WEAK SUB SEQUENTIAL CONTINUOUS MAPS IN NON ARCHIMEDEAN MENGER PM SPACE VIA C-CLASS FUNCTIONS

Arslan Hojat Ansari and Rajinder Sharma

Abstract

This study deals with an establishment of some common fixed point theorems for weak sub sequential continuous and compatibility of type (E) maps via C-class functions in a non Archimedean Menger Probabilistic Metric space.

1. Introduction

Menger [12] extended the notion of metric space to probabilistic metric space (briefly PM space) by replacing non-negative numbers with random variable that took only non negative real values. One can see the further development in the said field by going through the works of the authors [13, 14, 15] in detail. Istratescu and Crivat [10] introduced the notion of non-Archimedean PM-space and gave some basic topological preliminaries on it. Further, Istrăţescu [8, 9] generalized the results of Sehgal and Bharucha [14] to N.A.Menger PM space where as Achari [1] generalized the results of Istrăţescu [8, 9] by establishing common fixed point theorems for qausi-contraction type of mappings in non-Archimedean PM - space. Chang [6] considered single and multivalued mappings to prove common fixed point theorems in non Archimedean Menger probabilistic metric spaces. Working in the same line, Cho et. al. [7] came out with some commen fixed point results for campatible mappings of type (A) in non-Archimedean Menger PM- spaces. Bouhadjera and Thobie [4] proved common fixed point theorems for pairs of sub compatible maps. Recently, Ansari [2] introduced the concept of C-class functions and established the related fixed point theorems via these special class of functions

[^0]whereas Beloul [5] gave some fixed point theorems for two pairs of self mappings satisfying contractive conditions by using the weak sub-sequential mappings with compatibility of type (E) . Motivated from [2] and [5], we established some common fixed point theorems for weak sub sequential continuous and compatibility of type (E) maps via C-class functions in non Archimedean Menger probabilistic metric space.

2. Preliminaries

Definition 2.1. ([10]) Let X be any nonempty set and D be the set of all left-continuous distribution functions. An ordered pair (X, F) is called a nonArchimedean probabilistic metric space (briefly, a N.A. PM-space) if F is a mapping from $X \times X$ into mapping D satisfying the following conditions (we shall denote the distribution function $F(x, y)$ by $\left.F_{x, y}, \forall x, y \in X\right)$:

$$
\begin{gather*}
(\forall t>0)\left(F_{x, y}(t)=1\right) \Longleftrightarrow x=y ; \tag{2.1}\\
(\forall x, y \in X)\left(F_{x, y}(0)=0\right) ; \tag{2.2}\\
(\forall x, y \in X)\left(F_{x, y}(t)=F_{y, x}(t)\right) ; \tag{2.3}\\
(\forall x, y, z \in X)\left(F_{x, y}\left(t_{1}\right)=1 \wedge F_{y, z}\left(t_{2}\right)=1, \Longrightarrow F_{x, z}\left\{\max \left(t_{1}, t_{2}\right)\right\}=1\right) . \tag{2.4}
\end{gather*}
$$

Definition 2.2. ([12]) A t - norm is a function $\Delta:[0,1] \times[0,1] \rightarrow[0,1]$ which is associative, commutative, non-decreasing in each coordinate and $\Delta(a, 1)=a, \forall a \in$ $[0,1]$.

Definition 2.3. ([10]) A N.A. Menger PM-space is an ordered triplet (X, F, Δ), where Δ is a t - norm and (X, F) is a non-Archimedean PM-space satisfying the following condition:

$$
\begin{equation*}
F_{(x, z)}\left(\max \left\{t_{1}, t_{2}\right\}\right) \geqslant \Delta\left(F_{(x, y)}\left(t_{1}\right), F_{(y, z)}\left(t_{2}\right)\right), \forall x, y, z \in X \text { and } t_{1}, t_{2} \geqslant 0 \tag{2.5}
\end{equation*}
$$

For more details we refer to [10].
Definition 2.4. ([6], [7]) A N.A. Menger PM-space (X, F, Δ), is said to be of type $(C)_{g}$ if there exists a $g \in \Omega$ such that

$$
g\left(F_{(x, z)}(t)\right) \leqslant g\left(F_{(x, y)}(t)\right)+g\left(F_{(y, z))}(t)\right.
$$

$\forall x, y, z \in X$ and $t \geqslant 0$, where $\Omega=\{g \mid g:[0,1] \rightarrow[0, \infty)$ is continuous, strictly decreasing with $g(1)=0$ and $g(0)<\infty\}$.

