A STUDY ON THE INHERENT INJ-EQUITABLE GRAPHS

Hanaa Alashwali, Ahmad N. Alkenani, A. Saleh, and Najat Muthana

Abstract

Let G be a graph. The inherent Inj-equitable graph of a graph G $(\operatorname{IIE}(G))$ is the graph with the same vertices as G and any two vertices u and v are adjacent in $\operatorname{IIE}(G)$ if they are adjacent in G and $\left|\operatorname{deg}_{i n}(u)-\operatorname{deg}_{i n}(v)\right| \leqslant 1$, where for any vertex $w \in V(G), \operatorname{deg}_{i n}(w)=\left|\left\{w^{\prime} \in V: N\left(w^{\prime}\right) \cap N(w) \neq \phi\right\}\right|$ [2]. In this paper, inherent Inj-equitable graph of some graphs are obtained, some properties and results are established. We define iterated Inj-equitable graph of a graph, complete Inj-equitable graph and we define the Inj-equitable graph.

1. Introduction

All graphs considered in this paper are finite, undirected without loops or multiple edges. Let $G=(E, V)$ be a graph with vertex set $V=\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$. Thus $|V|=n$. The open neighborhood and the closed neighborhood of v are denoted by $N(v)=\{u \in V(G): u v \in E\}$ and $N[v]=N(v) \cup\{u\}$, respectively. The degree of a vertex v in G is $\operatorname{deg}(v)=|N(v)| . \Delta(G)$ and $\delta(G)$ are the maximum and minimum vertex degree of G respectively. The distance $d(u, v)$ between any two vertices u and v in a graph G is the number of the edges in a shortest path. The eccentricity of a vertex u in a connected graph G is $e(u)=\max \{d(u, v), v \in V\}$. The diameter of G is the value of the greatest eccentricity, and the radius of G is the value of the smallest eccentricity. The Inj-neighborhood of a vertex $u \in V(G)$ denoted by $N_{\text {in }}(u)$ is defined as $N_{i n}(u)=\{v \in V(G):|\Gamma(u, v)| \geqslant 1\}$, where $|\Gamma(u, v)|$ is the number of common neighborhood between the vertices u and v. The cardinality of $N_{i n}(u)$ is called injective degree of the vertex u and is denoted by $\operatorname{deg}_{i n}(u)$ in G and $N_{i n}[u]=N_{\text {in }}(u) \cup\{u\}$. Let G and H be any two graphs with vertex sets $V(G), V(H)$ and edge sets $E(G), E(H)$, respectively. Then the union $G \cup H$ is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. The join $G \vee H$, is the graph obtained by taking the disjoint union of G and H and adding all edges

2010 Mathematics Subject Classification. 26D05, 26D07.
Key words and phrases. Inherent Inj-equitable graph, equitable matrix, injective matrix.
$\{u v: u \in V(G), v \in V(H)\}$. The corona product $G \circ H$ is obtained by taking one copy of G and $|V(G)|$ copies of H and by joining each vertex of the i-th copy of H to the i-th vertex of G, where $1 \leqslant i \leqslant|V(G)|$. The cartesian product $G \times H$ is a graph with vertex set $V(G) \times V(H)$ and edge set $E(G \times H)=\left\{\left(\left(u, u^{\prime}\right),\left(v, v^{\prime}\right)\right): u=v\right.$ and $\left.u^{\prime}, v^{\prime}\right) \in E(H)$, or $u^{\prime}=v^{\prime}$ and $\left.(u, v) \in E(G)\right\}$. For more terminologies and notations, we refer the reader to $[\mathbf{2}],[\mathbf{4}],[\mathbf{6}]$ and $[\mathbf{8}]$. A strongly regular graph with parameters (n, k, λ, μ) is a k-regular graph with n vertices such that any two adjacent vertices have λ common neighbors, and any two non-adjacent vertices have μ common neighbors, [5].

Definition $1.1([\mathbf{1}])$. Let $G=(V, E)$ be a graph. The inherent injective equitable graph of G, denoted by $\operatorname{IIE}(G)$ is defined as the graph with vertex set $V(G)$ and two vertices u and v are adjacent in $\operatorname{IIE}(G)$ if and only if they are adjacent in G and $\left|\operatorname{deg}_{i n}(u)-\operatorname{deg}_{i n}(v)\right| \leqslant 1$. An edge $e=u v \in G$ is called injective equitable edge if $\left|\operatorname{deg}_{i n}(u)-\operatorname{deg}_{i n}(v)\right| \leqslant 1$ and we say that u and v are Inj-equitable adjacent.

The adjacency matrix of the graph G is the symmetric square matrix $A=$ $A(G)=\left\|a_{i j}\right\|$ of order n whose (i, j)-entry is defined as:

$$
a_{i j}=\left\{\begin{array}{cc}
1 & \text { if the vertices } v_{i} \text { and } v_{j} \text { are adjacent } \tag{1.1}\\
0 & \text { otherwise }
\end{array}\right.
$$

The equitable graph of a graph G is the graph with vertex set $V(G)$ and two vertices u, v are adjacent if and only if $|\operatorname{deg}(u)-\operatorname{deg}(v)| \leqslant 1,[\mathbf{7}]$. The adjacency matrix of equitable graph is the symmetric square matrix $A_{e}=A_{e}(G)=\left\|b_{i j}\right\|$ whose (i, j)-entry is defined as:

$$
b_{i j}=\left\{\begin{array}{cc}
1 & \text { if } v_{i} \text { and } v_{j} \text { are adjacent and }\left|\operatorname{deg}\left(v_{i}\right)-\operatorname{deg}\left(v_{j}\right)\right| \leqslant 1 \tag{1.2}\\
0 & \text { otherwise }
\end{array}\right.
$$

The adjacency matrix of the congraph, defined in [3], is the symmetric matrix $\left\|a_{i j}^{\prime}\right\|$ whose (i, j)-entry is defined as:

$$
a_{i j}^{\prime}=\left\{\begin{array}{cc}
1 & \text { if }\left|\Gamma\left(v_{i}, v_{j}\right)\right| \geqslant 1 \tag{1.3}\\
0 & \text { otherwise }
\end{array}\right.
$$

Where $\Gamma\left(v_{i}, v_{j}\right)$ is the set of vertices, different from v_{i} and v_{j}, that are adjacent to both v_{i} and v_{j}.

