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ABSTRACT. The concept of annihilator ideal is introduced in an Almost Semi-
lattice (ASL) L with 0. It is proved that the set of all annihilator ideals of an
ASL L with 0 forms a complete Boolean algebra. The concept of annihilator
preserving homomorphism is introduced in an ASL L with 0. A sufficient con-
dition for a homomorphism to be annihilator preserving is derived. Finally, it
is proved that the homomorphic image and the inverse image of an annihilator
ideal are again annihilator ideals.

1. Introduction

There is only one reasonable way of defining what is to be meant by an ideal
in a lattice. Recall that, Dedekind’s definition of an ideal in a ring R is that it is
a collection J of elements of R which (1) contains all multiples such as ax or ya
of any of its elements a, and (2) contains the difference a — b, and hence the sum
a + b, of any two of its elements a and b. By analogy, a collection J of elements
of a lattice L is called an ideal if (1) it contains all multiples a Nz of any of its
elements, and (2) it contains the lattice sum a U b of any two of its elements a and
b. The analogy is that the greatest lower bound , or lattice meet a N'b corresponds
to product in a ring, and the least upper bound, or lattice join a U b corresponds
to the sum of two elements in a ring.

An Almost Semilattice (ASL) was introduced by authors as an algebra (L, o)
of type (2) which satisfies all most all the properties of semilattice except possibly
the commutative of o. In this paper, the concept of annihilator ideal in an ASL
with 0 is introduced with suitable examples and proved some basic properties of
the annihilator ideals. Also, proved that the set A(L), of all annihilator ideals of
an ASL L with 0 is a complete Boolean algebra.
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The concept of annihilator preserving homomorphism is introduced and a suf-
ficient condition for a homomorphism to be annihilator preserving is derived. It
is proved that the image and the inverse image under a homomorphism of an an-
nihilator ideal are again annihilator ideals. Finally, it is proved that for any ideal
I of L, there exists a homomorphism f from L into an ASL Homp(I), of all
homomorphisms defined on I such that Ker(f) = I'*.

2. Preliminary

In this section we collect a few important definitions and results which are
already known and which will be used more frequently in the paper.

DEFINITION 2.1. [4] A semilattice is an algebra (S,x) where S is nonempty set
and * is a binary operation on S satisfying:

(1) zx(yxz)=(v*y)*z
(2)zxy=y*zx
(8) xxx=ux, forall x,y,z € S.

In other words, a semilattice is an idempotent commutative semigroup. The
symbol x can be replaced by any binary operation symbol, and in fact we use one of
the symbols of A, V, + or ., depending on the setting. The most natural example
of a semilattice is (P(X),N), or more generally any collection of subsets of X closed
under intersection. A sub semilattice of a semilattice (5,x) is a subset of S which
is closed under the operation . A homomorphism between two semilattices (.9, *)
and (T,*) is a map h : S — T with the property that h(z xy) = h(z) x h(y) far
all x,y € S. An isomorphism between two semilattices is a homomorphism that is
1 —1 and onto. It is worth nothing that, because the operation is determined by
the order and vice versa. Also, it can be easily observed that two semilattices are
isomorphic if and only if they are isomorphic as ordered sets.

DEFINITION 2.2. [5] An algebra (L, o) of type (2) is called an almost semilattice
if it satisfies the following axioms:

(AS1) (woy)oz==azo(yoxz) (associative law)
(AS2) (zoy)oz=(yox)ox (almost commutative law)
(AS3) zox == (idempotent law)

If L has an element 0 and satisfies 0 o x = 0 along with the above properties,
then L is called an ASL with 0.

THEOREM 2.1. [5] Let L be an ASL. Define a < b if and only if aob = a for
all a,b € L. Then < is a partial ordering on L.

LEMMA 2.1. [5] Let L be an ASL with 0. Then we have the following properties:

(a) ao(aob)=aob

(b) (aob)ob=aobd

(c)bo(aob)=aobd

(d) aob=boa whenever a <b
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(e) a is a minimal element of L if and only if xoa =a for allz € L
(f)ao0=0 forallae L

(9) aob=0 if and only ifboa =0

(h) a < b implies that aox < box and xoa < xob.

DEFINITION 2.3. [6] A nonempty subset I of an ASL L is said to be an ideal
ifrel anda€ L, thenxoa € I.

DEFINITION 2.4. [6] A proper ideal P of an almost semilattice L is said to be
prime ideal if for any a,b € L such that aob € P, then either a € P orb e P.

THEOREM 2.2. [6] Let S be a nonempty subset of an ASL L. Then (S] =
{(of_y8;)ox| x € L,s; € S where 1 < i < n and n is a positive integer} is the
smallest ideal of L containing S.

