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COMMON FIXED POINT THEOREM

IN DISLOCATED GENERALIZED

INTUITIONISTIC FUZZY METRIC SPACES

M. Jeyaraman, R. Muthuraj, M. Sornavalli, and S. Manro

Abstract. In this paper we define dislocated generalized intuitiionistic fuzzy
metric space and prove common fixed point theorems for weakly compatible
maps in dislocated generalized intuitionistic fuzzy metric spaces.

1. Introduction

Hitzler and Seda [5 ] introduced the notion of dislocated metric space in which
self distance of a point need not be equal to zero in 2000. They generalized the
Banach contraction principle and studied common fixed points for maps satisfying
certain contractive conditions. Also, Panthi [17] studied common fixed point theo-
rem in this space. The notion of fuzzy sets was introduced by Zadeh [23] in 1965.
The fuzzy metric space with the concept of fuzzy sets was introduced Kramosil and
Michalek [10] , Kaleva and Seikkala [7] . Since then a number of fixed point the-
orems proved by different authors and many generalizations of this theorem have
been established.

Recently, Park et al. ([18], [19]) introduced the Intuitionistic fuzzy metric
spaces, and studied some results using weakly compatible maps in intuitionistic
fuzzy metric spaces. Also, Park [19] proved common fixed point using type (α)
compatible maps in IFMS.

In this paper, we define the dislocated generalized intuitionistic fuzzy metric
space and prove a common fixed point for weakly compatible maps in dislocated
generalized intuitionistic fuzzy metric space.

2010 Mathematics Subject Classification. 47H10, 54H25.
Key words and phrases. Weakly compatible map, Intuitionistic fuzzy metric space, Dislo-

cated generalized intuitionistic fuzzy metric spaces.

437



438 M. JEYARAMAN, R.MUTHURAJ, M. SORNAVALLI, AND S. MANRO

2. Preliminaries

Definition 2.1. A 5 tuple (X,M, N, ∗, ⋄) is called a generalized intuitionistic
fuzzy metric space if X is an arbitrary set, ∗ is a continuous t-norm, ⋄ is a con-
tinuous t-conorm and M,N are fuzzy sets on X3 × [0,∞) → [0, 1] satisfying the
following conditions for every x, y, z, a ∈ X and t, s > 0:

(1) M(x, y, z, 0) = 0,

(2) M(x, x, x, t) = 1,

(3) M(x, y, z, t) = 1 if and only if x = y = z,

(4) M(x, y, z, t) = M(p{x, y, z}, t), where p is a permutation function,

(5) M(x, y, a, t) ∗M(a, z, z, s) 6 M(x, y, z, t+ s),

(6) M(x, y, z, t) : (0,∞) → [0, 1] is continuous,

(7) N(x, y, z, 0) = 1,

(8) N(x, x, x, t) = 0,

(9) N(x, y, z, t) = 0 if and only if x = y = z,

(10) N(x, y, z, t) = N(p{x, y, z}, t), where p is a permutation function,

(11) N(x, y, a, t) ⋄N(a, z, z, s) > N(x, y, z, t+ s),

(12) N(x, y, z, t) : (0,∞) → [0, 1] is continuous.

If all conditions satisfy, then X is called an generalized intuitionistic fuzzy
metric space.

If (1), (3) to (6), (7), (9) to (11) satisfy, then X is said to be a dislocated
generalized intuitionistic fuzzy metric space in which self distance of a point need
not be equal to zero in the sense of George and Veeramani [4].

Note that (M,N) is called an dislocated generalized intuitionistic fuzzy metric
space on X. The functions M(x, y, z, t) and N(x, y, z, t) denote the degree of near-
ness and the degree of non-nearness between x and y with respect to t, respectively.

Definition 2.2. Let {xn} be a sequence of dislocated generalized intuitionistic
fuzzy metric space in X.

(1) {xn} is converges to a point x ∈ X if

lim
n→∞

M(x, x, xn, t) = 1 and lim
n→∞

N(x, x, xn, t) = 0;

(2) A sequence {xn} is called a Cauchy sequence in X if for given ϵ > 0, there
exists n0 ∈ N such that for all m,n > n0. We have

M(xn, xn, xm, t) > 1− ϵ and N(xn, xn, xm, t) > ϵ;

(3) X is complete if every Cauchy sequence is converges in X.