Bearing in mind equations 1.2 and 1.3 as a sort of compromise, we introduce a new symmetric square matrix $A_{I I E}=\left\|d_{i j}\right\|$ of order n, whose (i, j)-entry is defined as:

$$
d_{i j}=\left\{\begin{array}{cc}
1 & \text { if } v_{i} \text { and } v_{j} \text { are adjacent and }\left|\operatorname{deg}_{i n}\left(v_{i}\right)-\operatorname{deg}_{i n}\left(v_{j}\right)\right| \leqslant 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

This matrix can be viewed as the adjacency matrix of the inherent injective equitable graph. In this paper, the benefit of graph characterization to study the properties and the structure of graphs motivated us to introduce and study new
graphs called inherent injective equitable graph and complete inherent injective equitable graph.

2. The Inherent Inj-equitable Graph of a Graph

In this section, we discuss some properties of the inherent injective equitable graph of a graph and the inherent injective equitable graph of some graph's families is found.

Proposition 2.1. For any graph $G, G \cong \operatorname{IIE}(G)$ if and only if every edge is an Inj-equitable edge.

Theorem 2.1. Let G be a complete graph or k-regular triangle-free graph with diameter 2 , then $\operatorname{IIE}(G) \cong G$.

Proof. If G is complete graph, then obviously $\operatorname{IIE}(G) \cong G$. Suppose that G is k-regular triangle-free graph with diameter 2 . We know that $\operatorname{IIE}(G)$ is a subgraph of G for any graph G. Since G is k-regular with diameter 2 , then for any vertex $v, \operatorname{deg}(v)=k$ and $\operatorname{deg}_{i n}(v)=n-k-1$. So, any adjacent vertices in G is also Inj-equitable adjacent. Hence, $\operatorname{IIE}(G) \cong G$.

Corollary 2.1. For any strongly regular graph without triangle $G, \operatorname{IIE}(G) \cong$ G.

Proposition 2.2. For any strongly regular graph with parameters (n, k, λ, η), $\operatorname{IIE}(G)$ is also a strongly regular graph with the same parameters.

Proof. Let G be a strongly regular graph with parameters (n, k, λ, η). Then for any two adjacent vertices u and $v, \operatorname{deg}_{i n}(u)=\operatorname{deg}_{i n}(v)=\lambda$. Therefore,

$$
\left|\operatorname{deg}_{i n}(u)-\operatorname{deg}_{i n}(v)\right|=0 .
$$

Hence $\operatorname{IIE}(G) \cong G$.
REmARK 2.1. It is not true in general that for any regular graph $G, \operatorname{IIE}(G) \cong$ G. For example, one can see Figure 1.

Figure 1. A regular graph G with $\operatorname{IIE}(G) \nexists G$

Proposition 2.3. The following holds:
(i) For any path $P_{n}, \operatorname{IIE}\left(P_{n}\right) \cong P_{n}$.
(ii) For any cycle $C_{n}, \operatorname{IIE}\left(C_{n}\right) \cong C_{n}$.
(iii) For any wheel $W_{n}, \operatorname{IIE}\left(W_{n}\right) \cong W_{n}$.

Proposition 2.4. For any complete bipartite graph $K_{r, s}$, where $r+s \geqslant 4$,

$$
\operatorname{IIE}\left(K_{r, s}\right) \cong\left\{\begin{array}{ccc}
K_{r, s} & \text { if } & |r-s| \leqslant 1 \\
\bar{K}_{r+s} & \text { if } & |r-s| \geqslant 2 .
\end{array}\right.
$$

Proof. Let $G \cong K_{r, s}$ be a complete bipartite graph with partite sets A and B such that $|A|=r,|B|=s$. Clearly for any vertex v from $A, \operatorname{deg}_{i n}(v)=r-1$ and for any vertex u from $B, \operatorname{deg}_{i n}(u)=s-1$. Therefore, u and v are Inj-equitable adjacent if $|(s-1)-(r-1)|=|r-s| \leqslant 1$. Otherwise, they are not Inj-equitable adjacent. Hence,

$$
\operatorname{IIE}\left(K_{r, s}\right) \cong\left\{\begin{array}{ccc}
K_{r, s} & \text { if } & |r-s| \leqslant 1 ; \\
\bar{K}_{r+s} & \text { if } & |r-s| \geqslant 2
\end{array}\right.
$$

A firefly graph $F_{r, s, t}$ is a graph on $2 r+2 s+t+1$ vertices that consists of r triangles, s pendant paths of length 2 and t pendant edges sharing a common vertex.