COROLLARY 2.1. [6] Let L be an ASL and a € L. Then (a] = {aoz| z € L}
is an ideal of L, and is called principal ideal generated by a.

LEMMA 2.2. [6] For any a,b in an ASL L, we have the following:
(a) a € (b] if and only if a =boa.

(b) b € (a] if and only if (b] C (a]

(c) (a] C (b] whenever a < b

(d) (boa] = (aob] = (a] N (b].

COROLLARY 2.2. [6] Let I be an ideal of L. Then, for any a,b € Lyaob € I if
and only if boa € I.

DEFINITION 2.5. [5] Let L be a nonempty set. Define a binary operation o on
Lbyzoy=y, forallz,y € L. Then (L,o0) is an ASL and is called discrete ASL.

DEFINITION 2.6. [5] An element m € L is said to be unimaximal if mox = x
forallxz € L.

THEOREM 2.3. [5] Every unimaximal element in an ASL L is a mazimal ele-
ment.

THEOREM 2.4. [6] The set J(L), of all ideals of an ASL L is o distributive
lattice with respect to set inclusion, where for any I,J € J(L),IANJ =1NJ and
IvJ=I1UJ.

THEOREM 2.5. Let (P, <) be a poset which is bounded above. If every nonempty
subset of P has glb, then every nonempty subset of P has lub and hence P is a
complete lattice.

DEFINITION 2.7. A complemented distributive lattice is called a Boolean Alge-
bra.
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3. Annihilator Ideals

In this section, we introduce the concept of an annihilator ideal in an almost
semilattice (ASL) L with 0 and prove some basic properties of the annihilator
ideals. Also, we prove that the set A(L), of all annihilator ideals form a complete
Boolean algebra. First we begin with the following definition.

Throughout the remaining of this section, by L we mean an ASL with 0 unless
otherwise specified.

DEFINITION 3.1. For any nonempty subset A of an ASL L with 0, define
A*={zxeL|xoa=0,forall a € A}. Then A* is called the annihilator of A.

Note that, if A = {a}, then we denote A* = {a}* by [a]*. In the following we
prove that for any nonempty subset A of L, A* is an ideal.

THEOREM 3.1. For any nonempty subset A of L, A* is an ideal of L.

PRrROOF. Since ao0 =0 for all a € A, 0 € A*. Hence A* is nonempty. Let
v € A*¥andt € L. Then xoa = 0 for all a € A. Now, let b € A. Then
(xot)ob=(tox)ob=to(xob) =to0=0. Therefore zot € A*. Thus A* is an
ideal of L. O

Recall that, every ideal is an initial segment. It follows that for any subset A
of L, A* is an initial segment of L. In the following we prove some properties of
annihilator ideals.

LEMMA 3.1. For any subset A of L, AN A* = {0}.

PROOF. Suppose A is a subset of L and suppose x € AN A*. Then z € A and
zoa =0, for all a € A. It follows that = x o x = 0. Therefore AN A* = {0}. O

THEOREM 3.2. For any ideals I,J of L, we have the following:

(1) I* = ] (a]*

a€l

(2) INnJ)*=(JNI)*

(3)I1CJ = J-CI*

(4) I*NJ* C(I0J)

(5) INJ)y>*=I"*nNnJ*

(6) I C I**

(7) I***:I*

(8) I* C J* <= J** C I**

(9)INJ=0<=ICJ = JCI*

(10) (IUJ)* =I*nJ*.

PROOF. (1) Let ¢t € I*. Then toa = 0 for all @ € I. Hence t € (a]* for all
a € I. Therefore t € () (a]*. Thus I* C () (a]*. Clearly, ) (a]* € I*. Hence

acl acl acl
I* = N (a]*.
acl
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(2) Since INJ = J NI, proof (2) is clear.

(3) Suppose I C J and z € J*. Then zo0a =0, for all a € J. Hence zoa =0
for all @ € I. Thus x € I*, and hence J* C I*.

(4) Since INJ C I,J, by (3), we get I*,J* C (I N J)*. Therefore I* N J* C
(InJ)*.

(5) Let I,J € J(L). Then we have I NJ C I,J. Hence by (3), we get
I*, J* C(InJ)*. It follows that (I NJ)*™* C I**, J**. Thus (I NJ)* C I** N J**.
Conversely, let x € I N J** and y € (I N J)*. Then for any ¢ € I and j € J, we
have ioj € INJ. Hence (yoi)oj=yo (ioj)=0. Therefore yoi € J*. Again,
since x € J** and yoi € J*, we get (xoy)oi=xo0(yoi)=0. Hence x oy € I*.
Since x € I**, we get xoy € . Thus zoy € I*NI** = {0}. Hence zoy = 0.
Therefore x € (INJ)**. Thus I**NJ** C (INJ)**. Hence (I NJ)*™* =" NnJ**.

