PRIME BI-IDEALS IN Γ - SEMIRINGS

R. D. Jagatap and Y. S. Pawar

Abstract

In this paper we introduce the concepts of prime, semiprime, strongly prime, irreducible and strongly irreducible bi-ideals in a Γ-semiring. Characterizations of a Γ-semiring using these concepts are furnished. A topology on the set of strongly prime bi-ideals is defined and a property of the space of strongly prime bi-ideals of a Γ-semiring is furnished.

1. Introduction

The notion of Γ-rings was introduced by Nobusawa in [10]. The class of Γ rings contains not only all rings but also ternary rings. As a generalization of rings, semirings were introduced by Vandiver [14] and he obtained many results about it. Further as a generalization of Γ-rings and semirings, the notion of a Γ-semiring was introduced by Rao [11]. It is well known that ideals play an important role in any abstract algebraic structures. Characterizations of ideals in a semigroup were given by Lajos [8], while ideals in semirings were characterized by Iseki [4, 5]. Prime and semiprime ideals in Γ-semirings were discussed by Dutta and Sardar [2]. Authors were studied quasi-ideals and bi-deals in Γ-semirings $[6,7]$. The notion of a bi-ideal was first introduced for semigroups by Good and Hughes [3]. The concept of a biideal for ring was given by Lajos [9] and for semirings by Shabir, Ali and Batool [12]. The concept of a bi-ideal in a semigroup (ring and semiring) is a generalization of one sided ideal and two sided ideal in a semigroup (ring and semiring). Prime biideals in a Γ-ring was introduced by Booth and Groenewald [1] and in a semigroup by Shabir and Kanwal [13].

In this paper efforts are made to extend the notion of prime ideals and semiprime ideal in Γ-semirings to prime bi-ideal and semiprime bi-ideal respectively in Γ semirings. Also we define strongly prime bi-ideal in Γ-semirings and discuss some

[^0]properties of it. Finally we prove a topological property of the space of strongly prime bi-ideals of a Γ-semiring.

2. Preliminaries

First we recall some definitions of the basic concepts of Γ-semirings that we need in sequel. For this we refer Dutta and Sardar [2].

Definition 2.1. Let S and Γ be two additive commutative semigroups. S is called $a \Gamma$ - semiring if there exists a mapping $S \times \Gamma \times S \longrightarrow S$ denoted by a \quad b; for all $a, b \in S$ and $\alpha \in \Gamma$ satisfying the following conditions:
(i) $a \alpha(b+c)=(a \alpha b)+(a \alpha c)$
(ii) $(b+c) \alpha a=(b \alpha a)+(c \alpha a)$
(iii) $a(\alpha+\beta) c=(a \alpha c)+(a \beta c)$
(iv) $a \alpha(b \beta c)=(a \alpha b) \beta c$; for all $a, b, c \in S$ and for all $\alpha, \beta \in \Gamma$.

Obviously, every semiring S is a Γ-semiring.
Let S be a semiring and Γ be a commutative semigroup. Define a mapping $S \times \Gamma \times S \longrightarrow S$ by, $a \alpha b=a b ;$ for all $a, b \in S$ and $\alpha \in \Gamma$. Then S is a Γ-semiring.

Definition 2.2. An element $0 \in S$ is said to be an absorbing zero if $0 \alpha a=$ $0=a \alpha 0, a+0=0+a=a ;$ for all $a \in S$ and $\alpha \in \Gamma$.

Now onwards S denotes a Γ-semiring with absorbing zero unless otherwise stated.

Definition 2.3. A non-empty subset T of S is said to be a sub-Г-semiring of S if $(T,+)$ is a subsemigroup of $(S,+)$ and $a \alpha b \in T$; for all $a, b \in T$ and $\alpha \in \Gamma$.

Definition 2.4. A non-empty subset T of S is called a left (respectively right) ideal of S if T is a subsemigroup of $(S,+$) and xaa $\in T$ (respectively $a \alpha x \in T$) for all $a \in T, x \in S$ and $\alpha \in \Gamma$.

Definition 2.5. If T is both left and right ideal of S, then T is known as an ideal of S.

If M, N are non-empty subsets of S, then

$$
M \Gamma N=\left\{\sum_{i=1}^{n} x_{i} \alpha_{i} y_{i} \mid x_{i} \in M, \alpha_{i} \in \Gamma, y_{i} \in N\right\}
$$

Principle left ideal, right ideal and two sided ideal generated by $a \in S$ denoted by $(a)_{l},(a)_{r}$ and (a) respectively.

Definition 2.6. An element a of $a \Gamma$-semiring S is said to be regular if $a \in$ $a \Gamma S \Gamma a$.

If all elements of a Γ-semiring S are regular, then S is known as a regular Γ-semiring.

Definition 2.7. S is said to be an intra-regular Γ-semiring if for any $x \in S$, $x \in S \Gamma x \Gamma x \Gamma S$.

Lemma 2.1. S is regular if and only if $R \Gamma L=R \cap L$, for a right ideal R and left ideal L of S.

