BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 7(2017), 93-102

Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

PRIME BI-IDEALS IN Γ - SEMIRINGS

R. D. Jagatap and Y. S. Pawar

ABSTRACT. In this paper we introduce the concepts of prime, semiprime, strongly prime, irreducible and strongly irreducible bi-ideals in a Γ -semiring. Characterizations of a Γ -semiring using these concepts are furnished. A topology on the set of strongly prime bi-ideals is defined and a property of the space of strongly prime bi-ideals of a Γ -semiring is furnished.

1. Introduction

The notion of Γ -rings was introduced by Nobusawa in [10]. The class of Γ rings contains not only all rings but also ternary rings. As a generalization of rings, semirings were introduced by Vandiver [14] and he obtained many results about it. Further as a generalization of Γ -rings and semirings, the notion of a Γ -semiring was introduced by Rao [11]. It is well known that ideals play an important role in any abstract algebraic structures. Characterizations of ideals in a semigroup were given by Lajos [8], while ideals in semirings were characterized by Iseki [4, 5]. Prime and semiprime ideals in Γ -semirings were discussed by Dutta and Sardar [2]. Authors were studied quasi-ideals and bi-deals in Γ -semirings [6, 7]. The notion of a bi-ideal was first introduced for semigroups by Good and Hughes [3].The concept of a biideal for ring was given by Lajos [9] and for semirings by Shabir , Ali and Batool [12]. The concept of a bi-ideal in a semigroup (ring and semiring) is a generalization of one sided ideal and two sided ideal in a semigroup (ring and semiring). Prime biideals in a Γ -ring was introduced by Booth and Groenewald [1] and in a semigroup by Shabir and Kanwal [13].

In this paper efforts are made to extend the notion of prime ideals and semiprime ideal in Γ -semirings to prime bi-ideal and semiprime bi-ideal respectively in Γ -semirings. Also we define strongly prime bi-ideal in Γ -semirings and discuss some

²⁰¹⁰ Mathematics Subject Classification. 16Y60, 16Y99.

Key words and phrases. Bi-ideal, prime bi-ideal, semiprime bi-ideal, strongly prime bi-ideal, irreducible bi-ideal, strongly irreducible bi-ideal.

properties of it. Finally we prove a topological property of the space of strongly prime bi-ideals of a Γ -semiring.

2. Preliminaries

First we recall some definitions of the basic concepts of Γ -semirings that we need in sequel. For this we refer Dutta and Sardar [2].

DEFINITION 2.1. Let S and Γ be two additive commutative semigroups. S is called a Γ - semiring if there exists a mapping $S \times \Gamma \times S \longrightarrow S$ denoted by $a\alpha b$; for all $a, b \in S$ and $\alpha \in \Gamma$ satisfying the following conditions:

(i) $a\alpha (b+c) = (a\alpha b) + (a\alpha c)$

- (ii) $(b+c) \alpha a = (b\alpha a) + (c\alpha a)$ (iii) $a(\alpha + \beta)c = (a\alpha c) + (a\beta c)$
- (iv) $a\alpha (b\beta c) = (a\alpha b)\beta c$; for all $a, b, c \in S$ and for all $\alpha, \beta \in \Gamma$.

Obviously, every semiring S is a Γ -semiring.

Let S be a semiring and Γ be a commutative semigroup. Define a mapping $S \times \Gamma \times S \longrightarrow S$ by, $a\alpha b = ab$; for all $a, b \in S$ and $\alpha \in \Gamma$. Then S is a Γ -semiring.

DEFINITION 2.2. An element $0 \in S$ is said to be an absorbing zero if $0\alpha a = 0 = a\alpha 0$, a + 0 = 0 + a = a; for all $a \in S$ and $\alpha \in \Gamma$.

Now onwards S denotes a $\Gamma\text{-semiring}$ with absorbing zero unless otherwise stated.

DEFINITION 2.3. A non-empty subset T of S is said to be a sub- Γ -semiring of S if (T, +) is a subsemigroup of (S, +) and $a\alpha b \in T$; for all $a, b \in T$ and $\alpha \in \Gamma$.

DEFINITION 2.4. A non-empty subset T of S is called a left (respectively right) ideal of S if T is a subsemigroup of (S, +) and $x\alpha a \in T$ (respectively $a\alpha x \in T$) for all $a \in T$, $x \in S$ and $\alpha \in \Gamma$.

DEFINITION 2.5. If T is both left and right ideal of S, then T is known as an ideal of S.

