG(t’S)WTVS

2
Boa(a)
0 /aG“’ M

_ 1 Bi(t)F(t) + 1 £ (1)

N

B (0) + 0 (1)
2

K *
{Tﬁf + i K,
T3

N



SEMIPOSITONE DYNAMIC SYSTEMS 27

A[¢1(b)]2 B[¢2(G)]2
3 + 5 .

Moreover, following the same strategy, we have

where noting that f(¢) < K and K =1+

Fyus(t / G(t,5) f2(s,u1(s)) Vs + A(f2)01(t) + B(f2)P2(t) + @2(t)

/Gtsfgsul /Gts

ﬂ ( ) Rag ﬂ?*f( ) Rag /32*

Vs > /b G(t,s) ba(s) Vs

Rl (65)

and similarly

Fus(t u/GtshwuﬂDV&+MﬁMM)+MhMﬂ)+wC
>m@+3%;

/G
/G w 95+ Apn( /G T(f)w

+Béo(a) / (s, s) r;£2)v

v Au; Jéa(a) + 3£ (1)

+¢3.f(t)
/ Gt QQ ) 7s + Ajl(b) / bG(t,s)L(g?Vs
s h/G 510

=T?&®ﬂﬂ+%ﬂﬂ

< B3P0 + @31 (1)
1

K *
< [Tﬂf"‘@;]K'
1

Thus, if r1, 72, Ry and Ry satisfying the following inequalities are chosen
1 4 Kﬂik *
Riglﬂl*?ﬁa (7’57+¢1)K<R17
1 4 Kp3 N
Box = T2, (TTfﬁ-ng)KgR%
1

then, we get (Fyuy, Fous) € M.
5 R K
Note that B;«, Bix > 0 and let us take Ry = Ry = K== = (R>K)
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Bl*(g)ml > 1, K%i‘(%)m + K < %
BQ*(%HQ > 1, Kzﬁé‘(%)” + 3K < %

from which, these inequalities hold for R big enough because «; < 1. Thus, we
obtain that F (M) C M. Moreover, we can easily find that F is continuous and
compact. Then, from the Schauder fixed theorem, we can say that F' has a fixed
point. U

THEOREM 3.2. Let the conditions (Hy) — (Hs) hold. If o7 <0, ¢4 <0 and

. [05104251* }ﬁ(l_ 1 ). gz [alazﬁz* :|17ul1a2 (1- 1 )
Plx 2 (ﬂ;KZ)al a0 ;s P2x = (ﬁTKQ)az a1 ’

then the SSS (1.1) has at least one positive solution.

PROOF. From the proof of the previous theorem, we know that the operator
F is continuous and compact. Therefore, it is sufficient to prove that F(M) C M.
For that purpose, we find 0 < r; < Ry, 0 < r9 < R3 such that

; 1 K26
* « 2T, —ar S Ry, 3.1
Prega Tz <R (3.1)
;] K28;
* * 2 5 o < R . 32
Prugge tonZre Saw <Be (32)
K?23* K28*
If we fix Ry = T?l and Ry = %, then the inequalities of (3.2) hold if ro
To (1
satisfies
BQ* g Qg
g8 o 2
or equivalently
BQ* a o
Yox = p(re) :=1ry — 51y %
( ) (K2,81)0‘2 2
1 K285 5=
The function p(re) possesses a minimum at 79 := [ ﬂ} te2=t
a1 ﬁ?*

Let us take ro = 72, then the first inequality of (3.2) satisfies if

. BQ* :| T=aras ( 1
5 ) = fonea e (1 Ly
P > i) = |z (K2B7)e a0
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Similarly, the inequalities of (3.1) hold if r; satisfies

ﬂl* oo

P1x = H(T1> =T (KQﬁék)al 1

1 K285 1 55—
The function £(r1) has a minimum at 7 := [ &} 1og=T

Qe 61*

Let take r1 = 71, then first inequality of (3.1) satisfies if

Bl* 1—;102 1
> [araa D] (1 L,
®1 1 2(K25§)“1 10

Hence, it remains to prove that Ry > r1 =7, and Ry > ro = 75.
We can easily verify this through the following elementary calculations;

1o
R, — BiK? B K?  (BrKY) e
ot 3 —l . o1

"2 (anaefal(E2B)TO) TR (qyanB,,) T

:[ By K*? }ﬁ:[ 1 BiK? 1=ara
(1o f24)™ (@)™ (Bax)™

1
5 Toates .