Figure 2. Firefly Graph

Theorem 2.2. For any firefly graph $F_{r, s, t}$, where $r, s, t \geqslant 1$,

$$
\operatorname{IIE}\left(F_{r, s, t}\right) \cong\left\{\begin{array}{cl}
F_{r, 0, s+1} \cup \bar{K}_{s} & \text { if } t=1 ; \\
r K_{2} \cup K_{1, s+2} \cup \bar{K}_{s} & \text { if } t=2 ; \\
\bar{K}_{2 s+t+1} \cup r K_{2} & \text { if } t>2
\end{array}\right.
$$

Proof. Let G be a firefly graph $F_{r, s, t}$ as in Figure 2., where $r \geqslant 1, s \geqslant 1$ and $t \geqslant 1$. Let v be the center vertex, v_{i} where $i=1,2, \ldots 2 r$ be any vertex from the triangle other than v, w_{i} where $i=1,2, \ldots t$ be any end vertex in the pendant edge, u_{i} and u_{i}^{\prime} where $i=1,2, \ldots, s$ be any end vertex and internal vertex respectively in the pendant path. Then, $\operatorname{deg}_{i n}(v)=2 r+s, \operatorname{deg}_{i n}\left(v_{i}\right)=2 r+s+t, \operatorname{deg}_{i n}\left(w_{i}\right)=$ $2 r+s+t-1, \operatorname{deg}_{i n}\left(u_{i}^{\prime}\right)=2 r+s+t-1$ and $\operatorname{deg}_{i n}\left(u_{i}\right)=1$. We have three cases:

Case 1. Suppose that, $t=1$. Since $\left|\operatorname{deg}_{i n}(v)-\operatorname{deg}_{i n}\left(v_{i}\right)\right|=1$ and

$$
\left|\operatorname{deg}_{i n}\left(u_{i}^{\prime}\right)-\operatorname{deg}_{i n}\left(w_{i}\right)\right|=0
$$

then $\operatorname{IIE}\left(F_{r, s, t}\right) \cong F_{r, o, s+1} \cup \bar{K}_{s}$.
Case 2. Suppose that, $t=2$. Then, $\operatorname{deg}_{i n}(v)=2 r+s, \operatorname{deg}_{i n}\left(v_{i}\right)=2 r+s+2$, $\operatorname{deg}_{i n}\left(w_{i}\right)=2 r+s+1, \operatorname{deg}_{i n}\left(u_{i}^{\prime}\right)=2 r+s+1$. Hence, $\operatorname{IIE}\left(F_{r, s, t}\right) \cong r K_{2} \cup K_{1, s+2} \cup \bar{K}_{s}$.

Case 3. Suppose that $t>2$., then the only injective edges are $e_{1}=v_{1} v_{2}$, $e_{2}=v_{2} v_{3} \ldots e_{r}=v_{2 r-1} v_{2 r}$. Hence, $\operatorname{IIE}\left(F_{r, s, t}\right) \cong \bar{K}_{2 s+t+1} \cup r K_{2}$.

Proposition 2.5.

(i) For any firefly graph $G \cong F_{r, 0,0}, \operatorname{IIE}(G) \cong G$.
(ii) For any firefly graph $F_{0, s, 0}$,

$$
\operatorname{IIE}\left(F_{0, s, 0}\right) \cong\left\{\begin{array}{cl}
F_{0,2,0} & \text { if } s=2 \\
K_{1, s} \cup \bar{K}_{s} & \text { if } s>2
\end{array}\right.
$$

(iii) For any firefly graph $F_{r, s, t}$, where $r=s=0$

$$
\operatorname{IIE}\left(F_{r, s, t}\right) \cong \begin{cases}F_{0,0, t} & \text { if } t \leqslant 2 \\ \bar{K}_{t+1} & \text { if } t \geqslant 3\end{cases}
$$

(iv) For any firefly graph $F_{r, s, t}$, where $r=0, s \geqslant 1, t \geqslant 1$,

$$
\operatorname{IIE}\left(F_{r, s, t}\right) \cong\left\{\begin{array}{cc}
P_{4} & \text { if } s=t=1 \\
K_{t+s} \cup \bar{K}_{s} & \text { if } t \leqslant 2 \\
\bar{K}_{t+2 s+1} & \text { if } t \geqslant 3
\end{array}\right.
$$

Proposition 2.6. For any bipartite graph $G, \operatorname{IIE}(G)$ is also bipartite graph.
Proof. Let G be a bipartite graph. Suppose that $\operatorname{IIE}(G)$ is not bipartite graph. Then it contains at least one odd cycle say C_{m}. Since $\operatorname{IIE}(G)$ is a subgraph of G, then G contains odd cycle which contradicts that G is bipartite graph. Hence $\operatorname{IIE}(G)$ is bipartite graph.

Proposition 2.7. Let G be a graph such that $G \cong P_{m} \times P_{2}$. Then $\operatorname{IIE}(G) \cong$ $P_{m} \times P_{2}$.

Figure 3. $P_{m} \times P_{2}$.

Proof. Let G be a graph such that $G \cong P_{m} \times P_{2}$. Then we have four cases:
Case 1. If $m=2$, then $G \cong C_{4}$. Therefore, $\operatorname{IIE}(G) \cong G$.
Case 2. If $m=3$, then $\operatorname{deg}_{i n}(v)=2$ for all $v \in V(G)$. Therefore, for any adjacent vertices u and $v,\left|\operatorname{deg}_{i n}(u)-\operatorname{deg}_{i n}(v)\right|=0$. Hence, $\operatorname{IIE}(G) \cong P_{m} \times P_{2}$.

Case 3. If $m=4$, then for all $v \in V(G)$, either $\operatorname{deg}_{i n}(v)=2$ or $\operatorname{deg}_{i n}(v)=3$. Therefore, for any two adjacent vertices u and $v,\left|\operatorname{deg}_{i n}(u)-\operatorname{deg}_{i n}(v)\right| \leqslant 1$. Hence, $\operatorname{IIE}(G) \cong P_{m} \times P_{2}$.