If M, N are non-empty subsets of S, then

 $M\Gamma N = \left\{ \sum_{i=1}^{n} x_i \alpha_i y_i | x_i \in M, \alpha_i \in \Gamma, y_i \in N \right\} .$

Principle left ideal, right ideal and two sided ideal generated by $a \in S$ denoted by $(a)_l, (a)_r$ and (a) respectively.

DEFINITION 2.6. An element a of a Γ -semiring S is said to be regular if $a \in a\Gamma S\Gamma a$.

If all elements of a Γ -semiring S are regular, then S is known as a regular Γ -semiring.

DEFINITION 2.7. S is said to be an intra-regular Γ -semiring if for any $x \in S$, $x \in S\Gamma x\Gamma x\Gamma S$.

LEMMA 2.1. S is regular if and only if $R\Gamma L = R \cap L$, for a right ideal R and left ideal L of S.

LEMMA 2.2. Let $(a)_b$ denote the bi-ideal generated by $a \in S.$ If S is a regular Γ -semiring, then $(a)_b = a\Gamma S\Gamma a$.

3. Prime Bi-ideals

Here we recall the definition of a bi-ideal in Γ -semiring from [7].

DEFINITION 3.1. A non-empty subset B of S is said to be a bi-ideal of S if B is a sub- Γ -semiring of S and $B\Gamma S\Gamma B \subseteq B$.

EXAMPLE 3.1. Consider the semiring $S = M_{2\times 2}(N_0)$, where N denotes the set of all natural numbers and $N_0 = N \cup \{0\}$. If $\Gamma = S$, then S forms a Γ semiring with $A\alpha B =$ usual matrix product of A, α, B ; for all $A, \alpha, B \in S$.

(1)
$$C = \left\{ \begin{pmatrix} 0 & x \\ 0 & y \end{pmatrix} \mid x, y \in N_0 \right\}$$
 is a bi-ideal of S .
(2) $D = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & x \end{pmatrix} \mid x \in N_0 \right\}$ is a bi-ideal of S .

Statements given in the following theorem are easy to verify.

THEOREM 3.1. In Γ -semiring S following statements hold.

- (1) Any one sided (two sided) ideal of S is a bi-ideal of S.
- (2) Intersection of a right ideal and a left ideal of S is a bi-ideal of S.
- (3) Arbitrary intersection of bi-ideals of S is also a bi-ideal of S and hence the set of all bi-ideals of S forms a complete lattice.
- (4) If B is a bi-ideal of S, then $B\Gamma s$ and $s\Gamma B$ are bi-ideals of S, for any $s \in S$.
- (5) If B is a bi-ideal of S, then $b\Gamma B\Gamma c$ is a bi-ideal of S, for $b, c \in S$.
- (6) If B is a bi-ideal of S and if T is a sub-Γ-semiring of S, then B ∩ T is a bi-ideal of T.
- (7) If A, B are bi-ideals of S, then $A\Gamma B$ and $B\Gamma A$ are bi-ideals of S.
- (8) For any $a \in S$, $S\Gamma a$ is a left ideal and $a\Gamma S$ is a right ideal of S.

DEFINITION 3.2. A bi-ideal B of S is called a prime bi-ideal if $B_1 \Gamma B_2 \subseteq B$ implies $B_1 \subseteq B$ or $B_2 \subseteq B$, for any bi-ideals B_1 and B_2 of S.

DEFINITION 3.3. A bi-ideal B of S is called a strongly prime bi-ideal if $(B_1 \Gamma B_2) \cap (B_2 \Gamma B_1) \subseteq B$ implies $B_1 \subseteq B$ or $B_2 \subseteq B$, for any bi-ideals B_1 and B_2 of S.

DEFINITION 3.4. A bi-ideal B of S is called a semiprime bi-ideal if for any bi-ideal B_1 of S, $B_1^2 = B_1 \Gamma B_1 \subseteq B$ implies $B_1 \subseteq B$.

Obviously every strongly prime bi-ideal in S is a prime bi-ideal and every prime bi-ideal in S is a semiprime bi-ideal.

DEFINITION 3.5. A bi-ideal B of S is called an irreducible bi-ideal if $B_1 \cap B_2 = B$ implies $B_1 = B$ or $B_2 = B$, for any bi-ideals B_1 and B_2 of S.

DEFINITION 3.6. A bi-ideal B of S is called a strongly irreducible bi-ideal if for any bi-ideals B_1 and B_2 of S, $B_1 \cap B_2 \subseteq B$ implies $B_1 \subseteq B$ or $B_2 \subseteq B$.

Obviously every strongly irreducible bi-ideal is an irreducible bi-ideal.

THEOREM 3.2. The intersection of any family of prime bi-ideals of S is a semiprime bi-ideal.