Definition 2.5. ([6], [7]) A N.A. Menger PM-space (X, F, Δ) is said to be of type $(D)_{g}$ if there exists a $g \in \Omega$ such that

$$
g(\Delta(s, t)) \leqslant g(s)+g(t)
$$

for all $s, t \in(0,1)$.
Remark 2.1. ([7])

A N.A. Menger PM-space (X, F, Δ) is of type $(D)_{g}$, then it is of type $(C)_{g}$.

$$
\begin{align*}
& \text { If }(X, F, \Delta) \text { is a N.A.Menger PM-space and } \Delta \geqslant \Delta_{m} \text { where } \tag{2.7}\\
& \Delta_{m}(s, t)=\max \{s+t-1,1\} \text {, then }(X, F, \Delta) \text { is of type }(D)_{g} \\
& \text { for } g \in \Omega \text { defined by } g(t)=1-t .
\end{align*}
$$

Throughout this paper, let (X, F, Δ) be a complete N.A. Menger PM-space of type $(D)_{g}$ with a continuous strictly increasing $t-$ norm Δ.

Let $\phi:[0, \infty) \rightarrow[0, \infty)$ be a function satisfying the following condition:
$(\tau) \quad \phi$ is a upper semi continuous from the right and $\phi(t)<t$ for all $t>0$.
Definition 2.6. ([6], [7]) A sequence $\left\{x_{n}\right\}$ in a N.A.Menger PM space (X, F, Δ) converges to a point x if and only if for each $\epsilon>0, \lambda>0$ there exists an integer $M(\epsilon, \lambda)$ such that $g\left(F\left(x_{n}, x ; \epsilon\right)<g(1-\lambda)\right.$ for all $n>M$.

Definition 2.7. ([6], [7]) A sequence $\left\{x_{n}\right\}$ in a N.A.Menger PM space is a Cauchy sequence if and only if for each $\epsilon>0, \lambda>0$ there exists an integer $M(\epsilon, \lambda)$ such that $g\left(F\left(x_{n}, x_{n+p} ; \epsilon\right)\right)<g(1-\lambda)$ for all $n>M$ and $p \geqslant 1$.

Lemma 2.1. ([7]) If a function $\phi:[0, \infty) \rightarrow[0, \infty)$ satisfies the condition (τ), then we have

$$
\begin{equation*}
\text { For all } t \geqslant 0, \lim _{n \rightarrow \infty} \phi^{n}(t)=0, \text { where } \phi^{n}(t) \text { is the nth iteration of } t . \tag{2.8}
\end{equation*}
$$

(2.9) If $\left\{t_{n}\right\}$ is a non - decreasing sequence of real numbers and $\left\{t_{n+1}\right\} \leqslant \phi\left(t_{n}\right)$, $n=1,2, \ldots$, then $\lim _{n \rightarrow \infty} t_{n}=0$. In particular, if $t \leqslant \phi(t)$ for all $t \geqslant 0$, then $t=0$.

Singh et al. $[16,17]$ introduced the notion of compatibility of type (E), in the setting of the N.A.Menger PM spaces, it becomes

Definition 2.8. Two self maps A and S on a N.A.Menger PM space (X, F, Δ) are said to be compatible of type (E), if

$$
\lim _{n \rightarrow \infty} S^{2} x_{n}=\lim _{n \rightarrow \infty} S A x_{n}=A z
$$

and

$$
\lim _{n \rightarrow \infty} A^{2} x_{n}=\lim _{n \rightarrow \infty} A S x_{n}=S z
$$

whenever $\left\{x_{n}\right\}$ is a sequence in X such that

$$
\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} S x_{n}=z
$$

for some $z \in X$.
Definition 2.9. Two self maps A and S on a N.A.Menger PM space (X, F, Δ) are said to be A-compatible of type (E), if

$$
\lim _{n \rightarrow \infty} A^{2} x_{n}=\lim _{n \rightarrow \infty} A S x_{n}=S z
$$

for some $z \in X$. Pair A and S are said to be S-compatible of type (E), if

$$
\lim _{n \rightarrow \infty} S^{2} x_{n}=\lim _{n \rightarrow \infty} S A x_{n}=A z
$$

for some $z \in X$.