Case 4. If $m \geqslant 5$, let G be labeling as in Figure 3. Then, $\operatorname{deg}_{i n}\left(v_{1}\right)=$ $\operatorname{deg}_{i n}\left(v_{m}\right)=\operatorname{deg}_{i n}\left(u_{1}\right)=\operatorname{deg}_{i n}\left(u_{m}\right)=2, \operatorname{deg}_{i n}\left(v_{2}\right)=\operatorname{deg}_{i n}\left(v_{m-1}\right)=\operatorname{deg}_{i n}\left(u_{2}\right)=$ $\operatorname{deg}_{i n}\left(u_{m-1}\right)=3$ and for $i=3,4, \ldots m-2, \operatorname{deg}_{i n}\left(v_{i}\right)=\operatorname{deg}_{i n}\left(u_{i}\right)=4$. Therefore, for any two adjacent vertices u and v in $G,\left|\operatorname{deg}_{i n}(u)-\operatorname{deg}_{i n}(v)\right| \leqslant 1$. Hence, $\operatorname{IIE}(G) \cong P_{m} \times P_{2}$.

Proposition 2.8. Let G be a graph such that $G \cong P_{m} \times P_{3}$, where $m \geqslant 4$. Then $\operatorname{IIE}(G) \cong P_{m} \times P_{3}-\left\{e_{1}, e_{2}\right\}$, where e_{1} and e_{2} are the edges which are not Inj-equitable edges in G.

Figure 4. $P_{m} \times P_{3}$

Proof. Suppose that, $G \cong P_{m} \times P_{3}$ be labeling as in Figure 4. Then we have two cases:

Case 1. If $m=4$, then all the vertices have Inj-degree 3 or 4 or 5 except v_{22} and v_{23} have Inj-degree 5 . Therefore all the edges are Inj-equitable edges except $e_{1}=v_{21} v_{22}$ and $e_{2}=v_{23} v_{24}$. Hence, $\operatorname{IIE}(G) \cong P_{m} \times P_{3}-\left\{e_{1}, e_{2}\right\}$.

Case 2. If $m \geqslant 5$, then all the edges are Inj-equitable edges except $e_{1}=v_{21} v_{22}$ and $e_{2}=v_{2 m-1} v_{2 m}$. Hence, $\operatorname{IIE}(G) \cong P_{m} \times P_{3}-\left\{e_{1}, e_{2}\right\}$.

For the generalized case, we have the following result:
Proposition 2.9. Let G be a graph such that $G \cong P_{m} \times P_{n}$, where $m, n \geqslant 5$. Then $\operatorname{IIE}(G) \cong C_{2 m+2 n-4} \cup\left(P_{m-2} \times P_{n-2}\right)$.

Figure 5. $P_{m} \times P_{n}$

Proof. Suppose that $G \cong P_{m} \times P_{n}$ be labeling as in Figure 5. Then

$$
\operatorname{deg}_{i n}\left(v_{11}\right)=\operatorname{deg}_{i n}\left(v_{1 m}\right)=\operatorname{deg}_{i n}\left(v_{n 1}\right)=\operatorname{deg}_{i n}\left(v_{n m}\right)=3
$$

and

$$
\begin{gathered}
\operatorname{deg}_{i n}\left(v_{12}\right)=\operatorname{deg}_{i n}\left(v_{(1)(m-1)}\right)=\operatorname{deg}_{i n}\left(v_{21}\right)=\operatorname{deg}_{i n}\left(v_{2 m}\right)=\operatorname{deg}_{i n}\left(v_{(n-1)(1)}\right)= \\
\operatorname{deg}_{i n}\left(v_{(n-1)(m)}\right)=\operatorname{deg}_{i n}\left(v_{n 2}\right)=\operatorname{deg}_{i n}\left(v_{(n)(m-2)}\right)=4 .
\end{gathered}
$$

Also, for $i=3,4, \ldots m-2$,

$$
\operatorname{deg}_{i n}\left(v_{1 i}\right)=\operatorname{deg}_{i n}\left(v_{n i}\right)=5
$$

and for $i=3,4, \ldots m$,

$$
\operatorname{deg}_{i n}\left(v_{i 1}\right)=\operatorname{deg}_{i n}\left(v_{i m}\right)=5
$$

For $i, j=2, m-1$,

$$
\operatorname{deg}_{i n}\left(v_{i j}\right)=6
$$

For $i=3,4, \ldots m-2$,

$$
\operatorname{deg}_{i n}\left(v_{2 i}\right)=\operatorname{deg}_{i n}\left(v_{(n-1)(i)}\right)=7
$$

and for $i=3,4, \ldots n-1$,

$$
\operatorname{deg}_{i n}\left(v_{i 2}\right)=\operatorname{deg}_{i n}\left(v_{(i)(m-1)}\right)=7
$$

For $i, j=3,4, \ldots m-2$,

$$
\operatorname{deg}_{i n}\left(v_{i j}\right)=8 .
$$

Therefore, all the edges are Inj-equitable edges except

$$
v_{21} v_{22}, v_{(2)(m-1)} v_{2 m}, v_{(n-1)(1)} v_{(n-1)(2)}, v_{(n-1)(m-1)} v_{(n-1)(m)}
$$

and for $j=2,3, \ldots m-1, v_{1 j} v_{2 j}, v_{n j} v_{(n-1)(j)}$. Hence $\operatorname{IIE}\left(P_{m} \times P_{n}\right) \cong C_{2 m+2 n-4} \cup$ $\left(P_{m-2} \times P_{n-2}\right)$.