PROOF. Let $\{P_i | i \in \Lambda\}$ be the family of prime bi-ideals of S. For any bi-ideal B of S, $B^2 \subseteq \bigcap_i P_i$ implies $B^2 \subseteq P_i$, for all $i \in \Lambda$. As P_i are prime bi-ideals, P_i are semiprime bi-ideals. Therefore $B \subseteq P_i$, for all $i \in \Lambda$. Hence $B \subseteq \bigcap_i P_i$.

THEOREM 3.3. Every strongly irreducible, semiprime bi-ideal of S is a strongly prime bi-ideal.

PROOF. Let B be a strongly irreducible and semiprime bi-ideal of S. For any bi-ideals B_1 and B_2 of S, $(B_1\Gamma B_2) \cap (B_2\Gamma B_1) \subseteq B$. Hence by Theorem 3.1(3), $B_1 \cap B_2$ is a bi-ideal of S. Since

$$(B_1 \cap B_2)^2 = (B_1 \cap B_2) \Gamma (B_1 \cap B_2) \subseteq B_1 \Gamma B_2.$$

Similarly we get $(B_1 \cap B_2)^2 \subseteq B_2 \Gamma B_1$. Therefore

$$(B_1 \cap B_2)^2 \subseteq (B_1 \Gamma B_2) \cap (B_2 \Gamma B_1) \subseteq B.$$

As B is a semiprime bi-ideal of S, $B_1 \cap B_2 \subseteq B$. But B is a strongly irreducible bi-ideal. Therefore $B_1 \subseteq B$ or $B_2 \subseteq B$. Hence B is a strongly prime bi-ideal of S.

THEOREM 3.4. If B is a bi-ideal of S and $a \in S$ such that $a \notin B$, then there exists an irreducible bi-ideal I of S such that $B \subseteq I$ and $a \notin I$.

PROOF. Let \mathcal{B} be the family of all bi-ideals of S which contain B but do not contain an element a. Then \mathcal{B} is a non-empty as $B \in \mathcal{B}$. This family of all bi-ideals of S forms a partially ordered set under the inclusion of sets. Hence by Zorn's lemma, there exists a maximal bi-ideal say I in \mathcal{B} . Therefore $B \subseteq I$ and $a \notin I$. Now to show that I is an irreducible bi-ideal of S. Let C and D be any two bi-ideals of S such that $C \cap D = I$. Suppose that C and D both contain I properly. But I is a maximal bi-ideal in \mathcal{B} . Hence we get $a \in C$ and $a \in D$. Therefore $a \in C \cap D = I$ which is absurd. Thus either C = I or D = I. Therefore I is an irreducible bi-ideal of S.

THEOREM 3.5. Any proper bi-ideal B of S is the intersection of all irreducible bi-ideals of S containing B.

PROOF. Let B be a bi-ideal of S and $\{B_i | i \in \Lambda\}$ be the collection of irreducible bi-ideals of S containing B, where Λ denotes an indexing set. Then $B \subseteq \bigcap_{i \in \Lambda} B_i$. Suppose that $a \notin B$. Then by Theorem 3.4, there exists an irreducible bi-ideal A of S containing B but not a. Therefore $a \notin \bigcap_{i \in \Lambda} B_i$. Thus $\bigcap_{i \in \Lambda} B_i \subseteq B$. Hence $\bigcap_{i \in \Lambda} B_i = B$.

THEOREM 3.6. In S following statements are equivalent.

(1) S is regular and intra-regular.

- (2) $B^2 = B$, for any bi-ideal B of S.
- (3) $B_1 \cap B_2 = (B_1 \Gamma B_2) \cap (B_2 \Gamma B_1)$, for any bi-ideals B_1 and B_2 of S.
- (4) Each bi-ideal of S is semiprime.
- (5) Each proper bi-ideal of S is the intersection of irreducible semiprime biideals of S which contain it.

PROOF. (1) \Rightarrow (2) Suppose S is regular and intra-regular. Let B be any biideal of S. Always $B^2 = B\Gamma B \subseteq B$. Let $a \in B$. As S is regular and intra-regular, $a \in a\Gamma S\Gamma a$ and $a \in S\Gamma a\Gamma a\Gamma S$. Hence

$$a \in a\Gamma S\Gamma a \subseteq (a\Gamma S)\Gamma (a\Gamma S\Gamma a) \subseteq (a\Gamma S)\Gamma (S\Gamma a\Gamma a\Gamma S)\Gamma (S\Gamma a).$$

Then

$$\begin{aligned} a \in (B\Gamma S) \,\Gamma \left(S\Gamma B\Gamma B\Gamma S\right) \Gamma \left(S\Gamma B\right) &= B\Gamma \left(S\Gamma S\right) \Gamma B\Gamma B\Gamma \left(S\Gamma S\right) \Gamma B\\ &\subseteq \left(B\Gamma S\Gamma B\right) \Gamma \left(B\Gamma S\Gamma B\right) \subseteq B\Gamma B. \end{aligned}$$

Therefore

$$a \in B^2 = B\Gamma B$$
. Hence $B \subseteq B\Gamma B$. Thus $B^2 = B\Gamma B = B$.