Remark 2.2. It is also interesting to see that if A and S are compatible of type (E), then they are A-Compatible and S-Compatible of type (E), but the converse is not true (see example 1 in [5]).

Bouhadjera and Thobie [4] introduced the concept of sub-sequential continuity as follows:

Definition 2.10. Two self maps A and S of a metric space (X, d) are said to be sub-sequentially continuous, if there exists a sequence $\left\{x_{n}\right\}$ such that

$$
\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} S x_{n}=t
$$

for some $t \in X$ and $\lim _{n \rightarrow \infty} A S x_{n}=A t$, and $\lim _{n \rightarrow \infty} S A x_{n}=S t$.
Motivated by the definition (2.10) and [5], we define the following.
Definition 2.11. The pair $\{A, S\}$ defined on a N.A.Menger PM space (X, F, Δ) is said to be weakly sub-sequentially continuous (in short wsc), if there exists a sequence $\left\{x_{n}\right\}$ such that $\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} S x_{n}=z$, for some $z \in X$ and $\lim _{n \rightarrow \infty} A S x_{n}=A z$, or $\lim _{n \rightarrow \infty} S A x_{n}=S z$

Definition 2.12. The pair $\{A, S\}$ defined on a N.A.Menger PM space $(X, F$, Δ) is said to be S sub-sequentially continuous, if there exists a sequence $\left\{x_{n}\right\}$ such that

$$
\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} S x_{n}=z
$$

for some $z \in X$ and $\lim _{n \rightarrow \infty} S A x_{n}=S z$.
Definition 2.13. The pair $\{A, S\}$ defined on a N.A. Menger PM space (X, F, Δ) is said to be A sub-sequentially continuous, if there exists a sequence $\left\{x_{n}\right\}$ such that

$$
\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} S x_{n}=z
$$

for some $z \in X$ and $\lim _{n \rightarrow \infty} A S x_{n}=A z$.
Remark 2.3. If the pair $\{A, S\}$ is A-subsequentially continuous (or S-sub sequentially continuous), then it is wsc. (see example 3 in [5])

In 2014 the concept of C-class functions was intorduced by A.H.Ansari [2]. By using this concept, we can generalize many fixed point theorems in the literature.

Definition 2.14. ([2]) A continuous function $f:[0, \infty)^{2} \rightarrow \mathbb{R}$ is called C-class function if for any $s, t \in[0, \infty)$, the following conditions hold:
(1) $f(s, t) \leqslant s$;
(2) $f(s, t)=s$ implies that either $s=0$ or $t=0$.

Note for some f we have that $f(0,0)=0$.
An extra condition on f that $f(0,0)=0$ could be imposed in some cases if required. The letter \mathcal{C} will denote the class of all C-class functions.