Definition 2.3. Let (A,B) be a pair of self-maps of dislocated generalized
intuitionistic fuzzy metric space in X. Then (A,B) is said to be weakly compatible,
if for x ∈ X, Ax = Bx implies that ABx = BAx.

Lemma 2.1. Let (X,M,N, ∗, ⋄) be a dislocated generalized intuitionistic fuzzy
metric space and



COMMON FIXED POINT THEOREMS IN ... 439

M(x, y, z, kt) > M(x, y, z, t) and N(x, y, z, kt) 6 N(x, y, z, t)

for all x, y, z ∈ X, t > 0, and for a number k ∈ (0, 1). Then x = y = z.

For more details on dislocated generalized intuitionistic fuzzy metric space, one
can read [3], [5], [8-9], [11-17], [20].

Lemma 2.2. Let (X,M,N, ∗, ⋄) be a generalized intuitionistic fuzzy metric
spaces. Then for any t > 0 and for every x, y ∈ X we have

M(x, x, y, t) = M(x, y, y, t) and N(x, x, y, t) = N(x, y, y, t).

3. Main Results

Theorem 3.1. Let X be a complete dislocated generalized intuitionistic fuzzy
metric space with t-norm ∗, t-conorm ⋄, defined by

α ∗ β = min{α, β}, α ⋄ β = max{α, β}.

Also, let A,B, S and T be four self continuous maps on X satisfying following
conditions:
(1) T (X) ⊂ A(X), S(X) ⊂ B(X);

(2) (S,A) and (T,B) are weakly compatible;

(3) there exists k ∈ (0, 1) such that

M(Sx, Ty, Ty, kt) >
min{M(Ax, Ty, Ty, 2t),M(By, Sx, Sx, t),M(Ax,By,By, t)},

N(Sx, Ty, Ty, kt) 6 max{N(Ax, Ty, Ty, 2t), N(By, Sx, Sx, t), N(Ax,By,By, t}

for all x, y ∈ X, t > 0. Then A,B, S and T have a unique common fixed point in
dislocated generalized intuitionistic fuzzy metric space in X.

Proof. Let x0 be an arbitrary point of dislocated generalized intuitionistic
fuzzy metric space in X. We can inductively construct sequence {xn} · {yn} ⊂ X
such that y2n = Bx2n+1 = Sx2n, y2n+1 = Ax2n+2 = Tx2n+1 (n = 0, 1, 2, ...).

First, we prove that {xn} is Cauchy sequence. If y2n = y2n+1 for some n ∈ N,
then Bx2n+1 = Tx2n+1. Therefore x2n+1 is coincidence point of B and T . Also, if
y2n+1 = y2n+2 for some n ∈ N, then Ax2n+2 = x2n+2. Hence x2n+2 is a coincidence
point of A and S. Assume that y2n ̸= y2n+1. Then, from (3) we have

M(y2n, y2n+1, y2n+1, kt) = M(Sx2n, Tx2n+1, Tx2n+1, kt)

> min{M(Ax2n, Tx2n+1, Tx2n+1, 2t),M(Bx2n+1, Sx2n, Sx2n, t),

M(Ax2n, Bx2n+1, Bx2n+1, t)}

> min{M(y2n−1, y2n+1, y2n+1, t),M(y2n, y2n, y2n, t),M(y2n−1, y2n, y2n, t)}

> min{M(y2n−1, y2n, y2n, t) ∗M(y2n, y2n+1, y2n+1, t), 1,M(y2n−1, y2n, y2n, t)}
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which implies M(y2n, y2n+1, y2n+1, kt) > M(y2n−1, y2n, y2n, t) and

N(y2n, y2n+1, y2n+1, kt) = N(Sx2n, Tx2n+1, Tx2n+1, kt)

6 max{N(Ax2n, Tx2n+1, Tx2n+1, 2t), N(Bx2n+1, Sx2n, Sx2n, t),

N(Ax2n, Bx2n+1, Bx2n+1, t)}

6 max{N(y2n−1, y2n+1, y2n+1, t), N(y2n, y2n, y2n, t), N(y2n−1, y2n, y2n, t)}

6 max{N(y2n−1, y2n, y2n, t) ⋄N(y2n, y2n+1, y2n+1, t), 0, N(y2n−1, y2n, y2n, t)}

and

N(y2n, y2n+1, y2n+1, kt) 6 N(y2n−1, y2n, y2n, t),

and in general case

M(yn, yn+1, yn+1, kt) > M(yn−1, yn, yn, t),

and

N(yn, yn+1, yn+1, kt) 6 N(yn−1, yn, yn, t).