Lemma 2.2. Let $(a)_{b}$ denote the bi-ideal generated by $a \in S$.If S is a regular Γ-semiring, then $(a)_{b}=a \Gamma S \Gamma a$.

3. Prime Bi-ideals

Here we recall the definition of a bi-ideal in Γ-semiring from [7].
Definition 3.1. A non-empty subset B of S is said to be a bi-ideal of S if B is a sub- - -semiring of S and $B \Gamma S \Gamma B \subseteq B$.

Example 3.1. Consider the semiring $S=M_{2 \times 2}\left(N_{0}\right)$, where N denotes the set of all natural numbers and $N_{0}=N \cup\{0\}$. If $\Gamma=S$, then S forms a Γ semiring with $A \alpha B=$ usual matrix product of A, α, B; for all $A, \alpha, B \in S$.
(1) $C=\left\{\left.\left(\begin{array}{ll}0 & x \\ 0 & y\end{array}\right) \right\rvert\, x, y \in N_{0}\right\}$ is a bi-ideal of S.
(2) $D=\left\{\left.\left(\begin{array}{ll}0 & 0 \\ 0 & x\end{array}\right) \right\rvert\, x \in N_{0}\right\}$ is a bi-ideal of S.

Statements given in the following theorem are easy to verify.
Theorem 3.1. In Γ-semiring S following statements hold.
(1) Any one sided (two sided) ideal of S is a bi-ideal of S.
(2) Intersection of a right ideal and a left ideal of S is a bi-ideal of S.
(3) Arbitrary intersection of bi-ideals of S is also a bi-ideal of S and hence the set of all bi-ideals of S forms a complete lattice.
(4) If B is a bi-ideal of S, then $B \Gamma s$ and $s \Gamma B$ are bi-ideals of S, for any $s \in S$.
(5) If B is a bi-ideal of S, then $b \Gamma B \Gamma c$ is a bi-ideal of S, for $b, c \in S$.
(6) If B is a bi-ideal of S and if T is a sub- Γ-semiring of S, then $B \cap T$ is a bi-ideal of T.
(7) If A, B are bi-ideals of S, then $A \Gamma B$ and $B \Gamma A$ are bi-ideals of S.
(8) For any $a \in S, S \Gamma a$ is a left ideal and $a \Gamma S$ is a right ideal of S.

Definition 3.2. A bi-ideal B of S is called a prime bi-ideal if $B_{1} \Gamma B_{2} \subseteq B$ implies $B_{1} \subseteq B$ or $B_{2} \subseteq B$, for any bi-ideals B_{1} and B_{2} of S.

Definition 3.3. A bi-ideal B of S is called a strongly prime bi-ideal if $\left(B_{1} \Gamma B_{2}\right) \cap$ $\left(B_{2} \Gamma B_{1}\right) \subseteq B$ implies $B_{1} \subseteq B$ or $B_{2} \subseteq B$, for any bi-ideals B_{1} and B_{2} of S.

Definition 3.4. A bi-ideal B of S is called a semiprime bi-ideal if for any bi-ideal B_{1} of $S, B_{1}{ }^{2}=B_{1} \Gamma B_{1} \subseteq B$ implies $B_{1} \subseteq B$.

Obviously every strongly prime bi-ideal in S is a prime bi-ideal and every prime bi-ideal in S is a semiprime bi-ideal.

Definition 3.5. A bi-ideal B of S is called an irreducible bi-ideal if $B_{1} \cap B_{2}=$ B implies $B_{1}=B$ or $B_{2}=B$, for any bi-ideals B_{1} and B_{2} of S.

Definition 3.6. A bi-ideal B of S is called a strongly irreducible bi-ideal if for any bi-ideals B_{1} and B_{2} of $S, B_{1} \cap B_{2} \subseteq B$ implies $B_{1} \subseteq B$ or $B_{2} \subseteq B$.

Obviously every strongly irreducible bi-ideal is an irreducible bi-ideal.
TheOrem 3.2. The intersection of any family of prime bi-ideals of S is a semiprime bi-ideal.

Proof. Let $\left\{P_{i} \mid i \in \Lambda\right\}$ be the family of prime bi-ideals of S. For any bi-ideal B of $S, B^{2} \subseteq \bigcap_{i} P_{i}$ implies $B^{2} \subseteq P_{i}$, for all $i \in \Lambda$. As P_{i} are prime bi-ideals, P_{i} are semiprime bi-ideals. Therefore $B \subseteq P_{i}$, for all $i \in \Lambda$.
Hence $B \subseteq \bigcap_{i} P_{i}$.
Theorem 3.3. Every strongly irreducible, semiprime bi-ideal of S is a strongly prime bi-ideal.