Example 2.1. ([2]) The following functions $F:[0, \infty)^{2} \rightarrow \mathbb{R}$ are elements of \mathcal{C}, for all $s, t \in[0, \infty)$:
(1) $f(s, t)=s-t, F(s, t)=s \Rightarrow t=0$;
(2) $F(s, t)=m s, 0<m<1, F(s, t)=s \Rightarrow s=0$;
(3) $F(s, t)=\frac{s}{(1+t)^{r}} ; r \in(0, \infty), F(s, t)=s \Rightarrow s=0$ or $t=0$;
(4) $F(s, t)=\log \left(t+a^{s}\right) /(1+t), a>1, F(s, t)=s \Rightarrow s=0$ or $t=0$;
(5) $F(s, t)=\ln \left(1+a^{s}\right) / 2, a>e, F(s, 1)=s \Rightarrow s=0$;
(6) $F(s, t)=(s+l)^{\left(1 /(1+t)^{r}\right)}-l, l>1, r \in(0, \infty), F(s, t)=s \Rightarrow t=0$;
(7) $F(s, t)=s \log _{t+a} a, a>1, F(s, t)=s \Rightarrow s=0$ or $t=0$;
(8) $F(s, t)=s-\left(\frac{1+s}{2+s}\right)\left(\frac{t}{1+t}\right), F(s, t)=s \Rightarrow t=0$;
(9) $F(s, t)=s \beta(s), \beta:[0, \infty) \rightarrow[0,1)$, and is continuous, $F(s, t)=s \Rightarrow s=0$;
(10) $F(s, t)=s-\frac{t}{k+t}, F(s, t)=s \Rightarrow t=0$;
(11) $F(s, t)=s-\varphi(s), F(s, t)=s \Rightarrow s=0$, here $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a continuous function such that $\varphi(t)=0 \Leftrightarrow t=0$;
(12) $F(s, t)=\operatorname{sh}(s, t), F(s, t)=s \Rightarrow s=0$,here $h:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ is a continuous function such that $h(t, s)<1$ for all $t, s>0$;
(13) $F(s, t)=s-\left(\frac{2+t}{1+t}\right) t, F(s, t)=s \Rightarrow t=0$;
(14) $F(s, t)=\sqrt[n]{\ln \left(1+s^{n}\right)}, F(s, t)=s \Rightarrow s=0$;
(15) $f(s, t)=\phi(s), F(s, t)=s \Rightarrow s=0$, here $\phi:[0, \infty) \rightarrow[0, \infty)$ is a upper semicontinuous function such that $\phi(0)=0$, and $\phi(t)<t$ for $t>0$;
(16) $f(s, t)=\frac{s}{(1+s)^{r}} ; r \in(0, \infty), F(s, t)=s \Rightarrow s=0$;
(17) $f(s, t)=\vartheta(s) ; \vartheta: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}$ is a generalized Mizoguchi-Takahashi type function,$f(s, t)=s \Rightarrow s=0$;
(18) $f(s, t)=\frac{s}{\Gamma(1 / 2)} \int_{0}^{\infty} \frac{e^{-x}}{\sqrt{x}+t} d x$, where Γ is the Euler Gamma function.

Definition 2.15. ([2]) A function $\varphi:[0, \infty) \rightarrow[0, \infty)$ is called an ultraaltering distance function, if φ is continuous and nondecreasing and $\varphi(t)>0$ if $t>0$ and $\varphi(0) \geqslant 0$. Denote the class of such functions by Φ_{u}.

The function $\varphi:[0, \infty) \rightarrow[0, \infty)$ is called an altering distance function, if φ is continuous, nondecreasing and $\varphi(t)=0$ if and only if $t=0$. For examples of altering distance functions, we refer to $[\mathbf{3}, \mathbf{1 1}]$. We shall denote the class of altering distance functions by Ψ.

Definition 2.16. A tripled (ψ, φ, F) where $\psi \in \Psi, \varphi \in \Phi_{u}$ and $F \in \mathcal{C}$ is said to be monotone if for any $x, y \in[0, \infty)$

$$
x \leqslant y \Longrightarrow F(\psi(x), \varphi(x)) \leqslant F(\psi(y), \varphi(y)) .
$$

Example 2.2. Let $F(s, t)=s-t, \phi(x)=\sqrt{x}$

$$
\psi(x)=\left\{\begin{array}{ll}
\sqrt{x} & \text { if } 0 \leqslant x \leqslant 1 \\
x^{2}, & \text { if } \mathrm{x}>1
\end{array} .\right.
$$

Then (ψ, ϕ, F) is monotone.

Example 2.3. Let $F(s, t)=s-t, \phi(x)=x^{2}$

$$
\psi(x)= \begin{cases}\sqrt{x} & \text { if } 0 \leqslant x \leqslant 1 \\ x^{2}, & \text { if } \mathrm{x}>1\end{cases}
$$

Then (ψ, ϕ, F) is not monotone.