Therefore, as n → ∞

M(yn, yn+1, yn+1, t) > M(yn−1, yn, yn,
t

k
) > ... > M(y0, y1, y1,

t

kn
) → 1,

N(yn, yn+1, yn+1, t) 6 N(yn−1, yn, yn,
t

k
) 6 ... 6 N(y0, y1, y1,

t

kn
) → 0,

Hence, for t > 0 and ϵ ∈ (0, 1), we can choose n0 ∈ N such that for all n > n0, we
have

M(yn, yn+1, yn+1, t) > 1− ϵ

and

N(yn, yn+1, yn+1, t) < ϵ.

Suppose that for m ∈ N and n > n0,

M(yn, yn+m, yn+m, t) > 1− ϵ,N(yn, yn+m, yn+m, t) < ϵ.

Then

M(yn, yn+m+1, yn+m+1, t) >

min{M(yn, yn+m, yn+m,
t

2
),M(yn+m, yn+m+1,

t

2
)} > 1− ϵ

and

[N(yn, yn+m+1, yn+m+1, t) 6

max{N(yn, yn+m, yn+m,
t

2
), N(yn+m, yn+m+1,

t

2
)} < ϵ.

Hence {yn} ⊂ X is a Cauchy sequence in a complete dislocated generalized in-
tuitionistic fuzzy metric space. So, there exists a point z ∈ X such that yn → z.
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Therefore, the subsequences x2n → z, Bx2n+1 → z, Tx2n+1 → z, and Sx2n+2 → z.
Since T (X) ⊂ A(X), there exists a point u ∈ X such that Au = z. So,

M(Su, z, z, kt) = M(Su, Tx2n+1, Tx2n+1, kt)

> min{M(Au, Tx2n+1, Tx2n+1, 2t),M(Bx2n+1, Su, Su, t),M(Au,Bx2n+1, Bx2n+1, t)}
= min{M(z, Tx2n+1, Tx2n+1, 2t),M(Bx2n+1, Su, Su, t),M(z,Bx2n+1, Bx2n+1, t)}

and

N(Su, z, z, kt) = N(Su, Tx2n+1, Tx2n+1, kt)

6 max{N(Au, Tx2n+1, Tx2n+1, 2t), N(Bx2n+1, Su, Su, t), N(Au,Bx2n+1, Bx2n+1, t)}
= max{N(z, Tx2n+1, Tx2n+1, 2t), N(Bx2n+1, Su, Su, t), N(z,Bx2n+1, Bx2n+1, t)}

Taking limit as n → ∞, we get

M(Su, z, z, kt) > M(Su, z, z, t), and N(Su, z, z, kt) 6 N(Su, z, z, t).

Thus Su = z, that is Su = Au = z.
Again, since S(X) ⊂ B(X), there exists a point v ∈ X such that z = Bv. If

z ̸= Tv, then

M(z, Tv, Tv, kt) = M(Su, Tv, Tv, kt)

> min{M(Au, Tv, Tv, 2t),M(Bv, Su, Su, t),M(Au,Bv,Bv, t)}
= min{M(z, Tv, Tv, 2t),M(z, z, z, t),M(z, z, z, t)} = M(z, Tv, Tv, t)

and

N(z, Tv, Tv, kt) = N(Su, Tv, Tv, kt)

6 max{N(Au, Tv, Tv, 2t), N(Bv, Su, Su, t), N(Au,Bv,Bv, t)}
= max{N(z, Tv, Tv, 2t), N(z, z, z, t), N(z, z, z, t)} = N(z, Tv, Tv, t)

which is a contradiction. So. we get Tv = Bv = z. Hence Su = Au = Tv = Bv =
z. Since (S,A) is weakly compatible, then SAu = ASu implies Sz = Az.