Proof. Let B be a strongly irreducible and semiprime bi-ideal of S. For any bi-ideals B_{1} and B_{2} of $S,\left(B_{1} \Gamma B_{2}\right) \cap\left(B_{2} \Gamma B_{1}\right) \subseteq B$. Hence by Theorem 3.1(3), $B_{1} \cap B_{2}$ is a bi-ideal of S. Since

$$
\left(B_{1} \cap B_{2}\right)^{2}=\left(B_{1} \cap B_{2}\right) \Gamma\left(B_{1} \cap B_{2}\right) \subseteq B_{1} \Gamma B_{2}
$$

Similarly we get $\left(B_{1} \cap B_{2}\right)^{2} \subseteq B_{2} \Gamma B_{1}$. Therefore

$$
\left(B_{1} \cap B_{2}\right)^{2} \subseteq\left(B_{1} \Gamma B_{2}\right) \cap\left(B_{2} \Gamma B_{1}\right) \subseteq B
$$

As B is a semiprime bi-ideal of $S, B_{1} \cap B_{2} \subseteq B$. But B is a strongly irreducible bi-ideal. Therefore $B_{1} \subseteq B$ or $B_{2} \subseteq B$. Hence B is a strongly prime bi-ideal of S.

Theorem 3.4. If B is a bi-ideal of S and $a \in S$ such that $a \notin B$, then there exists an irreducible bi-ideal I of S such that $B \subseteq I$ and $a \notin I$.

Proof. Let \mathcal{B} be the family of all bi-ideals of S which contain B but do not contain an element a. Then \mathcal{B} is a non-empty as $B \in \mathcal{B}$. This family of all bi-ideals of S forms a partially ordered set under the inclusion of sets. Hence by Zorn's lemma, there exists a maximal bi-ideal say I in \mathcal{B}. Therefore $B \subseteq I$ and $a \notin I$. Now to show that I is an irreducible bi-ideal of S. Let C and D be any two bi-ideals of S such that $C \cap D=I$. Suppose that C and D both contain I properly. But I is a maximal bi-ideal in \mathcal{B}. Hence we get $a \in C$ and $a \in D$. Therefore $a \in C \cap D=I$ which is absurd. Thus either $C=I$ or $D=I$. Therefore I is an irreducible bi-ideal of S.

Theorem 3.5. Any proper bi-ideal B of S is the intersection of all irreducible bi-ideals of S containing B.

Proof. Let B be a bi-ideal of S and $\left\{B_{i} \mid i \in \Lambda\right\}$ be the collection of irreducible bi-ideals of S containing B, where Λ denotes an indexing set. Then $B \subseteq \bigcap_{i \in \Lambda} B_{i}$. Suppose that $a \notin B$. Then by Theorem 3.4, there exists an irreducible bi-ideal A of S containing B but not a. Therefore $a \notin \bigcap_{i \in \Lambda} B_{i}$. Thus $\bigcap_{i \in \Lambda} B_{i} \subseteq B$. Hence $\bigcap_{i \in \Lambda} B_{i}=B$.

Theorem 3.6. In S following statements are equivalent.
(1) S is regular and intra-regular.
(2) $B^{2}=B$, for any bi-ideal B of S.
(3) $B_{1} \cap B_{2}=\left(B_{1} \Gamma B_{2}\right) \cap\left(B_{2} \Gamma B_{1}\right)$, for any bi-ideals B_{1} and B_{2} of S.
(4) Each bi-ideal of S is semiprime.
(5) Each proper bi-ideal of S is the intersection of irreducible semiprime biideals of S which contain it.

Proof. (1) \Rightarrow (2) Suppose S is regular and intra-regular. Let B be any biideal of S. Always $B^{2}=B \Gamma B \subseteq B$. Let $a \in B$. As S is regular and intra-regular, $a \in a \Gamma S \Gamma a$ and $a \in S \Gamma a \Gamma a \Gamma S$. Hence

$$
a \in a \Gamma S \Gamma a \subseteq(a \Gamma S) \Gamma(a \Gamma S \Gamma a) \subseteq(a \Gamma S) \Gamma(S \Gamma a \Gamma a \Gamma S) \Gamma(S \Gamma a)
$$

Then

$$
\begin{gathered}
a \in(B \Gamma S) \Gamma(S \Gamma B \Gamma B \Gamma S) \Gamma(S \Gamma B)=B \Gamma(S \Gamma S) \Gamma B \Gamma B \Gamma(S \Gamma S) \Gamma B \\
\subseteq(B \Gamma S \Gamma B) \Gamma(B \Gamma S \Gamma B) \subseteq B \Gamma B .
\end{gathered}
$$

Therefore

$$
a \in B^{2}=B \Gamma B . \text { Hence } B \subseteq B \Gamma B . \text { Thus } B^{2}=B \Gamma B=B
$$

$(2) \Rightarrow(1)$ Suppose $B^{2}=B$, for any bi-ideal B of S. Let R be a right ideal and L be a left ideal of S. Then $R \cap L$ is a bi-ideal of S. Therefore by assumption

$$
(R \cap L)^{2}=R \cap L . \quad R \cap L=(R \cap L)^{2}=(R \cap L) \Gamma(R \cap L) \subseteq R \Gamma L
$$

But always $R \Gamma L \subseteq R \cap L$. Hence $R \Gamma L=R \cap L$. Hence by the Lemma 2.1, S is regular.