 $(2) \Rightarrow (1)$ Suppose $B^2 = B$, for any bi-ideal B of S. Let R be a right ideal and L be a left ideal of S. Then $R \cap L$ is a bi-ideal of S. Therefore by assumption

$$(R \cap L)^2 = R \cap L. \ R \cap L = (R \cap L)^2 = (R \cap L) \Gamma (R \cap L) \subseteq R\Gamma L.$$

But always $R\Gamma L \subseteq R \cap L$. Hence $R\Gamma L = R \cap L$. Hence by the Lemma 2.1, S is regular.

Let $a \in S$. As S is regular, by Lemma 2.2 $(a)_b = a\Gamma S\Gamma a$. By assumption

$$(a)_b = (a)_b \Gamma(a)_b = (a \Gamma S \Gamma a) \Gamma(a \Gamma S \Gamma a) \subseteq S \Gamma a \Gamma a \Gamma S.$$

But $a \in (a)_b \subseteq S\Gamma a\Gamma a\Gamma S$. This shows that S is an intra-regular Γ -semiring.

 $(2) \Rightarrow (3)$ Suppose that $B^2 = B$, for any bi-ideal B of S. Let B_1 and B_2 be any two bi-ideals of S. Hence by Theorem 3.1(3), $B_1 \cap B_2$ is a bi-ideal of S. Therefore by (2),

$$(B_1 \cap B_2)^2 = B_1 \cap B_2$$
. $B_1 \cap B_2 = (B_1 \cap B_2)^2 = (B_1 \cap B_2) \Gamma (B_1 \cap B_2) \subseteq B_1 \Gamma B_2$.

Similarly we have $B_1 \cap B_2 \subseteq B_2 \Gamma B_1$. Hence $B_1 \cap B_2 \subseteq (B_1 \Gamma B_2) \cap (B_2 \Gamma B_1)$. By Theorem 3.1(7), $B_1 \Gamma B_2$ and $B_2 \Gamma B_1$ are bi-ideals of S. Therefore by Theorem 3.1(3), $(B_1 \Gamma B_2) \cap (B_2 \Gamma B_1)$ is a bi-ideal of S. Hence by (2),

$$(B_1\Gamma B_2) \cap (B_2\Gamma B_1) = ((B_1\Gamma B_2) \cap (B_2\Gamma B_1)) \Gamma (B_1\Gamma B_2) \cap (B_2\Gamma B_1)).$$

$$(B_1\Gamma B_2) \cap (B_2\Gamma B_1) \subseteq (B_1\Gamma B_2) \Gamma (B_2\Gamma B_1) \subseteq B_1\Gamma S\Gamma B_1 \subseteq B_1.$$

Similarly we show that $(B_1\Gamma B_2) \cap (B_2\Gamma B_1) \subseteq B_2$. Thus $(B_1\Gamma B_2) \cap (B_2\Gamma B_1) \subseteq B_1 \cap B_2$. Hence $B_1 \cap B_2 = (B_1\Gamma B_2) \cap (B_2\Gamma B_1)$.

(3) \Rightarrow (4) Let *B* be any bi-ideal of *S*. Suppose that $B_1^2 = B_1 \Gamma B_1 \subseteq B$, for any bi-ideal B_1 of *S*. Therefore by (3), we have

$$B_1 = B_1 \cap B_1 = (B_1 \Gamma B_1) \cap (B_1 \Gamma B_1) = B_1 \Gamma B_1 \subseteq B.$$

Hence every bi-ideal of S is semiprime.

 $(4) \Rightarrow (5)$ Let *B* be a proper bi-ideal of *S*. Hence by the Theorem 3.5, *B* is the intersection of all proper irreducible bi-ideals of *S* which contains *B*. By assumption every bi-ideal of *S* is semiprime. Hence each proper bi-ideal of *S* is the intersection of irreducible semiprime bi-ideals of *S* which contain it.