Proposition 2.10. Let G be a generalized petersen graph $G P(m, 1)$. Then $\operatorname{IIE}(G) \cong G P(m, 1)$.

Figure 6. $G P(m, 1)$

Proof. Let G be a generalized petersen graph $G P(m, 1)$. Then $G \cong C_{m} \times P_{2}$. We have three cases:

Case 1. If $m=3$, then for all $v \in V(G), \operatorname{deg}_{i n}(v)=4$. Therefore, all the edges are Inj-equitable edge. Hence, $\operatorname{IIE}(G) \cong C_{m} \times P_{2}$.

Case 2. If $m=4$, then for all $v \in V(G), \operatorname{deg}_{i n}(v)=3$. Therefore, all the edges are Inj-equitable edge. Hence, $\operatorname{IIE}(G) \cong C_{m} \times P_{2}$.

Case 3. If $m \geqslant 5$, let $G \cong C_{m} \times P_{2}$ be labeling as in Figure 6. Then $\operatorname{deg}_{i n}\left(v_{i}\right)=4$ and $\operatorname{deg}_{i n}\left(u_{i}\right)=4$, for $i=1,2, \ldots m$. Therefore, for any adjacent vertices u and v in $G,\left|\operatorname{deg}_{i n}(u)-\operatorname{deg}_{i n}(v)\right|=0$. Therefore, $\operatorname{IIE}(G) \cong C_{m} \times P_{2}$. Hence, $\operatorname{IIE}(G P(m, 1)) \cong G P(m, 1)$.

Proposition 2.11. Let $G \cong C_{m} \times P_{3}$. Then $\operatorname{IIE}(G) \cong C_{m} \times P_{3}$.

Proof. Let $G \cong C_{m} \times P_{3}$ be labeling as in Figure 7. We have three cases:
Case 1. If $m=3$, then for all $v \in V(G), \operatorname{deg}_{i n}(v)=5$. Therefore, all the edges are Inj-equitable edges. Hence, $\operatorname{IIE}(G) \cong C_{m} \times P_{3}$.

Figure 7. $C_{m} \times P_{3}$

Case 2. If $m=4$, then for $i=1,2, \ldots 4, \operatorname{deg}_{i n}\left(v_{1 i}\right)=\operatorname{deg}_{i n}\left(v_{3 i}\right)=4$ and $\operatorname{deg}_{i n}\left(v_{2 i}\right)=5$. Therefore, all the edges are Inj-equitable edges. Hence, $\operatorname{IIE}(G) \cong$ $C_{m} \times P_{3}$.

Case 3. If $m \geqslant 5$, then for $i=1,2, \ldots m$, $\operatorname{deg}_{i n}\left(v_{1 i}\right)=\operatorname{deg}_{i n}\left(v_{3 i}\right)=5$ and $\operatorname{deg}_{i n}\left(v_{2 i}\right)=6$. Therefore, for any adjacent vertices u and v in G, $\left|\operatorname{deg}_{i n}(u)-\operatorname{deg}_{i n}(v)\right|=0$. Hence, $\operatorname{IIE}(G) \cong C_{m} \times P_{3}$.

Theorem 2.3. For any graph G such that $G \cong C_{m} \times P_{n}$, $\operatorname{IIE}(G) \cong 2 C_{m} \cup\left(C_{m} \times P_{n-2}\right)$, where $n \geqslant 5$.

Figure 8. $C_{m} \times P_{n}$

Proof. Suppose that $G \cong C_{m} \times P_{n}$ be labeling as in Figure 8. We have three cases:

Case 1. If $m=3$, then for $i=1,2,3, \operatorname{deg}_{\text {in }}\left(v_{1 i}\right)=\operatorname{deg}_{i n}\left(v_{n i}\right)=5, \operatorname{deg}_{i n}\left(v_{2 i}\right)=$ $\operatorname{deg}_{i n}\left(v_{n-1 i}\right)=7$ and for $i=3,4, . . n-2, j=1,2,3, \operatorname{deg}_{i n}\left(v_{i j}\right)=8$. Hence $\operatorname{IIE}(G) \cong 2 C_{m} \cup\left(C_{m} \times P_{n-2}\right)$.

Case 2. If $m=4$, then for $i=1,2, \ldots 4, \operatorname{deg}_{i n}\left(v_{1 i}\right)=\operatorname{deg}_{i n}\left(v_{n i}\right)=4$, $\operatorname{deg}_{i n}\left(v_{2 i}\right)=\operatorname{deg}_{i n}\left(v_{n-1}\right)=6$ and for $i=3,4, . . n-2, j=1,2, \ldots 4, \operatorname{deg}_{i n}\left(v_{i j}\right)=7$. $\operatorname{IIE}(G) \cong 2 C_{m} \cup\left(C_{m} \times P_{n-2}\right)$.

Case 3. if $m \geqslant 5$, then as in Figure 8., for $i=1,2, . . m, \operatorname{deg}_{i n}\left(v_{1 i}\right)=$ $\operatorname{deg}_{i n}\left(v_{n i}\right)=5, \operatorname{deg}_{i n}\left(v_{2 i}\right)=\operatorname{deg}_{i n}\left(v_{n-1 i}\right)=7$ and for $i=3,4, . . n-2, j=1,2, . . m$, $\operatorname{deg}_{i n}\left(v_{i j}\right)=8 . \operatorname{IIE}(G) \cong 2 C_{m} \cup\left(C_{m} \times P_{n-2}\right)$.