(6) Suppose x € I and y € I*. Then yoa = 0 for all @ € I. In particular,
yox =0. Hence x € I**. Thus I C I'**.

(7) Suppose x € I* and a € I**. Then zoa € I*NI** = {0}. Hence xoa = 0.
Therefore © € I*** and hence I* C I***. Converse follows by (3) and (6). Hence
I* — I***.

(8) Its proof follows by (3) and (7).

(9) Suppose I'NJ = (0]. Let x € I and a € J. Then we get zoa € I and
xoa € J. Hence zoa € INJ = (0]. Therefore z oa = 0. It follows that z € J*.
Thus I C J*. Conversely, suppose [ C J*. Let z € INJ. Then z € I and x € J.
Since I C J*, x € J*. It follows that z o x = 0. Therefore x = 0. Thus I NJ = (0].
Similarly we can prove that I NJ = (0] if and only if J C I*.

(10) We have I,J C I UJ. Therefore by (3), we get (I U J)* C I*, J*. Hence
(fuJ)* CI*NnJ*. Conversely, let z € I* N J*. Then z € I* and x € J*. Hence
roa =0, foralla € I and xzob =0, for all b € J. Therefore xot =0, forallt € TU.J
and hence x € (TUJ)*. Thus I*NJ* C (IUJ)*. Therefore I*NJ* = (ITUJ)*. O

COROLLARY 3.1. If {I; | i € A} is a family of ideals of L, then
(N L™= N L)

i€eA ieA
THEOREM 3.3. For any x,y € L, we have the following:
(1)z<y = [y" € [a]"
(2) [z]* C [y]* = [y C 2]
(3) x € [x]*
(4) (a]* = [z]*
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(10) []* S [y]* if and only of [y|** C [2]**.

PROOF. (1) Suppose z,y € L such that x < y and ¢ € [y]*. Then toy = 0.
Since x < y, we get t ox < toy = 0. Therefore t oz = 0 and hence ¢ € [z]*. Thus
[y]* < [2]".

(2) Suppose [z]* C [y]*. Let s € [y]**. Then soa =0 for all a € [y]*. Hence
soa =0 for all a € [z]*. Therefore s € [z]**. Thus [y]** C [z]**.

(3) Let ¢t € [z]*. Then t oz = 0. Thus z € [z]**.

(4) Let t € (x]*. Then tos =0 for all s € (z]. In particular ¢t o z = 0, since
x € (x]. Hence t € [z]*. Therefore (z]* C [z]*. Conversely, suppose t € [z]*. Then
tor =0. Let s € (z]. Then zos =s. Now, tos=to(xos) = (tox)os=00s=0.
Hence t o s = 0 for all s € (z]. Therefore ¢t € (x]*. Hence [z]* C (z]*. Thus
[2]* = (2]*,

(5) Let t € (x] N [z]*. Then ¢ € (z] and ¢ € [x]*. Hence x ot =t and tox = 0.
Hence ¢ = 0. Thus (z] N [z]* = {0}.

(6) We have z oy = 0 if and only if yox = 0. It follows that [zoy]* = [yoz]*.

(7) Suppose t € [z]* N [y]*. Then ¢ € [z]* and ¢ € [y]*. Therefore t o x =0 and
toy = 0 and hence toxoy = 0. It follows that t € [zoy]*. Thus [z]*N[y]* C [xoy]*.

(8) Let z,y € L. Then we have z oy < y and y o x < z. Therefore by (1), we
get [y]* C [zoy]* and [z]* C [yoz]* = [zoy]*. Hence [z]*, [y]* C [zoy]*. Therefore
by (2), [zoy]™ C [x]**, [y]**, and hence [zoy]** C [z]**N[y]**. Conversely, suppose
te [z N[y]* and s € [roy]*. Thent € [z]**, t € [y]** and so(xoy) =0. It
follows that s oz € [y]*. Since ¢t € [y]**, we get to (sox) = 0. It follows that
tos € [z]*. Now,tos = (tot)os=to(tos) =0, since t € [x]**. Therefore
t € [x oy]*™. Hence [x]** N [y]** C [z oy]**. Thus [z oy = [x]** N [y]**.

(9) Let t € [z]* and s € [z]**. Then tos = [z]* N [z]** = {0}. Hence t € [z]***.
Therefore [z]* C [z]***. But by (3), we get [«]*** C [z]|*. Thus [z]* = [z]"**.

(10) Proof (10), follows by conditions (2) and (9). O

Recall that M, is the least element in the distributive lattice J(L) of all ideals
of L which contains precisely all minimal elements in L. In the following, we define
annihilator of a nonempty set in another form.

DEFINITION 3.2. For any nonempty subset S of L, define [S]* = {« € L|zos €
M,, for all s € S}.