Let $a \in S$. As S is regular, by Lemma $2.2(a)_{b}=a \Gamma S \Gamma a$. By assumption

$$
(a)_{b}=(a)_{b} \Gamma(a)_{b}=(a \Gamma S \Gamma a) \Gamma(a \Gamma S \Gamma a) \subseteq S \Gamma a \Gamma a \Gamma S
$$

But $a \in(a)_{b} \subseteq S \Gamma a \Gamma a \Gamma S$. This shows that S is an intra-regular Γ-semiring.
$(2) \Rightarrow(3)$ Suppose that $B^{2}=B$, for any bi-ideal B of S. Let B_{1} and B_{2} be any two bi-ideals of S. Hence by Theorem 3.1(3), $B_{1} \cap B_{2}$ is a bi-ideal of S. Therefore by (2),
$\left(B_{1} \cap B_{2}\right)^{2}=B_{1} \cap B_{2} . \quad B_{1} \cap B_{2}=\left(B_{1} \cap B_{2}\right)^{2}=\left(B_{1} \cap B_{2}\right) \Gamma\left(B_{1} \cap B_{2}\right) \subseteq B_{1} \Gamma B_{2}$.
Similarly we have $B_{1} \cap B_{2} \subseteq B_{2} \Gamma B_{1}$. Hence $B_{1} \cap B_{2} \subseteq\left(B_{1} \Gamma B_{2}\right) \cap\left(B_{2} \Gamma B_{1}\right)$. By Theorem 3.1(7), $B_{1} \Gamma B_{2}$ and $B_{2} \Gamma B_{1}$ are bi-ideals of S. Therefore by Theorem 3.1(3), $\left(B_{1} \Gamma B_{2}\right) \cap\left(B_{2} \Gamma B_{1}\right)$ is a bi-ideal of S. Hence by (2),

$$
\begin{gathered}
\left.\left(B_{1} \Gamma B_{2}\right) \cap\left(B_{2} \Gamma B_{1}\right)=\left(\left(B_{1} \Gamma B_{2}\right) \cap\left(B_{2} \Gamma B_{1}\right)\right) \Gamma\left(B_{1} \Gamma B_{2}\right) \cap\left(B_{2} \Gamma B_{1}\right)\right) . \\
\left(B_{1} \Gamma B_{2}\right) \cap\left(B_{2} \Gamma B_{1}\right) \subseteq\left(B_{1} \Gamma B_{2}\right) \Gamma\left(B_{2} \Gamma B_{1}\right) \subseteq B_{1} \Gamma S \Gamma B_{1} \subseteq B_{1} .
\end{gathered}
$$

Similarly we show that $\left(B_{1} \Gamma B_{2}\right) \cap\left(B_{2} \Gamma B_{1}\right) \subseteq B_{2}$. Thus $\left(B_{1} \Gamma B_{2}\right) \cap\left(B_{2} \Gamma B_{1}\right) \subseteq$ $B_{1} \cap B_{2}$. Hence $B_{1} \cap B_{2}=\left(B_{1} \Gamma B_{2}\right) \cap\left(B_{2} \Gamma B_{1}\right)$.
$(3) \Rightarrow(4)$ Let B be any bi-ideal of S. Suppose that $B_{1}{ }^{2}=B_{1} \Gamma B_{1} \subseteq B$, for any bi-ideal B_{1} of S. Therefore by (3), we have

$$
B_{1}=B_{1} \cap B_{1}=\left(B_{1} \Gamma B_{1}\right) \cap\left(B_{1} \Gamma B_{1}\right)=B_{1} \Gamma B_{1} \subseteq B
$$

Hence every bi-ideal of S is semiprime.
$(4) \Rightarrow(5)$ Let B be a proper bi-ideal of S. Hence by the Theorem 3.5, B is the intersection of all proper irreducible bi-ideals of S which contains B. By assumption every bi-ideal of S is semiprime. Hence each proper bi-ideal of S is the intersection of irreducible semiprime bi-ideals of S which contain it.
$(5) \Rightarrow(2)$ Let B be a bi-ideal of S. If $B^{2}=S$, then clearly result holds. Suppose that $B^{2} \neq S$. Then B^{2} is a proper bi-ideal of S. Hence by assumption, B^{2} is the intersection of irreducible semiprime bi-ideals of S which contain it. $B^{2}=$ $\cap\left\{B_{i} / B_{i}\right.$ is an irreducible semiprime bi-ideal $\}$. As each B_{i} is a semiprime biideal, $B \subseteq B_{i}$, for all i. Therefore $B \subseteq \bigcap_{i} B_{i}=B^{2} . B^{2} \subseteq B$ always. Hence we have $B^{2}=B$.

Thus we get $(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(4) \Rightarrow(5) \Rightarrow(2) \Rightarrow(1)$. Hence all the statements are equivalent.

Theorem 3.7. Let S be a regular and intra-regular Γ-semiring. Then for any bi-ideal B of S, B is strongly irreducible bi-ideal if and only if B is strongly prime bi-ideal.