THEOREM 2.4. For any graph G, such that $G \cong C_{n} \times C_{m}, \operatorname{IIE}(G) \cong C_{n} \times C_{m}$.

Figure 9. $C_{n} \times C_{m}$

Proof. Let G be any graph such that $G \cong C_{n} \times C_{m}$. From Figure 9., for all $v \in V(G), \operatorname{deg}_{i n}(v)=8$. Therefore, all the edges are Inj-equitable edges. Hence $\operatorname{IIE}(G) \cong C_{n} \times C_{m}$.

Proposition 2.12. For any two graphs G_{1} and $G_{2}, \operatorname{IIE}\left(G_{1} \vee G_{2}\right)=G_{1} \vee G_{2}$.
Proof. Let G_{1} and G_{2} be any two graphs. Since every edge in $G_{1} \vee G_{2}$ is injective equitable edge, then $\operatorname{IIE}\left(G_{1} \vee G_{2}\right)=G_{1} \vee G_{2}$.

Proposition 2.13. For any cycle graph C_{n} and any totally disconnected graph \bar{K}_{m}, where $m>2 \operatorname{IIE}\left(C_{n} \circ \bar{K}_{m}\right) \cong C_{n} \cup \bar{K}_{n m}$.

Proof. Let $\left\{u_{1}, u_{2}, \ldots u_{n}\right\}$ be the vertex set of the cycle graph C_{n} and let $\left\{v_{1}, v_{2}, \ldots v_{m}\right\}$ be the vertex set of $\overline{K_{m}}$. Then for $i=1,2, \ldots n, \operatorname{deg}_{i n}\left(u_{i}\right)=2(m+1)$ and for $j=1,2, \ldots m$, $\operatorname{deg}_{i n}\left(v_{j}\right)=m+1$. Therefore, $\left|\operatorname{deg}_{i n}\left(u_{i}\right)-\operatorname{deg}_{i n}\left(v_{j}\right)\right|=$ $m+1>1$. Hence, $\operatorname{IIE}\left(C_{n} \circ \bar{K}_{m}\right) \cong C_{n} \cup \bar{K}_{n m}$.

THEOREM 2.5. For any graph G with $\delta \geqslant 2$, if G is k-regular or $(k, k+$ 1)-biregular, then

$$
I I E\left(G \circ \overline{K_{m}}\right)=I I E(G) \cup \bar{K}_{n m}
$$

where n is the number of vertices in G.
Proof. Let G be a k-regular graph with n vertices and $\delta \geqslant 2$. Suppose that $\left\{u_{1}, u_{2}, \ldots u_{n}\right\}$ and $\left\{v_{1}, v_{2}, \ldots v_{m}\right\}$ is the vertex set of G and $\overline{K_{m}}$, respectively. Therefore, Then for $i=1,2, \ldots n, \operatorname{deg}_{i n}\left(u_{i}\right)=k(m+1)$ and for $j=1,2, \ldots m$, $\operatorname{deg}_{i n}\left(v_{j}\right)=k+m-1$. Therefore, $\left|\operatorname{deg}_{i n}\left(u_{i}\right)-\operatorname{deg}_{i n}\left(v_{j}\right)\right|=m(k-1)+1>1$. Hence, $\operatorname{IIE}\left(G \circ \overline{K_{m}}\right)=\operatorname{IIE}(G) \cup \bar{K}_{n m}$. Similarly, we can prove if G is $(k, k+1)$ biregular, then $\operatorname{IIE}\left(G \circ \overline{K_{m}}\right)=\operatorname{IIE}(G) \cup \bar{K}_{n m}$.

3. Complete inherent Inj-equitable graphs

Definition 3.1. A graph G is called complete inherent injective equitable graph (CIIE-graph) if for any two adjacent vertices u and $v,\left|\operatorname{deg}_{i n}(u)-\operatorname{deg}_{i n}(v)\right| \leqslant 1$.

Example 3.1. $C_{n} \times C_{m}$ is CIIE-graph.
Proposition 3.1. Any complete graph is CIIE-graph but the converse is not always true. For example, paths and cycles are CIIE-graph but not complete.

Proposition 3.2. Let G be any graph. $\operatorname{IIE}(G) \cong G$ if and only if G is CIIEgraph.

Proposition 3.3. Let H be a CIIE-graph and let G be a subgraph of H. Then $\operatorname{IIE}(G)$ is a subgraph of $\operatorname{IIE}(H)$.

Proof. Let H be a $C I I E$-graph and let G be a subgraph of H. Let e be an edge in $\operatorname{IIE}(G)$. Then $e \in G$. Therefore $e \in H$. So, $e \in \operatorname{IIE}(H)$. Hence, $\operatorname{IIE}(G)$ is a subgraph of $I I E(H)$.

Proposition 3.4. For any CIIE-graph $G, \operatorname{IIE}(G)$ is also CIIE-graph .
Proof. Let $e=u v$ be any edge in $\operatorname{IIE}(G)$. Then e is an edge in G. Since G is $C I I E-\operatorname{graph}$ then $\left|\operatorname{deg}_{i n}(u)-\operatorname{deg}_{i n}(v)\right| \leqslant 1$ in G. Therefore, $\left|\operatorname{deg}_{i n}(u)-\operatorname{deg}_{i n}(v)\right| \leqslant$ 1 in $\operatorname{IIE}(G)$. So, $I I E(G)$ is CIIE-graph.

Theorem 3.1. A graph G is CIIE-graph if and only if $A(G)=A_{\text {IIE }}(G)$, where $A(G)$ and $A_{\text {IIE }}(G)$ are the adjacency matrix of G and adjacency matrix of the inherent injective equitable graph of G respectively.