It can be easily seen that, if z is a minimal element, then x oa is also a minimal
element for all a € L, and hence we have the following theorem.

THEOREM 3.4. Let L be an ASL with a minimal element. Then, for any non
empty subset S of L, [S]* is an ideal of L.

PROOF. Suppose L has a minimal element. Then clearly [S]* is nonempty. Let
x € [S]*andt € L. Then zos € M, for all s € S. Let s € S. Now, consider
(xot)os=(tox)os=to(ros) =xos,since zos € M, which is minimal. Hence
(xot)os e M,. Therefore x ot € [S]*. Thus [S]* is an ideal of L. O
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If L is an ASL with 0, then it can be easily observed that S* = [S]* and
L* = M,. Now, we have the following corollary whose proof is straight forward.

COROLLARY 3.2. For any nonempty set S of L, [S]* = [(S]]* where (S] is an
ideal generated by S.

COROLLARY 3.3. Let L be an ASL with a minimal element. Then for any
nonempty subset S of L, (S]N[S]* = M,.

PROOF. We have M, is the least element in J(L). Therefore M, C (S] N [S]*.
Conversely, let t € (S]N[S]*. Then t € (S] and t € [S]* = [(S]]*. Thus tos € M,
for all s € (S]. In particular t = t ot € M,, since ¢t € (S]. Therefore t € M, and
hence (S] N [S]* € M,. Thus M, = (S] N [S]*. O

Now, we define the concept of annihilator ideal in an ASL L with 0.

DEFINITION 3.3. Let L be an ASL with 0. An ideal I of L is called an
annihilator ideal if I = S* for some nonempty subset S of L.

It can be easily seen that if I is annihilator ideal, then I = I**. Note that, the
set of all annihilator ideals of L is denoted by A(L). In the following, we give some
examples of annihilator ideals.

EXAMPLE 3.1. Let X be a discrete ASL with 0 and with at least two elements,
other than 0. Then (X”,o,()l) is an ASL with zero 0 = (0,0,...,0), where o
defined coordinate-wise. Put, I = {(0,...,a;,...,0) | a; € X}. Then clearly I is
an ideal of X™. Also, clearly I* = {(a1,as2,...,a;—1,0,a;11,...,a,) | a; € X} and
r~={(0,...,ai,...,0) | a; € X} = 1. Hence I is an annihilator ideal of L.

EXAMPLE 3.2. Let (R, +,.,0) be a commutative ring with unity. For any a € L,
let a® be the unique idempotent element in L such that aR = a°R. For any x,y € R,
define oy = 2. Then clearly (R,+,.,0) is an ASL with 0. Now, consider
I= (2" and J = (1 —2". Since 2" o (1 — 2°) = 0, we get that (2°] C (1 — 2°]*
and (1 — 2% C (2°*. Now, a € (z°]* implies a o 2° = 0. So a’2° = 0. Now,
a(l—2°) =a—ax’=a—0=a. Hence a € (1 —2°. Thus (2°]* C (1 — 29 = J.
Similarly we can obtain J* = (1 — 2°* = (2°] = I. Hence I and J are the
annshilator ideals in L.

ExXAMPLE 3.3. Let L ={0,a,b,c} and defined o on L as follows:
0 b

ol || o
e (e |Je

0
a
b
c

S DS
QO [DID|O

Then clearly (L,0,0) is an ASL with 0. Consider the set I = {0,a} C L. Then
clearly I is an ideal in L. Now, I* = {0,c} and also I** = {0,a} = I. Thus I is an
annihilator ideal in L. Similarly, the ideal J = {0, c} of L, is another annihilator
ideal in L.
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EXAMPLE 3.4. Let L = {0, a,b,c} and define o on L as follows:

o|0|a|b]|c
o(o0(0}0]|0
al0|lalb]|ec
b|0|lal|b|ec
cl0lc|lc|c

Then clearly (L,0,0) is an ASL with 0. Consider the ideal I = {0,c}. Then
I = (0] = L. Therefore I is not an annihilator ideal in L.

In the following, we prove some properties of annihilator ideals.
THEOREM 3.5. For I,J € A(L), we have INJ = (I* U J*)*.

PROOF. Since I*, J* C I*UJ*, we get (I*UJ*)* C I**, J**. Hence (I*UJ*)* C
I,J. Therefore (I*UJ*)* C INJ. Conversely, suppose x € INJ and y € [* U J*.
Then y € I* ory € J*. Sincex e INJ andy € I*UJ*, zoy € INI* or
xoy € JNJ*. It follows that © oy = 0. Therefore x € (I* U J*)* and hence
INJC(I*UJ*. Thus INJ = (I*UJ*)* O

Recall that, for any ideal I in L I° = {(a] | a € I'} is an ideal of an ASL PJ(L)
of all principal ideal in L. Now, we prove the following theorem which express the
relation between ideals of L and ideals of PJ(L).