Proof. Let S be a regular and intra-regular Γ-semiring. Suppose that B is a strongly irreducible bi-ideal of S. To show that B is a strongly prime bi-ideal of S. Let B_{1} and B_{2} be any two bi-ideals of S such that $\left(B_{1} \Gamma B_{2}\right) \cap\left(B_{2} \Gamma B_{1}\right) \subseteq B$. By Theorem 3.6, $\left(B_{1} \Gamma B_{2}\right) \cap\left(B_{2} \Gamma B_{1}\right)=B_{1} \cap B_{2}$. Hence $B_{1} \cap B_{2} \subseteq B$. But B is a strongly irreducible bi-ideal of S. Therefore $B_{1} \subseteq B$ or $B_{2} \subseteq B$. Thus B is a strongly prime bi-ideal of S.

Conversely, suppose that B is a strongly prime bi-ideal of S. Let B_{1} and B_{2} be any two bi-ideals of S such that $B_{1} \cap B_{2} \subseteq B$ and $\left(B_{1} \Gamma B_{2}\right) \cap\left(B_{2} \Gamma B_{1}\right)=B_{1} \cap B_{2} \subseteq$ B. As B is a strongly prime bi-ideal, $B_{1} \subseteq B$ or $B_{2} \subseteq B$. Therefore B is a strongly irreducible bi-ideal of S.

TheOrem 3.8. Every bi-ideal of S is a strongly prime bi-ideal if and only if S is both regular and intra-regular and the set of bi-ideals of S is a totally ordered set under the inclusion of sets.

Proof. Suppose that every bi-ideal of S is a strongly prime bi-ideal. Then every bi-ideal of S is a semiprime bi-ideal. Hence by the Theorem 3.6, S is regular and intra-regular. To show that the set of bi-ideals of S is a totally ordered set under inclusion of sets. Let B_{1} and B_{2} be any two bi-ideals of S from the set of bi-ideals of S. $\quad B_{1} \cap B_{2}$ is also a bi-ideal of S (see Theorem 3.1(3)). Hence by
assumption $B_{1} \cap B_{2}$ is a strongly prime bi-ideal of S. Therefore by Theorem 3.6, $\left(B_{1} \Gamma B_{2}\right) \cap\left(B_{2} \Gamma B_{1}\right)=B_{1} \cap B_{2} \subseteq B_{1} \cap B_{2}$. Then $B_{1} \subseteq B_{1} \cap B_{2}$ or $B_{2} \subseteq B_{1} \cap B_{2}$. Therefore $B_{1} \cap B_{2}=B_{1}$ or $B_{1} \cap B_{2}=B_{2}$. Thus either $B_{1} \subseteq B_{2}$ or $B_{2} \subseteq B_{1}$. This shows that the set of bi-ideals of S is a totally ordered set under inclusion of sets.

Conversely, suppose that S is regular, intra-regular and the set of bi-ideals of S is a totally ordered set under inclusion of sets. Let B be any bi-ideal of $S . B_{1}$ and B_{2} be any two bi-ideals of S such that $\left(B_{1} \Gamma B_{2}\right) \cap\left(B_{2} \Gamma B_{1}\right) \subseteq B$. By the Theorem 3.6, we have $\left(B_{1} \Gamma B_{2}\right) \cap\left(B_{2} \Gamma B_{1}\right)=B_{1} \cap B_{2}$. Therefore $B_{1} \cap B_{2} \subseteq B$. But by assumption either $B_{1} \subseteq B_{2}$ or $B_{2} \subseteq B_{1}$. Hence $B_{1} \cap B_{2}=B_{1}$ or $B_{1} \cap B_{2}=B_{2}$. Thus we get $B_{1} \subseteq B$ or $B_{2} \subseteq B$. Therefore B is a strongly prime bi-ideal of S.

Theorem 3.9. If the set of bi-ideals of S is a totally ordered set under inclusion of sets, then every bi-ideal of S is a strongly prime if and only if every bi-ideal of S is prime.

Proof. Let the set of bi-ideals of S be a totally ordered set under inclusion of sets. As every strongly prime bi-ideal of S is prime, the proof of only if part is obvious.

Conversely, suppose that every bi-ideal of S is prime. Then every bi-ideal of S semiprime. Hence by the Theorem 3.6, S is both regular and intra-regular. Again by Theorem 3.8, every bi-ideal of S is a strongly prime bi-ideal.

Theorem 3.10. If the set of bi-ideals of S is a totally ordered set under inclusion of sets, then S is both regular and intra-regular if and only if each bi-ideal of S is prime.

Proof. Let the set of all bi-ideals of S be a totally ordered set under inclusion of sets. Suppose S is both regular and intra-regular. Let B be any bi-ideal of S. For any bi-ideals B_{1} and B_{2} of $S, B_{1} \Gamma B_{2} \subseteq B$. By the assumption we have either $B_{1} \subseteq B_{2}$ or $B_{2} \subseteq B_{1}$. Assume $B_{1} \subseteq B_{2}$. Then $B_{1} \Gamma B_{1} \subseteq B_{1} \Gamma B_{2} \subseteq B$. Hence by Theorem 3.6, B is a semiprime bi-ideal of S. Therefore $B_{1} \subseteq B$. Hence B is a prime bi-ideal of S.