 $(5) \Rightarrow (2)$ Let B be a bi-ideal of S. If $B^2 = S$, then clearly result holds. Suppose that $B^2 \neq S$. Then B^2 is a proper bi-ideal of S. Hence by assumption, B^2 is the intersection of irreducible semiprime bi-ideals of S which contain it. $B^2 = \cap \{B_i/B_i \text{ is an irreducible semiprime bi - ideal}\}$. As each B_i is a semiprime bi-ideal, $B \subseteq B_i$, for all i. Therefore $B \subseteq \bigcap_i B_i = B^2$. $B^2 \subseteq B$ always. Hence we have $B^2 = B$.

Thus we get $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (2) \Rightarrow (1)$. Hence all the statements are equivalent.

THEOREM 3.7. Let S be a regular and intra- regular Γ -semiring. Then for any bi-ideal B of S, B is strongly irreducible bi-ideal if and only if B is strongly prime bi-ideal.

PROOF. Let S be a regular and intra-regular Γ -semiring. Suppose that B is a strongly irreducible bi-ideal of S. To show that B is a strongly prime bi-ideal of S. Let B_1 and B_2 be any two bi-ideals of S such that $(B_1\Gamma B_2) \cap (B_2\Gamma B_1) \subseteq B$. By Theorem 3.6, $(B_1\Gamma B_2) \cap (B_2\Gamma B_1) = B_1 \cap B_2$. Hence $B_1 \cap B_2 \subseteq B$. But B is a strongly irreducible bi-ideal of S. Therefore $B_1 \subseteq B$ or $B_2 \subseteq B$. Thus B is a strongly prime bi-ideal of S.

Conversely, suppose that B is a strongly prime bi-ideal of S. Let B_1 and B_2 be any two bi-ideals of S such that $B_1 \cap B_2 \subseteq B$ and $(B_1 \Gamma B_2) \cap (B_2 \Gamma B_1) = B_1 \cap B_2 \subseteq B$. As B is a strongly prime bi-ideal, $B_1 \subseteq B$ or $B_2 \subseteq B$. Therefore B is a strongly irreducible bi-ideal of S.

THEOREM 3.8. Every bi-ideal of S is a strongly prime bi-ideal if and only if S is both regular and intra-regular and the set of bi-ideals of S is a totally ordered set under the inclusion of sets.

PROOF. Suppose that every bi-ideal of S is a strongly prime bi-ideal. Then every bi-ideal of S is a semiprime bi-ideal. Hence by the Theorem 3.6, S is regular and intra-regular. To show that the set of bi-ideals of S is a totally ordered set under inclusion of sets. Let B_1 and B_2 be any two bi-ideals of S from the set of bi-ideals of S. $B_1 \cap B_2$ is also a bi-ideal of S (see Theorem 3.1(3)). Hence by

assumption $B_1 \cap B_2$ is a strongly prime bi-ideal of S. Therefore by Theorem 3.6, $(B_1 \Gamma B_2) \cap (B_2 \Gamma B_1) = B_1 \cap B_2 \subseteq B_1 \cap B_2$. Then $B_1 \subseteq B_1 \cap B_2$ or $B_2 \subseteq B_1 \cap B_2$. Therefore $B_1 \cap B_2 = B_1$ or $B_1 \cap B_2 = B_2$. Thus either $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$. This shows that the set of bi-ideals of S is a totally ordered set under inclusion of sets.

Conversely, suppose that S is regular, intra-regular and the set of bi-ideals of S is a totally ordered set under inclusion of sets. Let B be any bi-ideal of S. B_1 and B_2 be any two bi-ideals of S such that $(B_1\Gamma B_2) \cap (B_2\Gamma B_1) \subseteq B$. By the Theorem 3.6, we have $(B_1\Gamma B_2) \cap (B_2\Gamma B_1) = B_1 \cap B_2$. Therefore $B_1 \cap B_2 \subseteq B$.But by assumption either $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$. Hence $B_1 \cap B_2 = B_1$ or $B_1 \cap B_2 = B_2$. Thus we get $B_1 \subseteq B$ or $B_2 \subseteq B$. Therefore B is a strongly prime bi-ideal of S. \Box

THEOREM 3.9. If the set of bi-ideals of S is a totally ordered set under inclusion of sets, then every bi-ideal of S is a strongly prime if and only if every bi-ideal of S is prime.

PROOF. Let the set of bi-ideals of S be a totally ordered set under inclusion of sets. As every strongly prime bi-ideal of S is prime, the proof of only if part is obvious.

Conversely, suppose that every bi-ideal of S is prime. Then every bi-ideal of S semiprime. Hence by the Theorem 3.6, S is both regular and intra-regular. Again by Theorem 3.8, every bi-ideal of S is a strongly prime bi-ideal.

THEOREM 3.10. If the set of bi-ideals of S is a totally ordered set under inclusion of sets, then S is both regular and intra-regular if and only if each bi-ideal of S is prime.