THEOREM 3.6. Let L be an ASL with 0. Then I is an annihilator ideal in L
if and only if I¢ is an annihilator ideal in PJ(L).

PRrROOF. Suppose [ is an annihilator ideal in L. Since I¢ is an ideal, by
theorem 3.4(6) we have I¢ C I¢**. Let (a] € I°* and b € I*. Then for any ¢ € I,
(0] N (c] = (boc] = (0]. Hence (b] € I¢*. Since (a] € I¢**, we get (a] N (b] = (0].
Therefore (a o b] = (0]. Which implies that aob = 0. Hence a € I** = I. It follows
that (a] € I¢. Therefore [¢** C I¢. Hence I¢ = I¢**. Thus I¢ is an annihilator
ideal of PJ(L). Conversely, suppose I¢ is an annihilator ideal in PJ(L). We have
always I C I**. Let a € I** and (b] € I°*. Now, for any ¢ € I, (c| € I°. Hence
(b]N(c] = (0]. Therefore (boc] = (0]. Which implies that boc = 0. Therefore b € I*.
Now, a € I"* and b € I* and hence a o b = 0. Therefore (a] N (b] = (a o b] = (0].
It follows that (a] € I¢** = I°. Thus a € I. Hence I** C I. We get that I = I**.
Therefore I is an annihilator ideal in L. g

If L is an ASL, then we know that (J(L),N,U) is a distributive lattice. But
A(L) is not a sub-lattice J(L). For, in example 3.3, consider the ideals I = {0,a}
and J = {0,c}. Now, I* = {0,c} = J and J* = {0,a} = I. Hence I** = {0,a} =1
and J** = {0,c¢} = J. Thus I and J are both annihilator ideals in L. Now,
TuJ =1{0,a,c}. So (IUJ)* ={0}. Hence (IUJ)** = L. Therefore I UJ is not an
annihilator ideal in L. However, we prove in the following that A(L) is a complete
Boolean algebra on its own.

THEOREM 3.7. Let L be an ASL with 0. Then the set A(L), of all annihilator
ideals of L forms a complete Boolean Algebra, on its own.



ANNIHILATOR IDEALS IN ALMOST SEMILATTICE 347

PRrROOF. Let I,J € A(L). Define IANJ =1INJ and IVJ = (I* N J*)*. Since
I,J € A(LL), I =T and J** = J. Hence INJ)™* =TI nNnJ>* =1nJ.
Thus I NJ € A(L). Also, (IVJ)*™* = ((I* N J*)*)** = (I* 0 J*)™ = (I* N
J*)* = IVvJ. Hence IVJ € A(L). It can be easily seen that with respect to set
inclusion, (A(L),<C) is a poset. Clearly, I NJ is the g.1.b of I, J. Now, we have
I,J CTUJ. By theorem 3.2(3) and (10), we get I* N J* = (I U J)* C I*, J* and
hence I'**, J** C (I* N J*)*. It follows that I, J C IVJ. Therefore IV.J is an upper
bound of I,J. Suppose H € A(L) is an upper bound of I,J. Then I,J C H. By
therorem 3.2(3), H* C I'*, J*. Therefore H* C I*NJ* and hence (I*NJ*)* C H**.
Thus IvVJ C H and hence IVJ is a L.u.b of I, J. This implies that (A(L),A,V) is a
lattice. Since (0]* = L and L* = (0], It follows that (0], L € A(L). Clearly (0] and
L are the least and greatest elements of A(L). Therefore (A(L), A, V) is a bounded
lattice. Let I € A(L). Then clearly I* € A(L) since I* = I™*. Also, I N I* = (0]
and IVI* = (I*NI**)* = (I*NI)* = (0]* = L. Thus I* is a complement of I.
Therefore (A(L), A, V,*, (0], L) is a complemented lattice. Let I, J, K € A(L). We
shall prove that IV(JAK) = (IVJ)A(IVK). Clearly IV(JAK) C (IVJ)A(IVK).
Now, we prove that (IVJ)A(IVK) C IV(J A K). We first prove that (IVJ)A K C
IV(JANK). We have IN K N[I*N (JN K)*] = (0], it follows by theorem 3.2(9)
KnI*Nn(JNk)* C I*. Similarly we can prove that KN I*N(JNK)* C J*. Hence
KnI*n(JNK)* C I*NnJ*. Therefore [KNI*N(JNK)*]N(I*NJ*)* = (0]. Hence
FO(JNK)*N[KN TN J5)*] = (0. Thus K N (I* N J5)* C [I* 0 (J 0K
Hence, we get (IVJ) AN K CIV(J AK). Now, (IVJ)N (IVK) C IV[J N (IVK)] =
IVI[(IVK)NJ) CIV[IV(K NJ)]. Thus (A(L), A, V,*, (0], L) is a Boolean Algebra.