> [QIOQ,B;)“&%} 1a2 = 7.
In a similar way, we obtain Ry > 79. Thus, it follows from the Schauder fixed
theorem, then SSS (1.1) has a positive solution. O

THEOREM 3.3. Assume that the conditions (Hy)—(Hp) are satisfied. If o1, > 0,
w5 <0 and

BQ*T{(QXNXQ

K237 + Kopjrgt)os’

@2*2742*(

then the SSS (1.1) has at least one positive solution, where 7o > 0 is a unique
solution of the equation

ry (BT + Kpirs!) et = ar0aK? BB

ProoF. We follow the same strategy as in the previous theorem. So, to prove
that F'(M) C M, it is sufficient to find 0 < r; < Ry, 0 < r2 < Ry such that

R 1 1

ﬁl*ﬁ?Tla (KBTE+WT)K<R1’ (3.3)
2 2

A 1 2 % 1

ﬁQ*W + Yox = T, K 52 oz < Ro. (34)
1 1
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K2 *
If we fix Ry = %, then the first inequality of (3.3) holds if r; satisfies
"1

51* o 61* o 61*7’?1012 >y
Ral - K282 @ K2 oy & 1
T (a8

1

or equivalently

31* }ﬁ
(K2p3) '

If we choose 1 > 0 small enough, then the first inequality of (3.3) holds.

T1<[

1
If we fix Ry = K287 —~ + K7, then the first inequality of (3.4) holds providing

(e}
T2
ro satisfies
Gou 2T A2* — 32* — 82*75110‘2
2% Z T2~ &gy = T2— =To—
* & (Kw’f : +K¢T)a2 (K28} + Kpjrg")e:
ry'
or equivalently
BQ*T31Q2

« = flre) i=1r9 — o .
P 2 ) = g K

From which, we obtain

32*7"310‘2

/
= ]_ —
f (7'2) (K2B:’{+K@T,’a2al)2(¥2

[anaarf s D (257 + Koprgh)e

—r5 2oy (K2 B} + Kepjry! )(0‘2*1)ch;7“§“1_1)]

-1 BQ*OﬂazTémaQ_l) [1 _ K‘PTT? }
(K287 + Kpjry')oe K28} + Kpiry?
1 1

=1- alagﬁg*Kzﬁ* ” a
! p{tmeres) (K267 + Kegiryt)oat!

and we have f'(0) = —oo, f'(+00) = 1, then there exists 75 such that f'(72) =0,
[(ra) = =2 B, K287 (aray — 1)y 22 (K2B; + Kpjrgt)~o2

— 0P, K Brg ™ o + (KB} + Koirs') =2 > Kpjaurg? ™1 > 0,
Thus, the function f(ry) possesses a minimum at 79. Considering f/(73) = 0, we
get

1 — o anfa K275 (K2 B + Kpjrgt)~2 71 =,

or equivalently
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iy~ (K2 BY + Kpjrgh) 2t = aganK?Ba. By
If we take ro = 79, then the first inequality of (3.4) holds. The second inequality
of (3.3), (3.4) are satisfied directly by the choice of R; and Rs. Moreover, for Ro

big enough and r; small enough, we have s < Ry and r; < R;. Thus, we obtain
that the SSS (1.1) has a positive solution. O

THEOREM 3.4. Let the conditions (Hy) — (Hs) hold. If ¢ <0, @2, > 0 and

Bl*f(l)tla2
K2B5 + Koyif?)e

@1*2741_(

then the SSS (1.1) has at least one positive solution, where 1 > 0 is a unique
solution of the equation

PO (KPES 4 Kopr?) T = c100 K261 5.

THEOREM 3.5. Assume that (Hy) — (Hs) hold. If 1. < 0 < @, po. <0 < ¢
and

A ~X1 X2 A ~X1 2
61*7"1 Do > o — ﬁ2*7“2
K285 + Kezi)o” 727 2 (K28] + Kgprgh)e

@1*>f1—(

then the SSS (1.1) has at least one positive solution, where 71 > 0 is a unique
solution of the equation

ri (IS + Kippr?) ! = a1ao KB,
and 72 > 0 is a unique solution of the equation

ry (KB + Kirs!) et = ar0aK? o B

PRrROOF. We follow the same strategy as in the proof of Theorem 3.3. In this
case, to prove that F(M) C M, we shall find r; < Ry, ro < Rs such that

A 1 * 1 *
51*ﬁ + P1s 211, K?Bf - + K¢} < Ry, (3.5)
2 Ty
A 1 2 % 1 *
ﬁQ*W + p2x = T, K*B5—5; + Kps < Rs. (3.6)
1 51
1

1
> + K3, then the first

If we take R, = K2f; =
&1

-+ K¢} and Ry = K*B;

ry
inequality of (3.6) holds if 75 satisfies

82*7"310(2
(K281 + Kojry' )