Conversely, suppose that every bi-ideal of S prime. Hence every bi-ideal of S semiprime. Therefore by Theorem 3.6, S is both regular and intra-regular.

Theorem 3.11. Following statements are equivalents in S.
(1) The set of bi-ideals of S is totally ordered set under inclusion of sets.
(2)Each bi-ideal of S is strongly irreducible.
(3) Each bi-ideal of S is irreducible.

Proof. (1) $\Rightarrow(2)$. Suppose that the set of bi-ideals of S is a totally ordered set under inclusion of sets. Let B be any bi-ideal of S. To show that B is a strongly irreducible bi-ideal of S. Let B_{1} and B_{2} be any two bi-ideals of S such that $B_{1} \cap B_{2} \subseteq B$. But by the hypothesis we have either $B_{1} \subseteq B_{2}$ or $B_{2} \subseteq B_{1}$. Therefore $B_{1} \cap B_{2}=B_{1}$ or $B_{1} \cap B_{2}=B_{2}$. Hence $B_{1} \subseteq B$ or $B_{2} \subseteq B$. Thus B is a strongly irreducible bi-ideal of S.
$(2) \Rightarrow(3)$ Suppose that each bi-ideal of S is strongly irreducible. Let B be any bi-ideal of S such that $B=B_{1} \cap B_{2}$, for any bi-ideals B_{1} and B_{2} of S. Hence by
(2) we have, $B_{1} \subseteq B$ or $B_{2} \subseteq B$. As $B \subseteq B_{1}$ and $B \subseteq B_{2}$, we have $B_{1}=B$ or $B_{2}=B$. Hence B is an irreducible bi-ideal of S.
$(3) \Rightarrow(1)$ Suppose that each bi-ideal of S is an irreducible bi-ideal. Let B_{1} and B_{2} be any two bi-ideals of S. Then $B_{1} \cap B_{2}$ is also a bi-ideal of S (see Theorem 3.1(3)). Hence $B_{1} \cap B_{2}=B_{1} \cap B_{2}$ implies $B_{1} \cap B_{2}=B_{1}$ or $B_{1} \cap B_{2}=B_{2}$ by assumption. Therefore either $B_{1} \subseteq B_{2}$ or $B_{2} \subseteq B_{1}$. This shows that the set of bi-ideals of S is a totally ordered set under inclusion of sets.

Theorem 3.12. A prime bi-ideal B of S is a prime one sided ideal of S.
Proof. Let B be a prime bi-ideal of S. Suppose B is not a one sided ideal of S. Therefore $B \Gamma S \nsubseteq B$ and $S \Gamma B \nsubseteq B$. As B is a prime bi-ideal

$$
\begin{gathered}
(B \Gamma S) \Gamma(S \Gamma B) \nsubseteq B \\
(B \Gamma S) \Gamma(S \Gamma B)=B \Gamma(S \Gamma S) \Gamma B \subseteq B \Gamma S \Gamma \mathrm{~B} \subseteq B
\end{gathered}
$$

which is a contradiction. Therefore $B \Gamma S \subseteq B$ or $S \Gamma B \subseteq B$. Hence B is a prime one sided ideal of S.

Theorem 3.13. A bi-ideal B of S is prime if and only if for a right ideal R and a left ideal L of $S, \quad R \Gamma L \subseteq B$ implies $R \subseteq B$ or $L \subseteq B$.

Proof. Suppose that a bi-ideal of S is a prime bi-ideal of S. Let R be a right ideal and L be a left ideal of S such that $R \Gamma L \subseteq B$. Itself R and L are bi-ideals of S (seeTheorem 3.1(2)). Hence $R \subseteq B$ or $L \subseteq B$. Conversely, we have to show that a bi-ideal B of S is a prime bi-ideal of S. Let A and C be any two bi-ideal of S such that $A \Gamma C \subseteq B$. For any $a \in A$ and $c \in C,(a)_{r} \subseteq A$ and $(c)_{l} \subseteq C$, where $(a)_{r}$ and $(c)_{l}$ denotes the right ideal and left ideal generated by a and c respectively. Therefore $(a)_{r} \Gamma(c)_{l} \subseteq A \Gamma C \subseteq B$. Hence by the assumption, $(a)_{r} \subseteq B$ or $(c)_{l} \subseteq B$. Therefore $a \in B$ or $c \in B$. Thus $A \subseteq B$ or $C \subseteq B$. Hence B is a prime bi-ideal of S.

Theorem 3.14. If B is a strongly irreducible bi-ideal of a regular and intraregular Γ-semiring S, then B is a prime bi-ideal.