By corollary 3.1, { (| 4:}** = () A7 = () A4, since each A; € A(L). It follows
i€A ieA i€A
that (A(L),A,V,*, (0], L) is a complete Boolean Algebra. O

4. Annihilator Preserving Homomorphisms

In this section, we introduce the concept of annihilator preserving homo-
morphisms and derive a sufficient condition for a homomorphism to be annihilator
preserving. We prove that the image and inverse image of annihilator ideal are
again annihilator ideals. Finally, we prove that for any ideal I of L there exists a
homomorphism f from L into Homp, (I) such that Ker(f) = I*.

DEFINITION 4.1. Let L and L' be two ASLs with zero elements 0 and 0" re-
spectively. Then a mapping f: L — L is called a homomorphism if it satisfies the
following:

(1) flaob) = f(a)o f(b) for all a,b e L

(2) f(0)=0"

The kernel of the homomorphism f: L — L (both L and L' are ASLs with

0 and 0" respectively) is defined by Ker(f) = {z € L | f(x) = 0}, and it can be
easily observed that Ker(f) is an ideal of L.

LEMMA 4.1. Let L and L' be two ASLs with zero elements 0 and 0’ respectively
and f: L — L a homomorphism. Then we have the following:
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(1) If f is onto, then for any ideal I of L, f(I) is an ideal of L.
(2) For any ideal J of L', f~Y(J) is an ideal of L containing Ker(f).

PROOF. (1) Suppose f is onto and I is an ideal of L. Then clearly f(I) =
{f(x) | © € I} is nonempty. Let f(z) € f(I) and b € L'. Since f is onto, there
exists a € L such that b = f(a). Now, f(z)ob= f(z)o f(a) = f(zoa) € f(I) since
zoa eI Thus f(I)is an ideal of L.

(2) Suppose J is an ideal of L'. We have f~(J) = {z € L | f(z) € J}. Since
Jis anideal of L', 0" = f(0) € J. Hence f~1(J) is nonempty. Let x € f~1(J) and
a € L. Then f(z) € J and f(a) € f(L) C L. Therefore f(zoa) = f(x)o f(a) € J.
Hence x oa € f~1(J). Thus f~1(J) is an ideal of L. Let # € Ker(f). Then
f(z) =0 € J. Hence x € f~1(J). Therefore f~1(J) is an ideal of L containing
Ker(f). O

THEOREM 4.1. Let L, L’ be an ASLs with 0 and f : L — L' be a homomor-
phism. Then for any nonempty subset A of L, we have f(A*) C (f(A))*.

PROOF. Let a € f(A*) and y € f(A). Then there exists b € A* and z € A
such that a = f(b) and y = f(x). Now, aoy = f(b)o f(z) = f(boz)= f(0) =0
Therefore a oy = 0. Hence a € (f(A))*. Thus f(A*) C (f(A))*. O

But, converse of the above theorem need not be true. For, consider the following
example.

EXAMPLE 4.1. Let L = {0,a,b,c} be a discrete ASL. Define a mapping f :
L — L by f(x) =0 for all x € L. Then clearly f is a homomorphism. Put
A = {a,b}. Then clearly A* = {0} and hence f(A*) = {0}. Now, we have
f(A) = {0} and hence (f(A))* = ({0})* = L. Thus (f(A))* € f(A*).

In view of the above observation, we define the concept of annihilator preserving
homomorphism.

DEFINITION 4.2. Let L, L' be an ASLs with zero elements 0 and 0' respectively
and let f: L — L' be a homomorphism. Then f s called annihilator preserving

if f(A*) = (f(A))*, for any {0} C AC L.

EXAMPLE 4.2. Let A ={0,a} and B = {0,by1,b2} be two discrete ASLs. Write
L=AxB={(0,0),(0,b1), (0,b2), (a,0), (a,b1), (a,b2)}. Then (L,o,0) is an ASL
with 0 under point-wise operations, where the zero elements in L is 0 = (0,0). Let
L = {0,d, e, f} be another ASL in which the operation o is defined as follows:

o|l0|d|el|f
010|000
dlo|d|0|d
e|l0|0|ele
floydlelf
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Now, define the mapping f : L — L' by £((0,0)) = 0, f((a,0)) = d, f((0,b1)) =
fU0,b2)) =€, f((a,b1)) = f((a,b2)) = f. Then clearly f is a homomorphism from
L onto L. It can also be verified that f is annihilator preserving.

DEFINITION 4.3. An element a in an ASL L with 0 is said to be dense element
if [a]* = {0}.