Second, we prove that z is the fixed point of S. If z ̸= z, then

M(Sz, z, z, kt) = M(Sz, Tv, Tv, kt)

> min{M(Az, Tv, Tv, 2t),M(Bv, Sz, Sz, t),M(Az,Bv,Bv, t)}
= min{M(Sz, z, z, 2t),M(z, Sz, Sz, t),M(Sz, z, z, t)}

= M(Sz, z, z, t)

and

N(Sz, z, z, kt) = N(Sz, Tv, Tv, kt)

6 max{N(Az, Tv, Tv, 2t), N(Bv, Sz, Sz, t), N(Az,Bv,Bv, t)}
= max{N(Sz, z, z, 2t), N(z, Sz, Sz, t), N(Sz, z, z, t)}

= N(Sz, z, z, t)

which is a contraction. So we have Sz = z. Hence, Az = Sz = z. Since (T,B) is
weakly compatible, then TBv = BTv implies Tz = Bz. Also, we prove that z is
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the fixed point of T . If z ̸= Tz, then

M(z, Tz, Tz, kt) = M(Sz, Tz, Tz, kt)

> min{M(Az, Tz, Tz, 2t),M(Bz, Sz, Sz, t),M(Az, Sz, Sz, t)}
= min{M(z, Tz, Tz, 2t),M(Tz, z, z, t),M(z, z, z, t)}
= M(z, Tz, Tz, t)

and

N(z, Tz, Tz, kt) = N(Sz, Tz, Tz, kt)

6 max{N(Az, Tz, Tz, 2t), N(Bv, Sz, Sz, t), N(Az, Sz, Sz, t)}
= max{N(z, Tz, Tz, 2t), N(Tz, z, z, t), N(z, z, z, t}
= N(z, Tz, Tz, t)

which is a a contradiction. So we have z = Tz. Hence z = Tz = Bz = Az = Sz.
We know that z is the common fixed point of the self maps A,B, S and T .

Finally, we show that z is a unique common fixed point. Let z, w(z ̸= w) be
two common fixed point of the self maps A,B, S and T . Then

M(z, w,w, kt) = M(Sz, Tw, Tw, kt)

> min{M(Az, Tw, Tw, 2t),M(Bw,Sz, Sz, t),M(Az,Bw,Bw, t)}
= min{M(z, w,w, 2t),M(w, z, z, t),M(z, w,w, t)} = M(z, w,w, t)

and

N(z, w,w, kt) = N(Sz, Tw, Tw, kt)

6 max{N(Az, Tw, Tw, 2t), N(Bw,Sz, Sz, t), N(Az,Bw,Bw, t)}
= max{N(z, w,w, 2t), N(w, z, z, t), N(z, w,w, t)} = N(z, w,w, t)

which is a contradiction. So, we have z = w. Hence z is a unique common fixed
point of the self maps A,B, S and T . �

Example. Let

X = [0, 1], M(x, y, z, t) =
t

t+D(x, y, z)
, N(x, y, z, t) =

D(x, y, z)

t+D(x, y, z)
.

Let A,B, S and T be four self maps on X defined by Ax = x, Bx = x, Tx =
x

5
and Sx = 0 for all x in X. Clearly the maps A,B, S and T satisfies all conditions
of Theorem 3.1 and x = 0 is the unique common fixed point of A,B, S and T .

Corollary 3.1. Let X be a complete dislocated generalized intuitionistic fuzzy
metric space and S, T be two self continuous maps on X satisfying for all x, y ∈ X,
t > 0

M(Sx, Ty, Ty, t) > min{M(x, Ty, Ty, 2t),M(y, Sx, Sx, t),M(x, y, y, t)},

N(Sx, Ty, Ty, t) 6 max{N(x, Ty, Ty, 2t), N(y, Sx, Sx, t), N(x, y, y, t)}.
Then S and T have a unique common fixed point in dislocated generalized intuition-
istic fuzzy metric space in X.
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Proof. From Theorem 3.1, we obtain the result of Corollary 3.2 as A = B = I
(identity map). �
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