Proof. Suppose that G is CIIE-graph. Then for any two adjacent vertices v_{i} and $v_{j},\left|\operatorname{deg}_{i n}\left(v_{i}\right)-\operatorname{deg}_{i n}\left(v_{j}\right)\right| \leqslant 1$. Therefore, $A(G)=A_{I I E}(G)$. Similarly, if $A(G)=A_{I I E}(G)$ then G is CIIE-graph.

Proposition 3.5. Let $G \cong \bigcup_{i=1}^{m} G_{i}$. If $G_{i}, i=1,2, \ldots m$, are CIIE-graphs, then G is CIIE-graph.

Proof. Let u and v be any two adjacent vertices in G. Therefore, u and v are adjacent vertices in a graph $G_{i}, i=1,2, \ldots n$. But G_{i} is $C I I E$-graph. Then, $\left|\operatorname{deg}_{i n}(u)-\operatorname{deg}_{i n}(v)\right| \leqslant 1$. Hence, G is CIIE-graph.

Definition 3.2. A graph G which is CIIE-graph is called strong CIIE-graph if \bar{G} is also CIIE-graph.

Example 3.2. Any cycle C_{n} with n vertices is strong $C I I E$-graphs. Similarly, any path P_{n} with n vertices is strong $C I I E$-graphs.

Proposition 3.6. For any graph $G \cong K_{m, n}$ such that $|m-n| \leqslant 1, G$ is strong CIIE-graph.

Proof. Let u and v be any two adjacent vertices in $G \cong K_{m, n}$. Then $\left|\operatorname{deg}_{i n}(u)-\operatorname{deg}_{i n}(v)\right| \leqslant 1$. Therefore, G is CIIE-graph. Also, since $\bar{G} \cong K_{m} \cup K_{n}$, then $\left|\operatorname{deg}_{i n}(u)-\operatorname{deg}_{i n}(v)\right| \leqslant 1$ for any two adjacent vertices u and v. Hence, G is strong CIIE-graph.

Proposition 3.7. For any graph $G, \operatorname{IIE}(\bar{G})$ is a subgraph of $\overline{\operatorname{IIE}(G)}$.
Proof. Let e be any edge in $\operatorname{IIE}(\bar{G})$. Then, $e \in \bar{G}$. Therefore, $e \notin G$. So, $e \notin I I E(G)$. Then, $e \in \overline{I I E(G)}$. Hence $I I E(\bar{G})$ is a subgraph of $\overline{I I E(G)}$.

Proposition 3.8. $\overline{\operatorname{IIE}(G)}$ is subgraph of \bar{G}.
Theorem 3.2. For any strong CIIE-graph $G, \overline{\operatorname{IIE}(G)}=\operatorname{IIE}(\bar{G})$.
Proof. Let e be any edge in $\overline{I I E(G)}$. Then $e \notin \operatorname{IIE}(G)$. Since G is strong $C I I E$-graph, then $e \notin G$. Therefore, $e \in \bar{G}$ which implies that $e \in \operatorname{IIE}(\bar{G})$, since G is strong $C I I E$-graph . So, $\overline{\operatorname{IIE}(G)} \subseteq \operatorname{IIE}(\bar{G})$. Henc by propostion 3.7, $\overline{I I E(G)}=\operatorname{IIE}(\bar{G})$.

Theorem 3.3. Let G be a graph with adjacency matrix $A=\left\|a_{i j}\right\|$. Let $B_{\text {IIE }}=$ $\left\|b_{i j}\right\|$, where $b_{i j}=\left\{\begin{array}{cc}1 & \text { if } \\ 0 & \left|\operatorname{deg}_{i n}\left(v_{i}\right)-\operatorname{deg}_{i n}\left(v_{j}\right)\right| \leqslant 1 ; \\ \text { otherwise. }\end{array}\right.$

Then

$$
A_{I I E}=\left\|h_{i j}\right\|=\left[\begin{array}{cccc}
a_{11} b_{11} & a_{12} b_{12} & \ldots & a_{1 n} b_{1 n} \\
\cdot & & & \\
\cdot & & & \\
a_{n 1} b_{n 1} & a_{n 2} b_{n 2} & \ldots & a_{n n} b_{n n}
\end{array}\right]
$$

where $A_{\text {IIE }}$ is the adjacency matrix of the inherent injective equitable graph of G.
Proof. Suppose that G is a graph with adjacency matrix A and suppose $B_{I I E}=\left\|b_{i j}\right\|$, where $b_{i j}=\left\{\begin{array}{cc}1 & \text { if } \\ 0 & \left|\operatorname{deg}_{i n}\left(v_{i}\right)-\operatorname{deg}_{i n}\left(v_{j}\right)\right| \leqslant 1 ; \\ \text { otherwise. }\end{array}\right.$

Let

$$
C_{I I E}=\left[\begin{array}{cccc}
a_{11} b_{11} & a_{12} b_{12} & \ldots & a_{1 n} b_{1 n} \\
\cdot & & & \\
\cdot & & & \\
a_{n 1} b_{n 1} & a_{n 2} b_{n 2} & \ldots & a_{n n} b_{n n}
\end{array}\right]
$$

Then for $i, j=1,2, \ldots m, a_{i j} b_{i j}=0$ if $a_{i j}=0$ or $b_{i j}=0$, i.e, v_{i} and v_{j} are not adjacent or $\left|\operatorname{deg}_{\text {in }}\left(v_{i}\right)-\operatorname{deg}_{i n}\left(v_{j}\right)\right|>1$. For $i, j=1,2, \ldots m, a_{i j} b_{i j}=1$ if $a_{i j}=b_{i j}=$ 1 , i.e, v_{i} and v_{j} are Inj-equitable adjacent. Therefore,
$C_{I I E}=\left\{\begin{array}{cc}1 & \text { if } v_{i} \text { and } v_{j} \text { are Inj-equitable adjacent; } \\ 0 & \text { otherwise. }\end{array}\right.$
Hence $C_{I I E}=A_{\text {IIE }}$.