It can be easily observed that every unimaximal element is dense. But, dense
element need not be unimaximal. For, consider the following example.

EXAMPLE 4.3. Let A ={0,a} and B = {a,b1,ba} are two discrete ASLs. Let
L=AxB=1{(0,0),(0,b1),(0,b2), (a,0), (a,b1), (a,ba)}. Define a binary operation

o on L under point-wise:

o (0, 0) (0, bl) (0, bg) (CL, 0) (a, bl) (a, b2)
(0,0) | (0,0)| (0,0) | (0,0) | (0,0)] (0,0) | (0,0)
(07 bl) (0} 0) (0) bl) (07 b2) (0’ 0) (07 bl) (0} b2)
(0; b2) (07 0) (0; bl) (07 b2) (07 0) (0; bl) (07 b2)
(a, 0) | (0, 0)| (0,0) | (0,0) | (a, 0)] (a, 0)] (a 0)
(a, b1) | (0, 0) | (0,b1) ] (0, b2) | (a, 0)| (a, b1) | (a, ba)
(a, b2) (0’ 0) (0; bl) (0} b2) (CL, 0) (a’) bl) (a’ b2)

Now, let L' = {(0,0),(0,b1), (0,b2), (a,b1), (a,b)}. Then L' is a sub ASL of
(L,o,O/). InL, (a,b1), (a,b2) are only unimaximal elements. Now, ((0,b1)]* =
{(0,0)}. So that (0,by) is a dense element, but not a unimazximal element in L'
Because (0,b1) o (a,b1) = (0,b1) # (a,b1). Similarly (0,bs) is also a dense element
but not a unimazimal element.

DEFINITION 4.4. An ASL L with 0 is said to be dense if [a]* = {0} for all
a(#0) € L.

It can be easily seen that every discrete ASL is a dense ASL. More generally,
we have the following theorem whose proof is straight forward.

THEOREM 4.2. Let L and L' be two dense ASLs. Then every homomorphism
from L into L' is annihilator preserving.

It can be easily seen that f is one-one implies that Ker(f) = {0}. But, converse
need not be true. For, consider the following example.

EXAMPLE 4.4. Let L = {0,a,b} and L' = {0, ¢} be two discrete ASLs. Define
a mapping f : L — L' by f(0) = 0" and f(a) = f(b) = ¢. Then clearly f is a
homomorphism from L into L. Clearly f is onto. Also Kerf = {0}. But f is not
one-one.

In the following, we give sufficient condition for a homomorphism to become
annihilator preserving.

THEOREM 4.3. Let L and L be two ASLs with zero elements 0 and 0’ respec-
tively and let f : L — L' be a homomorphism. If Ker(f) = {0} and f is onto, then
both f and f~1 are annihilator preserving.
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PROOF. Let A be a subset of L such that (0] C A C L. Then by theorem 4.1,
f(A*) C (f(A))*. Now, let z € (f(A))*. Since f is onto, there exists y € L such
that f(y) = = € (f(A))*. Hence f(y)o f(a) =0 for all a € A. This implies that
flyoa) =0 and hence yoa € Ker(f) = {0}. It follows that y o a = 0 for all
a € A. Therefore y € A*. Hence x = f(y) € f(A*). Therefore (f(A))* C f(A*).
Thus f(A*) = (f(A))*.

Again, let (0] € A € L. Tt is enough to prove that f~(A*) = (f~'(A))*. Let
z € (f~1(A))*. Thenzoa=0foralla € f~1(A). Hence zoa =0 for all f(a) € A.
It follows that f(z)o f(a) = f(zxoa) = f(0) = 0 for all f(a) € A. Therefore
f(x) € A* and hence z € f~1(A*). Thus (f~1(4))* C f~1(A4*). Conversely,
suppose z € f71(A*) and a € f~1(A). Then f(r) € A* and f(a) € A. Hence
f(xoa) = f( )o f(a) = 0. Thus zoa € Ker(f) = {0}. Therefore z0a = 0,
for all a € f~'(A). Hence z € (f~*(A))*. Therefore f~1(A*) C (f~*(A4))*. Thus

—1

f7HAY) = (1) O
Now, we prove some properties of annihilator preserving homomorphisms.

THEOREM 4.4. Let L and L' be two ASLs with zero elements 0 and 0 re-
spectively. Let f : L — L' be annihilator preserving homomorphism such that
Ker(f) ={0}. Then A* = B* if and only if (f(A))* = (f(B))* for any nonempty
subsets A and B of L.