3. Main Results

Theorem 3.1. Let A, B, S and T be four self maps of a N. A. Menger PMspace (X, F, Δ) such that for all $x, y \in X$ and $t>0$, we have:

$$
\begin{gather*}
\psi(g(F(A x, B y, t))) \leqslant f(\psi(M(x, y, t)), \varphi(M(x, y, t))), \tag{3.1}\\
M(x, y, t)=\max \{g(F(S x, T y, t)), g(F(A x, S x, t)), g(F(B y, T y, t)), \tag{3.2}\\
g(F(S x, B y, t)), g(F(T y, A x, t))\}]
\end{gather*}
$$

where $\psi \in \Psi, \varphi \in \Phi_{u}$ and $f \in \mathcal{C}$ such that (ψ, φ, f) is monotone. If the pairs $\{A, S\}$ and $\{B, T\}$ are weakly sub sequentially continuous and compatible of type (E), then A, B, S and T have a unique common fixed point in X.

Proof. Since the pair $\{A, S\}$ is wsc (Suppose that it is A-sub-sequentially continuous) and compatible of type (E), therefore there exists a sequence $\left\{x_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} S x_{n}=z$, for some $z \in X$ and $\lim _{n \rightarrow \infty} A S x_{n}=$ $A z$. The compatibility of type (E) implies that $\lim _{n \rightarrow \infty} A^{2} x_{n}=\lim _{n \rightarrow \infty} A S x_{n}=$ $S z$ and $\lim _{n \rightarrow \infty} S^{2} x_{n}=\lim _{n \rightarrow \infty} S A x_{n}=A z$. Therefore $A z=S z$, whereas in respect of the pair $\{B, T\}$ (Suppose that it is B-sub-sequentially continuous), there exists a sequence $\left\{y_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty} B y_{n}=\lim _{n \rightarrow \infty} T y_{n}=w$, for some $w \in X$ and $\lim _{n \rightarrow \infty} B T y_{n}=B w$. The pair $\{B, T\}$ is compatible of type (E) ,then so $\lim _{n \rightarrow \infty} B^{2} y_{n}=\lim _{n \rightarrow \infty} B T y_{n}=T w$ and $\lim _{n \rightarrow \infty} T^{2} y_{n}=\lim _{n \rightarrow \infty} T B y_{n}=B w$, for some $w \in X$, then $B w=T w$. Hence z is a coincidence point of the pair $\{A, S\}$ whereas w is a coincidence point of the pair $\{B, T\}$. Now we prove that $z=w$. By putting $x=x_{n}$ and $y=y_{n}$ in inequality (3.1), we have

$$
\begin{gather*}
\psi\left(g\left(F\left(A x_{n}, B y_{n}, t\right)\right)\right) \leqslant f\left(\psi \left(\operatorname { m a x } \left\{g\left(F\left(S x_{n}, T y_{n}, t\right)\right), g\left(F\left(A x_{n}, S x_{n}, t\right)\right),\right.\right.\right. \\
\left.\left.g\left(F\left(B y_{n}, T y_{n}, t\right)\right), g\left(F\left(S x_{n}, B y_{n}, t\right)\right), g\left(F\left(T y_{n}, A x_{n}, t\right)\right)\right\}\right), \\
\varphi\left(\operatorname { m a x } \left\{g\left(F\left(S x_{n}, T y_{n}, t\right)\right), g\left(F\left(A x_{n}, S x_{n}, t\right)\right),\right.\right. \tag{3.3}\\
\left.\left.\left.g\left(F\left(B y_{n}, T y_{n}, t\right)\right), g\left(F\left(S x_{n}, B y_{n}, t\right)\right), g\left(F\left(T y_{n}, A x_{n}, t\right)\right)\right\}\right)\right),
\end{gather*}
$$

Taking the limit as $n \rightarrow \infty$, we get

$$
\begin{gather*}
\psi(g(F(z, w, t))) \leqslant f(\psi(\max \{g(F(z, w, t)), g(F(z, z, t)), g(F(w, w, t)), \\
g(F(z, w, t)), g(F(z, w, t))\}), \\
\varphi(\max \{g(F(z, w, t)), g(F(z, z, t)), g(F(w, w, t)), \\
g(F(z, w, t)), g(F(z, w, t))\})), \tag{3.4}\\
\leqslant f(\psi(\max \{g(F(z, w, t)), 0,0, g(F(z, w, t)), g(F(w, z, t))), \\
\varphi(\max \{g(F(z, w, t)), 0,0, g(F(z, w, t)), g(F(w, z, t)))) \\
\leqslant f(\psi(g(F(z, w, t))), \varphi(g(F(z, w, t)))),
\end{gather*}
$$