4. Iterated inherent Inj-equitable graphs

Definition 4.1. We consider iterated inherent Inj-equitable graph, i.e., those obtained from a graph G as follows: $I I E^{0}(G)=G$ and $I I E^{k}=\operatorname{IIE}\left(I I E^{k-1}(G)\right)$, for $k \in \mathbb{N}$.

Theorem 4.1. For any graph G, there exists a positive integer k such that $I I E^{k}(G)$ is CIIE-graph for some k.

Proof. If G is $C I I E$-graph, then $\operatorname{IIE}(G) \cong G$ and then, $\operatorname{IIE}(G)$ is $C I I E$-graph. If G is not CIIE-graph, then there exists an edge $e=u v$ such that $\left|\operatorname{deg}_{i n}(u)-\operatorname{deg}_{i n}(v)\right|>1$. Therefore $e \notin \operatorname{IIE}(G)$ and all the edges in $I I E(G)$ are Inj-equitable edge in G. If $I I E(G)$ is $C I I E$-graph, then $I I E^{2}(G)$ is $C I I E$-graph. If it is not $C I I E$-graph, then there exist an edge e in $I I E(G)$ such that e is not Inj-equitable edge and therefore, $e \notin I I E^{2}(G)$ and all the edges in $I I E^{2}(G)$ are Injequitable edge in $\operatorname{IIE}(G)$. Continues in the same way until we get $C I I E$-graph or totally disconnected graph. Hence there exists $k \geqslant 1$ such that $\operatorname{IIE}^{k}(G)$ is $C I I E$-graph.

Definition 4.2. For any graph G, the completeness injective inherent equitable number is the smallest postive integer k such that IIE ${ }^{k}(G)$ is CIIE-graph and denoted by $c_{i i e}(G)$.

Proposition 4.1.
(i) If G is CIIE-graph, then $c_{i i e}(G)=0$.
(ii) If $G \cong C_{m} \times C_{n}$, then $c_{i i e}(G)=0$.

5. Inherent Inj-equitable graphs

Definition 5.1. A graph G is said to be inherent Inj-equitable graph (IIEgraph) if there exists a graph H such that $\operatorname{IIE}(H) \cong G$.

For example, any path, cycle and complete graph are IIE-graph. The family of graphs H which satisfy the condition $\operatorname{IIE}(H) \cong G$ is called the inherent Injequitable family of G and denoted by

$$
G_{I I E}=\{H: \operatorname{IIE}(H) \cong G\}
$$

Remark 5.1. The inherent Inj-equitable graph is not unique.

Theorem 5.1. For any Complete bipartite graph $G \cong K_{1, p}, G$ is not IIEgraph, where $p \geqslant 3$.

Proof. Suppose to the contrary that $G \cong K_{1, p}$ is IIE-graph. So, there exists at least a graph H such that $\operatorname{IIE}(H) \cong G$. Therefore, H contains at least the same number of edges as G or more. Clearly $H \not \equiv K_{1, p}$ and the number of edges in H will be more than the number of edges in $K_{1, p}$. So any edge in H other than the edges of $K_{1, p}$ is Inj-equitable edge which is contradiction to $\operatorname{IIE}(H) \cong G$. Hence G is not IIE-graph.

References

[1] A. Alkenani, H. Alashwali and N. Muthana. On the Injective Equitable Domination of Graphs. Applied Mathematics, $\mathbf{7}(17)(2016), 2132-2139$.
[2] A. Alwardi, A. Alqesmah, and R. Rangarajan. Independent Injective Domination of Graphs. Int. J. Adv. Appl. Math. and Mech., 3(4)(2016), 142151.
[3] A. Alwardi, B. Arsic, I. Gutman and N. D. Soner. The common neighborhood graph and its energy. Iran. J. Math. Sci. Inf., 7 (2)(2012), 1-8.
[4] R. Balakrishnan abd K. Ranganathan. A textbook of graph theory. Springer-velag, New York 2000.
[5] R. C. Bose. Strongly Regular Graphs, Partial geometries and partially balanced designs. Pacific J. Math., 13(2)(1963), 389-419.
[6] G. Chartrand and L. Lesniak. Graphs and Diagraphs. 4th Edition. CRC Press, Boca Raton, (2005).
[7] K. M. Dharmalingam. Equitable graph of a graph, Proyecciones J. Math., 31(4)(2012), 363-372.
[8] F. Harary. Graphs Theory. Addison-Wesley, Reading Mass, (1969).
Received by editors 07.03.2017; Revised version 10.04.2017; Available online 17.04.2017.
Department of mathematics, King Abdulaziz University, Jeddah, Saudi Arabia
E-mail address: halashwali@kau.edu.sa
Department of mathematics, King Abdulaziz University, Saudi Arabia
E-mail address: analkenani@kau.edu.sa
Department of mathematics, Jeddah University, Jeddah, Saudi Arabia
E-mail address: math.msfs@gmail.com
Department of mathematics, King Abdulaziz University, Saudi Arabia
E-mail address: nmuthana@kau.edu.sa