PROOF. Suppose A* = B*. Then clearly f(A*) = f(B*). Since f is annihilator
preserving, (f(A))* = (f(B))*. Conversely, assume that (f(A))* = ( (B))*. Let
t € A*. Then toa = =0 for all a € A. Hence f(toa) = f(0) = Therefore
f(t)o f(a) =0 for all a € A. It follows that f(t) € (f(A))* and hence f) €
(f(B))*. Therefore f(t)o f(b) =0 for all b € B. Hence f(tob) = 0. Therefore
tobe Ker(f)={0} forall b e B. We get tob=0 for all b € B. Therefore t € B*.
Hence A* C B*. Similarly we can prove that B* C A*. Therefore A* = B*. O

THEOREM 4.5. Let L and L be two ASLs with zero elements 0 and 0’ respec-
tively and let f : L — L a homomorphism. Then we have the following:

(a) If f is annihilator preserving and onto, then f(I) is annihilator ideal of L’
for every annihilator ideal I of L.

(b) If f=1 preserves annihilators, then f=1(J) is an annihilator ideal of L for
every annihilator ideal J of L.

PROOF. (a) Suppose f is annihilator preserving homomorphism which is onto
and suppose I is an annihilator ideal of L. Then by lemma 4.1(1), f(I) is an
ideal of L'. Since f is annihilator preserving, (f(I))** = ((f(I))*)* = (f(I*))*
f(I**) = f(I). Therefore f(I) is an annihilator ideal of L .

(b) Suppose f~! preserves annihilators. Let J be an annihilator ideal of L.
Then by lemma 4.1(2), f~1(J) is an ideal of L. Since f~! preserves annihilators,
we get (f71() = ((f~1())" = (fH(J*)* = f1(J) = f1(J). Therefore
f~Y(J) is an annihilator ideal of L. O
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COROLLARY 4.1. Let L and L' be two ASLs with zero elements 0 and 0’ respec-
tively and let f : L — L' be homomorphism such that f~1 preserves annihilators.
Then Ker(f) is an annihilator ideal of L.

PROOF. Since Ker(f) = f~'((0']) and (0'] is annihilator ideal of L’,by above
theorem, Ker(f) is an annihilator ideal. O

Recall that if I is an ideal of an ASL L with 0, then [ is a sub ASL with
0. Finally, we prove that if I is an ideal of L, then there exists a homomorphism
whose kernel is the annihilator of I. First we need the following lemma.

LEMMA 4.2. Let L be an ASL with 0 and I be an ideal of L. Then the set
Homy,(I), of all endomorphisms on I is an ASL under the operation o defined on

Homp(I) by (f 2 g)(z) = f(x) og(x) for all z € I.

PRrOOF. Clearly Homy (I) is a nonempty set since the identity map on I be-
longing to Homyp,(I). Also, clearly Homp (I) is an ASL under the binary operation
o. Now, define f, : I — I by f,(z) =0 for all z € I. Then clearly f, € Homp(I).
Also, for any f € Homp(I) and = € I, consider, (f, o f)(z) = fo(x) o f(z) =
0o f(x) = 0 = fo(x). Therefore f, o f = f,. Hence f, is the zero element in
Homyp(I). Thus Homp(I) is an ASL with zero element f,. O

THEOREM 4.6. Let L be an ASL with 0. Then for any ideal I of L there exists
a homomorphism [ from L to Homp(I) such that Ker(f) = I*.

PROOF. Let I be an ideal of L. Now, fix r € L and define 6, : I — I by
0,(z) =z or for all z € I. We shall prove that 6, € Homp(I). Since I is an ideal
of L, we get 0,.(x) = x or € I. Therefore 0, is well-defined. Let =,y € I. Then
Op(xoy) = (xoy)or = (zoy)o(ror) =zo(yo(ror)) =xzo((yor)or) =
zo((roy)or)=(xo(roy))or=((zor)oy)or=(xor)o(yor)=0.(z)ob.(y).
Also, 6,.(0) = 0or = 0. Thus 6, is a homomorphism. Hence 6, € Homp(I).
Now, define f : L — Homp(I) by f(r) = 6, for all r € L. Then clearly f is
well-defined. Now, let r,s € L. Then f(ros) = 6,0s. Now, for any = € I,
Oros(x) = zo(ros) = (zox)o(ros) = zo(xo(ros)) = xo((xor)os) = zo((rox)os) =
zo(ro(xos)) = (zor)o(xos) = 0,.(x)obs(x) = (0,00,)(x). Therefore 0,..5 = 0,.00;.
Thus f(ros) = f(r)o f(s). Also, f(0) = 6y. Now, p(z) =200 =0= f,(x) for all
x € I. Therefore 8y = f,. Thus f is a homomorphism. Hence Ker(f) is an ideal
of L. We now prove that Kerf = I*. Consider,

r € Ker(f) < f(r) = 6y, which is the zero element of Homp (I).

<0, =10
< 0,.(x) =0p(x) for all x € T
< zxor=~0y(zx)=0forallz el
= recl*.
Therefore Ker(f)=1I*. O
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