Proof. Let B be a strongly irreducible bi-ideal of a regular and intra-regular Γ-semiring S. Let B_{1} and B_{2} be any two bi-ideals of S such that $B_{1} \Gamma B_{2} \subseteq B$. $B_{1} \cap B_{2}$ is also a bi-ideal of S (see Theorem 3.1(3)). Therefore by Theorem 3.6, $\left(B_{1} \cap B_{2}\right)^{2}=\left(B_{1} \cap B_{2}\right)$. Hence $B_{1} \cap B_{2}=\left(B_{1} \cap B_{2}\right)^{2}=\left(B_{1} \cap B_{2}\right) \Gamma\left(B_{1} \cap B_{2}\right) \subseteq$ $B_{1} \Gamma B_{2} \subseteq B$. As B is a strongly irreducible bi-ideal of S, we have $B_{1} \subseteq B$ or $B_{2} \subseteq B$. Hence B is a prime bi-ideal of S.

4. Space of Strongly Prime Bi-ideals

Let \mathcal{B} be the family of all bi-ideals of $S . \mathcal{B}$ is a partially ordered set under the inclusion of sets. Clearly \mathcal{B} is a complete lattice under \vee and \wedge defined by

$$
B_{1} \vee B_{2}=B_{1}+B_{2}=\left\langle B_{1} \bigcup B_{2}\right\rangle_{b} \text { and } B_{1} \wedge B_{2}=B_{1} \cap B_{2}, \text { for all } B_{1}, B_{2} \in \mathcal{B}
$$

Let S be a Γ-semiring and \wp_{S} be the set of all strongly prime bi-ideals of S. For each bi-ideal B of S define

$$
\Theta_{B}=\left\{J \in \wp_{S} / B \nsubseteq J\right\} \text { and } \zeta\left(\wp_{S}\right)=\left\{\Theta_{B} / B \text { is a bi-ideal of } S\right\}
$$

Theorem 4.1. If S is both regular and intra-regular, then $\zeta\left(\wp_{s}\right)$ forms a topology on the set \wp_{S}. There is an isomorphism between lattice of bi-ideals \mathcal{B} and $\zeta\left(\wp_{S}\right)$, the lattice of open subsets of \wp_{S}.

Proof. Since $\{0\}$ is a bi-ideal of S and each bi-ideal of S contains $\{0\}$. Hence $\Theta_{\{0\}}=\left\{J \in \wp_{s} /\{0\} \nsubseteq J\right\}=\Phi$. Therefore $\Theta_{\{0\}}=\Phi \in \zeta\left(\wp_{S}\right)$. As S itself bi-ideal, $\Theta_{S}=\left\{J \in \wp_{S} / S \nsubseteq J\right\}=\wp_{S}$ implies $\wp_{S}=\Theta_{S} \in \zeta\left(\wp_{S}\right)$. Now let $\Theta_{B_{k}} \in \zeta\left(\wp_{S}\right)$, for $k \in \Lambda$ (Λ is an indexing set) and B_{k} is a bi-ideal of S. Therefore $\Theta_{B_{k}}=$ $\left\{J \in \wp_{S} / B_{k} \nsubseteq J\right\}$.

At the other hand, we have

$$
\bigcup_{k \in \Lambda} \Theta_{B_{k}}=\bigcup_{k \in \Lambda}\left\{J \in \wp_{S} / B_{k} \nsubseteq J\right\}=\left\{J \in \wp_{S} / B_{k} \nsubseteq J, \text { for some } k \in \Lambda\right\}
$$

Hence

$$
\bigcup_{k \in \Lambda} \Theta_{B_{k}}=\left\{J \in \wp_{S} /\left\langle\bigcup_{k \in \Lambda} B_{k}\right\rangle_{b} \nsubseteq J\right\},
$$

where $\left\langle\bigcup_{k \in \Lambda} B_{k}\right\rangle_{b}$ denotes the bi-ideal of S generated $\bigcup_{k \in \Lambda} B_{k}$. Therefore

$$
\bigcup_{k \in \Lambda} \Theta_{B_{k}}=\Theta_{\left\langle\bigcup_{k \in \Lambda} B_{k}\right\rangle_{b}} \in \zeta\left(\wp_{S}\right)
$$

Further let $\Theta_{A}, \Theta_{B} \in \zeta\left(\wp_{S}\right)$. Let $J \in \Theta_{A} \bigcap \Theta_{B}$ imply $J \in \Theta_{A}$ and $J \in \Theta_{B}$. Then $A \nsubseteq J$ and $\mathrm{B} \nsubseteq J$. Suppose that $A \cap B \subseteq J$. As S is both regular and intra-regular hence by the Theorem 3.6, $A \cap B=(A \Gamma B) \cap(B \Gamma A)$. Therefore $(A \Gamma B) \cap(B \Gamma A) \subseteq J$ and J is a strongly prime bi-ideal of S imply $A \subseteq J$ or $B \subseteq J$, which is a contradiction to $A \nsubseteq J$ and $B \nsubseteq J$. Hence $A \cap B \nsubseteq J$ implies $J \in \Theta_{A \cap B}$. Therefore $\Theta_{A} \bigcap \Theta_{B} \subseteq \Theta_{A \cap B}$. Now let $J \in \Theta_{A \cap B}$. Then $A \cap B \nsubseteq J$ implies $A \nsubseteq J$ and $B \nsubseteq J$. Therefore $J \in \Theta_{A}$ and $J \in \Theta_{B}$ imply $J \in \Theta_{A} \bigcap \Theta_{B}$. Thus $\Theta_{A \cap B} \subseteq \Theta_{A} \bigcap \Theta_{B}$. Therefore we get $\Theta_{A} \bigcap \Theta_{B}=\Theta_{A \cap B} \in \zeta\left(\wp_{S}\right)$. Hence $\zeta\left(\wp_{s}\right)$ forms a topology on the set \wp_{S}.