so, $\psi(g(F(z, w, t)))=0$ or $\varphi(g(F(z, w, t)))=0$ i.e. $g(F(z, w, t))=0$. Thus, we have $z=w$. Now we prove that $A z=z$. By putting $x=z$ and $y=y_{n}$ in the inequality (3.1), we get

$$
\begin{gather*}
\psi\left(g\left(F\left(A z, B y_{n}, t\right)\right)\right) \leqslant f\left(\psi \left(\operatorname { m a x } \left\{g\left(F\left(S z, T y_{n}, t\right)\right), g(F(A z, S z,, t)),\right.\right.\right. \\
\left.\left.g\left(F\left(B y_{n}, T y_{n}, t\right)\right), g\left(F\left(S z, B y_{n}, t\right)\right), g\left(F\left(T y_{n}, A z, t\right)\right)\right\}\right) \\
\varphi\left(\operatorname { m a x } \left\{g\left(F\left(S z, T y_{n}, t\right)\right), g(F(A z, S z,, t)),\right.\right. \tag{3.5}\\
g\left(F\left(B y_{n}, T y_{n}, t\right)\right), g\left(F\left(S z, B y_{n}, t\right)\right), \\
\left.\left.\left.g\left(F\left(T y_{n}, A z, t\right)\right)\right\}\right)\right),
\end{gather*}
$$

Taking the limit as $n \rightarrow \infty$, we get

$$
\begin{gather*}
\psi(g(F(A z, w, t))) \leqslant f(\psi(\max \{g(F(S z, w, t)), g(F(A z, S z, t)), g(F(w, w, t)), \tag{3.6}\\
g(F(S z, w, t)), g(F(w, A z, t))\}), \\
\varphi(\max \{g(F(S z, w, t)), g(F(A z, S z, t)), g(F(w, w, t)), \\
g(F(S z, w, t)), g(F(w, A z, t))\})) \\
\leqslant f(\psi(\max \{g(F(S z, w, t)), 0,0, g(F(S z, w, t)), g(F(w, A z, t))\}), \\
\varphi(\max \{g(F(S z, w, t)), 0,0, g(F(S z, w, t)), g(F(w, A z, t))\})) \\
\leqslant f(\psi(g(F(w, A z, t))), \psi(g(F(w, A z, t)))),
\end{gather*}
$$

so, $\psi(g(F(A z, w, t)))=0$ or $\varphi(g(F(A z, w, t)))=0$ i.e. $g(F(A z, w, t))=0$, which yields $A z=w$. Since $A z=S z$. Therefore $A z=S z=w=z$.
Now we prove that $B z=z$. By putting $x=\left\{x_{n}\right\}$ and $y=z$ in the inequality (3.1), we get

$$
\begin{gather*}
\psi\left(g\left(F\left(A x_{n}, B z, t\right)\right)\right) \leqslant f\left(\psi \left(\operatorname { m a x } \left\{g\left(F\left(S x_{n}, T z, t\right)\right), g\left(F\left(A x_{n}, S x_{n}, t\right)\right),\right.\right.\right. \\
\left.\left.g(F(B z, T z, t)), g\left(F\left(S x_{n}, B z, t\right)\right), g\left(F\left(T z, A x_{n}, t\right)\right)\right\}\right), \\
\varphi\left(\operatorname { m a x } \left\{g\left(F\left(S x_{n}, T z, t\right)\right), g\left(F\left(A x_{n}, S x_{n}, t\right)\right), g(F(B z, T z, t)),\right.\right. \tag{3.7}\\
\left.\left.\left.g\left(F\left(S x_{n}, B z, t\right)\right), g\left(F\left(T z, A x_{n}, t\right)\right)\right\}\right)\right),
\end{gather*}
$$