PROOF. Let the set of all bi-ideals of S be a totally ordered set under inclusion of sets. Suppose S is both regular and intra-regular. Let B be any bi-ideal of S. For any bi-ideals B_1 and B_2 of S, $B_1\Gamma B_2 \subseteq B$. By the assumption we have either $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$. Assume $B_1 \subseteq B_2$. Then $B_1\Gamma B_1 \subseteq B_1\Gamma B_2 \subseteq B$. Hence by Theorem 3.6, B is a semiprime bi-ideal of S. Therefore $B_1 \subseteq B$. Hence B is a prime bi-ideal of S.

Conversely, suppose that every bi-ideal of S prime. Hence every bi-ideal of S semiprime. Therefore by Theorem 3.6, S is both regular and intra-regular.

THEOREM 3.11. Following statements are equivalents in S.

(1) The set of bi-ideals of S is totally ordered set under inclusion of sets.

(2)Each bi-ideal of S is strongly irreducible.

(3) Each bi-ideal of S is irreducible.

PROOF. (1) \Rightarrow (2). Suppose that the set of bi-ideals of S is a totally ordered set under inclusion of sets. Let B be any bi-ideal of S. To show that B is a strongly irreducible bi-ideal of S. Let B_1 and B_2 be any two bi-ideals of S such that $B_1 \cap B_2 \subseteq B$. But by the hypothesis we have either $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$. Therefore $B_1 \cap B_2 = B_1$ or $B_1 \cap B_2 = B_2$. Hence $B_1 \subseteq B$ or $B_2 \subseteq B$. Thus B is a strongly irreducible bi-ideal of S.

 $(2) \Rightarrow (3)$ Suppose that each bi-ideal of S is strongly irreducible. Let B be any bi-ideal of S such that $B = B_1 \cap B_2$, for any bi-ideals B_1 and B_2 of S. Hence by

(2) we have , $B_1 \subseteq B$ or $B_2 \subseteq B$. As $B \subseteq B_1$ and $B \subseteq B_2$, we have $B_1 = B$ or $B_2 = B$. Hence B is an irreducible bi-ideal of S.

 $(3) \Rightarrow (1)$ Suppose that each bi-ideal of S is an irreducible bi-ideal. Let B_1 and B_2 be any two bi-ideals of S. Then $B_1 \cap B_2$ is also a bi-ideal of S (see Theorem 3.1(3)). Hence $B_1 \cap B_2 = B_1 \cap B_2$ implies $B_1 \cap B_2 = B_1$ or $B_1 \cap B_2 = B_2$ by assumption. Therefore either $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$. This shows that the set of bi-ideals of S is a totally ordered set under inclusion of sets. \Box

THEOREM 3.12. A prime bi-ideal B of S is a prime one sided ideal of S.

PROOF. Let B be a prime bi-ideal of S. Suppose B is not a one sided ideal of S. Therefore $B\Gamma S \not\subseteq B$ and $S\Gamma B \not\subseteq B$. As B is a prime bi-ideal

$$(B\Gamma S) \Gamma(S\Gamma B) \nsubseteq B.$$
$$(B\Gamma S) \Gamma(S\Gamma B) = B\Gamma(S\Gamma S) \Gamma B \subseteq B\Gamma S\Gamma B \subseteq B,$$

which is a contradiction. Therefore $B\Gamma S \subseteq B$ or $S\Gamma B \subseteq B$. Hence B is a prime one sided ideal of S.

THEOREM 3.13. A bi-ideal B of S is prime if and only if for a right ideal R and a left ideal L of S, $R\Gamma L \subseteq B$ implies $R \subseteq B$ or $L \subseteq B$.

PROOF. Suppose that a bi-ideal of S is a prime bi-ideal of S. Let R be a right ideal and L be a left ideal of S such that $R\Gamma L \subseteq B$. Itself R and L are bi-ideals of S (see Theorem 3.1(2)). Hence $R \subseteq B$ or $L \subseteq B$. Conversely, we have to show that a bi-ideal B of S is a prime bi-ideal of S. Let A and C be any two bi-ideal of S such that $A\Gamma C \subseteq B$. For any $a \in A$ and $c \in C$, $(a)_r \subseteq A$ and $(c)_l \subseteq C$, where $(a)_r$ and $(c)_l$ denotes the right ideal and left ideal generated by a and c respectively. Therefore $(a)_r \Gamma(c)_l \subseteq A\Gamma C \subseteq B$. Hence by the assumption, $(a)_r \subseteq B$ or $(c)_l \subseteq B$. Therefore $a \in B$ or $c \in B$. Thus $A \subseteq B$ or $C \subseteq B$. Hence B is a prime bi-ideal of S.