@3 = h(rz) =12 —

By following the same way as in the proof of Theorem 3.3, we find

1
riimees) (K287 + Kpfrgh)oatt

B (rg) = 1 — ayaofa. K265
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and we have h'(0) = —oco, h'(+00) = 1, then there exists 73 such that h'(72) = 0,
(0100, K2 B5 (g — 1)rgt 22 (K25 + Kpjryt) 02!

h”(TQ) _ A 9
Faragfa. K2Birs @ (—ag — 1) (K267 + Kgirs") " 2K pjanrs 1] > 0
Considering h'(72) = 0, we

Therefore the function hA(re) has a minimum at 79

obtain
1 — o, K2B1s > H(K2Bf + Kpiig*) =21 =0
(3.7)

or equivalently
Py~ (K2BY 4 K@iigh) 2t = o K2 B, 87
(3.8)

Similarly, we get
FITM1 (K265 + Kpiit?) 1 = a0 K2 (1.5
If we take r; = 71, ro = 79, then the first inequality of (3.5) and (3.6) hold

The second inequalities hold directly by the choice of R; and Rs
ajag—1
Ry — Kjff o K*p; ‘f:oiﬂpfal _ (102 K2 Bo, %3”"2 Ty
T Ty Ty
1t

2
alozzK 2% e 7y T2,
= ( 1 2

For Ry, we can find similar equality. According to
14ag

Ry = (a100K? 51*52)1“’1 7:1 e

Now, we prove that 71 < R; and 75 < Ra, or equivalently
1+|12
and  7of, T < (aras K2 B1. B3 )1+a1.

14aq
5 ~TFa
P17y "2 < (oo K? ﬂz*ﬂl)HaQ
This implies
~14as ~1+aq <a1a2K251*ﬁ§ and f%—&-az ~1+a <a1a2K 62*51

1
On the other hand, from (3.7), we obtain
< ar0aK2Bo. B,

féfalaz(KQﬁf)l—&-az
from which, we have
< (aras(K287) 02 fy,) orm (3.9)
Slmllarly, using (3.8), we get
< (anas(K2B5) 7 fr,) e (3.10)
1tag

From (3.9) and (3.10

~1+an ~1+
T a2 r2 (e 5]
1+aq

), we find
< (araa(K2B3)~ B )1 e (arag(K2B7) 72 By, ) =orea.

Thus, if we can prove
pltazsltar - (041052([(26 ) 0/161 )1 a1a2 ((110(2(K2ﬁ ) 01252 )1 ajag

AN
< a1 K?Bs. 37,
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‘hen’ we Say
~14+ag x14+a; F( A *
T] 2T2 <« (%) 2/82*/8]

In fact, since K > 1 and f;, < 87, (i = 1,2), we can write

a1 +2aqag+1 A 1+a A ag(1+as)

( 1 )%(a N )Tféfa? (51*)ﬁ(ﬂz*)ﬁ <1
-5 102 .
K? By B3

Similarly, we get
Ao ~1 A
PRt < anan K2 B3,
This completes the proof. O

The proofs of the following theorems are similar to that of the previous theo-
rems.

THEOREM 3.6. Assume that (Hy) — (Hs) hold. If o1 <0, @2, <0 < 3 and

Bl*f?laz

K2p5 4+ Kp3i?)or’

BQ* }ﬁ( 1
* 2 e 7O 17 ); * 2 1—
P2 Q102 (B K2 10 Pix 2 T1 (

then the SSS (1.1) has at least one positive solution, where 71 > 0 is a unique
solution of the equation

r1T0 (K265 + Kpyri?) it = aan K261, 55

THEOREM 3.7. Let the conditions (Hy) — (Hs) hold. If o5 <0, p1. <0 < ¢}
and

32*7;310‘2

K207 + Kopigh)es’

B }%( 1
« 2 T e 1- ), w = To—
P1x 2 |12 (B3 K2)on a0 P2x Z T2 (

then the SSS (1.1) has at least one positive solution, where 7o > 0 is a unique
solution of the equation

ry (KB + Kirs!) et = a100K° 5. B
THEOREM 3.8. Assume that (H1) — (Hs) hold. If p1. 2 0, ¢2. <0 < @3 and

32*%310@
K2B7 + Kopigt)ee’

@2*27\2*(

then the SSS (1.1) has at least one positive solution, where 7o > 0 is a unique
solution of the equation

ry O (KPBT + Korg?) e = 100K o i
THEOREM 3.9. Let (Hy) — (Hs) hold. If ¢a. >0, 1. <0 < ¢} and

31*7\“?10‘2

K235 + Kphi{?)e’

<P1*>f‘1—(
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then the SSS (1.1) has at least one positive solution, where 1 > 0 is a unique
solution of the equation

TR (KRB + Kpsr?) it = anan K261 5.
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