Taking the limit as $n \rightarrow \infty$, we get
(3.8)

$$
\begin{gathered}
\psi(g(F(z, B z, t))) \leqslant f(\psi(\max \{g(F(z, T z, t)), g(F(z, z, t)), g(F(B z, T z, t)), \\
g(F(z, B z, t)), g(F(T z, z, t))\}), \\
\varphi(\max \{g(F(z, T z, t)), g(F(z, z, t)), g(F(B z, T z, t)), \\
g(F(z, B z, t)), g(F(T z, z, t))\})), \\
\leqslant f(\psi(\max \{g(F(z, T z, t)), 0,0, g(F(z, B z, t)), g(F(T z, z, t))\}), \\
\varphi(\max \{g(F(z, T z, t)), 0,0, g(F(z, B z, t)), g(F(T z, z, t))\})) \\
\leqslant f(\psi(g(F(z, B z, t))), \varphi(g(F(z, B z, t))))
\end{gathered}
$$

so, $\psi(g(F(z, B z, t)))=0$ or $\varphi(g(F(z, B z, t)))=0$ i.e. $g(F(z, B z, t))=0$, which yields $B z=z$. Since $B z=T z$. Therefore, $B z=T z=z$. Therefore in all $z=A z=B z=S z=T z$, i.e. z is a common fixed point of A, B, S and T. The uniqueness of common fixed point is an easy consequence of inequality (3.1).

If we put $A=B$ in Theorem 3.1 we have the following corollary for three mappings:

Corollary 3.1. Let A, S and T be three self maps of a N. A. Menger PMspace (X, F, Δ) such that for all $x, y \in X$ and $t>0$, we have:

$$
\begin{gather*}
\psi(g(F(A x, A y, t))) \leqslant f(\psi(M(x, y, t)), \varphi(M(x, y, t))), \tag{3.9}\\
M(x, y, t)=\max \{g(F(S x, T y, t)), g(F(A x, S x, t)), g(F(A y, T y, t)), \tag{3.10}\\
g(F(S x, A y, t)), g(F(T y, A x, t))\}]
\end{gather*}
$$

where $\psi \in \Psi, \varphi \in \Phi_{u}$ and $f \in \mathcal{C}$ such that (ψ, φ, f) is monotone. If the pairs $\{A, S\}$ and $\{A, T\}$ are weakly sub sequentially continuous and compatible of type (E), then A, S and T have a unique common fixed point in X.

Alternatively, if we set $S=T$ in Theorem 3.1, we'll have the following corollary for three self mappings:

Corollary 3.2. Let A, B and S be three self maps of a N. A. Menger PMspace (X, F, Δ) such that for all $x, y \in X$ and $t>0$, we have:

$$
\begin{gather*}
\psi(g(F(A x, B y, t))) \leqslant f(\psi(M(x, y, t)), \varphi(M(x, y, t))), \tag{3.11}\\
M(x, y, t)=\max \{g(F(S x, S y, t)), g(F(A x, S x, t)), g(F(B y, S y, t)), \tag{3.12}\\
g(F(S x, B y, t)), g(F(S y, A x, t))\}]
\end{gather*}
$$

where $\psi \in \Psi, \varphi \in \Phi_{u}$ and $f \in \mathcal{C}$ such that (ψ, φ, f) is monotone. If the pairs $\{A, S\}$ and $\{B, S\}$ are weakly sub sequentially continuous and compatible of type (E), then A, B and S have a unique common fixed point in X.

If we put $S=T$ in corollary 3.1, we have the following result for two self mappings:

Corollary 3.3. Let A and S be two self maps of a N. A. Menger PM-space (X, F, Δ) such that for all $x, y \in X$ and $t>0$, we have:

$$
\begin{gather*}
\psi(g(F(A x, A y, t))) \leqslant f(\psi(M(x, y, t)), \varphi(M(x, y, t))), \tag{3.13}\\
M(x, y, t)=\max \{g(F(S x, S y, t)), g(F(A x, S x, t)), g(F(A y, S y, t)), \\
g(F(S x, A y, t)), g(F(S y, A x, t))\}] \tag{3.14}
\end{gather*}
$$

where $\psi \in \Psi, \varphi \in \Phi_{u}$ and $f \in \mathcal{C}$ such that (ψ, φ, f) is monotone. If the pair $\{A, S\}$ is weakly sub sequentially continuous and compatible of type (E), then A and S have a unique common fixed point in X.