THEOREM 3.14. If B is a strongly irreducible bi-ideal of a regular and intraregular Γ -semiring S, then B is a prime bi-ideal.

PROOF. Let *B* be a strongly irreducible bi-ideal of a regular and intra-regular Γ -semiring *S*. Let B_1 and B_2 be any two bi-ideals of *S* such that $B_1\Gamma B_2 \subseteq B$. $B_1 \cap B_2$ is also a bi-ideal of *S* (see Theorem 3.1(3)). Therefore by Theorem 3.6, $(B_1 \cap B_2)^2 = (B_1 \cap B_2)$. Hence $B_1 \cap B_2 = (B_1 \cap B_2)^2 = (B_1 \cap B_2) \Gamma (B_1 \cap B_2) \subseteq$ $B_1\Gamma B_2 \subseteq B$. As *B* is a strongly irreducible bi-ideal of *S*, we have $B_1 \subseteq B$ or $B_2 \subseteq B$. Hence *B* is a prime bi-ideal of *S*.

4. Space of Strongly Prime Bi-ideals

Let \mathcal{B} be the family of all bi-ideals of S. \mathcal{B} is a partially ordered set under the inclusion of sets. Clearly \mathcal{B} is a complete lattice under \lor and \land defined by

 $B_1 \vee B_2 = B_1 + B_2 = \langle B_1 \bigcup B_2 \rangle_b$ and $B_1 \wedge B_2 = B_1 \cap B_2$, for all $B_1, B_2 \in \mathcal{B}$.

Let S be a Γ -semiring and \wp_S be the set of all strongly prime bi-ideals of S. For each bi-ideal B of S define

 $\Theta_B = \{J \in \wp_S / B \nsubseteq J\}$ and $\zeta(\wp_S) = \{\Theta_B / B \text{ is a bi-ideal of } S\}.$

THEOREM 4.1. If S is both regular and intra-regular, then $\zeta(\varphi_s)$ forms a topology on the set φ_S . There is an isomorphism between lattice of bi-ideals \mathcal{B} and $\zeta(\varphi_S)$, the lattice of open subsets of φ_S .

PROOF. Since $\{0\}$ is a bi-ideal of S and each bi-ideal of S contains $\{0\}$. Hence $\Theta_{\{0\}} = \{J \in \wp_s/\{0\} \notin J\} = \Phi$. Therefore $\Theta_{\{0\}} = \Phi \in \zeta(\wp_S)$. As S itself bi-ideal, $\Theta_S = \{J \in \wp_S/S \notin J\} = \wp_S$ implies $\wp_S = \Theta_S \in \zeta(\wp_S)$. Now let $\Theta_{B_k} \in \zeta(\wp_S)$, for $k \in \Lambda$ (Λ is an indexing set) and B_k is a bi-ideal of S. Therefore $\Theta_{B_k} = \{J \in \wp_S/B_k \notin J\}$.

At the other hand, we have

$$\bigcup_{k \in \Lambda} \Theta_{B_k} = \bigcup_{k \in \Lambda} \{ J \in \wp_S / B_k \notin J \} = \{ J \in \wp_S / B_k \notin J, \text{ for some } k \in \Lambda \}.$$

Hence

$$\bigcup_{k\in\Lambda}\Theta_{B_k} = \left\{J\in\wp_S/\left\langle\bigcup_{k\in\Lambda}B_k\right\rangle_b \not\subseteq J\right\},\,$$

where $\left\langle \bigcup_{k \in \Lambda} B_k \right\rangle_h$ denotes the bi-ideal of S generated $\bigcup_{k \in \Lambda} B_k$. Therefore

$$\bigcup_{k\in\Lambda}\Theta_{B_{k}}=\Theta_{\left\langle\bigcup_{k\in\Lambda}B_{k}\right\rangle_{b}}\in\zeta\left(\wp_{S}\right)$$

Further let Θ_A , $\Theta_B \in \zeta(\varphi_S)$. Let $J \in \Theta_A \bigcap \Theta_B$ imply $J \in \Theta_A$ and $J \in \Theta_B$. Then $A \notin J$ and $B \notin J$. Suppose that $A \cap B \subseteq J$. As S is both regular and intra-regular hence by the Theorem 3.6, $A \cap B = (A \cap B) \cap (B \cap A)$. Therefore $(A \cap B) \cap (B \cap A) \subseteq J$ and J is a strongly prime bi-ideal of S imply $A \subseteq J$ or $B \subseteq J$, which is a contradiction to $A \notin J$ and $B \notin J$. Hence $A \cap B \notin J$ implies $J \in \Theta_{A \cap B}$. Therefore $\Theta_A \bigcap \Theta_B \subseteq \Theta_{A \cap B}$. Now let $J \in \Theta_{A \cap B}$. Then $A \cap B \notin J$ implies $A \notin J$ and $B \notin J$. Therefore $J \in \Theta_A$ and $J \in \Theta_B$ imply $J \in \Theta_A \bigcap \Theta_B$. Thus $\Theta_{A \cap B} \subseteq \Theta_A \bigcap \Theta_B$. Therefore we get $\Theta_A \bigcap \Theta_B = \Theta_{A \cap B} \in \zeta(\varphi_S)$. Hence $\zeta(\varphi_S)$ forms a topology on the set φ_S .