Now we define a function $\phi: \mathcal{B} \longrightarrow \zeta\left(\wp_{S}\right)$ such that $\phi(B)=\Theta_{B}$. Let $A, B \in \mathcal{B}$. Then

$$
\phi(A \cap B)=\Theta_{A \cap B}=\Theta_{A} \bigcap \Theta_{B}=\phi(A) \cap \phi(B)
$$

and

$$
\phi(A+B)=\phi\left(\langle A \cup B\rangle_{b}\right)=\Theta_{\langle A \cup B\rangle_{b}}=\Theta_{A} \cup \Theta_{B}=\phi(A) \cup \phi(B)
$$

Therefore ϕ is a lattice homomorphism. Now let $\phi(A)=\phi(B)$. Hence we have $\Theta_{A}=\Theta_{B}$ Suppose that $A \neq B$. Then there exists $a \in A$ such that $a \notin B$. As B is a proper bi-ideal of S, by Theorem 3.4, there exists an irreducible bi-ideal J of S such that $B \subseteq J$ and $a \notin J$. By the Theorem 3.11, the set of all bi-ideals of S is totally ordered under inclusion of sets and also by the Theorem $3.8, J$ is a strongly prime bi-ideal of S. Hence $A \nsubseteq J . J \in \Theta_{A}=\Theta_{B}$ imply $B \nsubseteq J$. This contradicts to $B \subseteq J$. Therefore $A=B$. Hence ϕ is a lattice isomorphism.

REMARK 4.1. In the same way we can construct the space \wp_{S} of strongly irreducible bi-ideals of S.

Acknowledgement. Author is thankful for the learned referee for his valuable suggestions.

References

[1] Booth, G.L. and Groenewald, N.J. On Prime One sided Bi-ideals and Quasi-ideals of a Gamma Ring. Jour. Austral. Math. Soc.(series A), 53(1)(1992), 55-63.
2] Dutta, T.K. and Sardar, S.K. Semi-prime Ideals and Irreducible Ideals of Γ-Semiring. Novi Sad J. Math., 30(1)(2000), 97-108.
[3] Good, R.A. and Hughes D.R. Associated Groups for a Semigroup. Bull. Amer. Math. Soc., 58(1952), 624-625.
[4] Iseki, K. Ideal Theory of Semiring. Proc. Japan Acad., 32(8)(1956), 554-559.
[5] Iseki, K. Ideals in Semirings, Proc. Japan Acad., 34(1)(1958), 29-31.
[6] Jagatap, R.D. and Pawar, Y.S. Quasi-ideals and Minimal Quasi-ideals in Γ-semirings. Novi Sad J. Math., 39(2)(2009), 79-87.
[7] Jagatap, R.D. and Pawar, Y.S. Bi-ideals in Γ-semirings. Bull. Inter. Math. Virtual Inst., 6(2)(2016), 169-179.
[8] Lajos, S. Generalized Ideals in Semigroups. Acta. Sci. Math. Szeged., 22(1961), 217-222.
[9] Lajos S. and Szasz, F. On the Bi-ideals in Associative Ring. Proc. Japan Acad., 46(6)(1970), 505-507.
[10] Nobusawa, N. On a Generalization of the Ring Theory. Osaka Jour. Math., 1(1)(1964), 81-89.
[11] Rao, M. M. K. Г-Semirings 1. Southeast Asian Bull. Math., 19(1995), 49-54.
[12] Shabir, M., Ali, A. and Batool S. A Note on Quasi-ideals in Semirings, Southeast Asian Bull. Math., 27(2004), 923-928.
[13] Shabir, M. and Kanwal, N. Prime Bi-ideals in Semigroups. Southeast Asian Bull. of Math., 31(2007), 757-764.
[14] Vandiver, H.S. On Some Simple types of Semirings. Amer. Math. Monthly, 46(1939), 22-26.

Received by editors 04.06.2016; Revised version 05.10.2016; Available online 10.10.2016.
Y. C. College of Science, Karad, Maharashtra state, India - (PIN)

E-mail address: ravindrajagatap@yahoo.co.in
Manas-491, R, K. Nagar, Kolhapur, Maharastra, India - 416013.
E-mail address: yspawar1950@gmail.com

[^0]: 2010 Mathematics Subject Classification. 16Y60, 16Y99.
 Key words and phrases. Bi-ideal, prime bi-ideal, semiprime bi-ideal, strongly prime bi-ideal, irreducible bi-ideal, strongly irreducible bi-ideal.