Theorem 3.2. Let A, B, S and T be four self maps of a N. A. Menger PM-space (X, F, Δ) satisfying (3.1.). where $\psi \in \Psi, \varphi \in \Phi_{u}$ and $f \in \mathcal{C}$ such that (ψ, φ, f) is monotone. Assume that
(i) the pair $\{A, S\}$ is A-compatible of type (E) and A-sub sequentially continuous.
(ii) the pair $\{B, T\}$ is B-compatible of type (E) and B-sub sequentially continuous. Then A, B, S and T have a unique common fixed point in X.

Proof. The proof is obvious as on the lines of theorem 3.1.

References

[1] Achari, J. Fixed Point theorems for a class of mappings on non-Archimedean probabilistic metric spaces, Mathematica, 25(1983), 5-9.
[2] Ansari, A.H. Note on $\varphi-\psi$-contractive type mappings and related fixed point, The 2nd Regional Conference on Mathematics And Applications, PNU, (2014), 377-380.
[3] Ansari, A. H., S. Chandok and Ionescu, C. Fixed point theorems on b-metric spaces for weak contractions with auxiliary functions. Journal of Inequalities and Applications, 2014:429 (2014), 17 pages.
[4] Bouhadjera, H. and Thobie, C.G. Common fixed point for pair of sub-compatible maps. Hal-00356516. 1(2009), 1-16.
[5] Beloul, S. Common fixed point theorems for weakly sub-sequentially continuous generalized contractions with applications. App. Math. E-notes, 15(2015), 173-186.
[6] Chang, S.S. Fixed point theorems for single-valued and multi-valued mappings in nonArchimedean Menger probabilistic metric spaces. Math. Japonica, 35(5)(1990), 875-885.
[7] Cho, Y. J., Ha, K.S. and Chang, S. S. Common fixed point theorems for compatible mappings of type (A) in non-Archimedean Menger PM-spaces. Math. Japonica, 46(1)(1997), 169-179.
[8] Istrăţescu, V.I. Fixed point theorems for some classes of contraction mappings on nonArchimedean probablistic spaces. Publ. Math. (Debrecen), 25(1-2)(1978), 29-34.
[9] Istrăţescu, V. I. On common fixed point theorems with applications to the non-Archimedean Menger spaces. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 58(3)(1975), 374379.
[10] Istrăţescu, V.I. and Crivat, N. On some classes of non-Archimedean probabilistic metric spaces. Seminar de spatii metrice probabiliste, Univ. Timisoara, Nr. 12 (1974).
[11] Khan, M. S., Swaleh, M. and Sessa, S. Fixed point theorems by altering distancces between the points. Bull. Aust. Math. Soc., 30 (1984), 1-9.
[12] Menger, K. Statistical Metrics. Pro. Nat. Acad. Sci. USA, 28(12)(1942), 535-537.
[13] Schweizer, B. and Sklar, A. Statistical metric spaces. Pacific. J. Math., 10(1)(1960), 313-334.
[14] Sehgal, V.M. and Bharucha-Reid, A.T. Fixed points of contraction mappings on probabilistic metric spaces. Math. Systems Theory, 6(1-20 (1972), 97-102.
[15] Schweizer, B. and Sklar, A. Probabilistic metric spaces, Amsterdam; North Hollend, (1983).
[16] Singh, M.R. and Mahendra Singh, Y. Compatible mappings of type (E) and common fixed point theorems of Meir-Keller type. Int. J. Math. Sci. Engg. Appl., 1(2)(2007), 299-315.
[17] Singh, M.R. and Mahendra Singh, Y. On various types of compatible maps and fixed point theorems of Meir-Keller type. Hacet. J. Math. Stat., 40(4)(2011), 503-513.

Received by editors 04.03.2017; Revised version 23.08.2017; Accepted 28.08.2017;
Available online 04.09.2017.
A.H.Ansari: Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran

E-mail address: mathanalsisamir4@gmail.com
R.Sharma: Sohar College of Applied Scinces, Mathematics Sction, PO BOX-135 ,P.C-311,, Sohar, Oman.

E-mail address: rajind.math@gmail.com

[^0]: 2010 Mathematics Subject Classification. 47H10; 54H25.
 Key words and phrases. fixed point, non Archimedean Menger PM-Space, compatible maps of type (E), weak sub sequential continuous maps (wsc), C-class Function.