Now we define a function $\phi : \mathcal{B} \longrightarrow \zeta(\wp_S)$ such that $\phi(B) = \Theta_B$. Let $A, B \in \mathcal{B}$. Then

$$\phi(A \cap B) = \Theta_{A \cap B} = \Theta_A \bigcap \Theta_B = \phi(A) \cap \phi(B)$$

and

$$\phi(A+B) = \phi(\langle A \cup B \rangle_b) = \Theta_{\langle A \cup B \rangle_b} = \Theta_A \cup \Theta_B = \phi(A) \cup \phi(B).$$

Therefore ϕ is a lattice homomorphism. Now let $\phi(A) = \phi(B)$. Hence we have $\Theta_A = \Theta_B$ Suppose that $A \neq B$. Then there exists $a \in A$ such that $a \notin B$. As B is a proper bi-ideal of S, by Theorem 3.4, there exists an irreducible bi-ideal J of S such that $B \subseteq J$ and $a \notin J$. By the Theorem 3.11, the set of all bi-ideals of S is totally ordered under inclusion of sets and also by the Theorem 3.8, J is a strongly prime bi-ideal of S. Hence $A \nsubseteq J$. $J \in \Theta_A = \Theta_B$ imply $B \nsubseteq J$. This contradicts to $B \subseteq J$. Therefore A = B. Hence ϕ is a lattice isomorphism. \Box

REMARK 4.1. In the same way we can construct the space \wp_S of strongly irreducible bi-ideals of S.

Acknowledgement. Author is thankful for the learned referee for his valuable suggestions.

References

- Booth, G.L. and Groenewald, N.J. On Prime One sided Bi-ideals and Quasi-ideals of a Gamma Ring. Jour. Austral. Math. Soc. (series A), 53(1)(1992), 55-63.
- [2] Dutta, T.K. and Sardar, S.K. Semi-prime Ideals and Irreducible Ideals of Γ-Semiring. Novi Sad J. Math., 30(1)(2000), 97-108.
- [3] Good, R.A. and Hughes D.R. Associated Groups for a Semigroup. Bull. Amer. Math. Soc., 58(1952), 624-625.
- [4] Iseki, K. Ideal Theory of Semiring. Proc. Japan Acad., 32(8)(1956), 554-559.
- [5] Iseki, K. Ideals in Semirings, Proc. Japan Acad., 34(1)(1958), 29-31.
- [6] Jagatap, R.D. and Pawar, Y.S. Quasi-ideals and Minimal Quasi-ideals in Γ-semirings. Novi Sad J. Math., 39(2)(2009), 79-87.
- [7] Jagatap, R.D. and Pawar, Y.S. Bi-ideals in Γ-semirings. Bull. Inter. Math. Virtual Inst., 6(2)(2016), 169-179.
- [8] Lajos, S. Generalized Ideals in Semigroups. Acta. Sci. Math. Szeged., 22(1961), 217-222.
- [9] Lajos S. and Szasz, F. On the Bi-ideals in Associative Ring. Proc. Japan Acad., 46(6)(1970), 505-507.
- [10] Nobusawa, N. On a Generalization of the Ring Theory. Osaka Jour. Math., 1(1)(1964), 81-89.
- [11] Rao, M. M. K. Γ-Semirings 1. Southeast Asian Bull. Math., 19(1995), 49-54.
- [12] Shabir, M., Ali, A. and Batool S. A Note on Quasi-ideals in Semirings, Southeast Asian Bull. Math., 27(2004), 923-928.
- [13] Shabir, M. and Kanwal, N. Prime Bi-ideals in Semigroups. Southeast Asian Bull. of Math., 31(2007), 757-764.
- [14] Vandiver, H.S. On Some Simple types of Semirings. Amer. Math. Monthly, 46(1939), 22-26.

Received by editors 04.06.2016; Revised version 05.10.2016; Available online 10.10.2016.

Y. C. COLLEGE OF SCIENCE, KARAD, MAHARASHTRA STATE, INDIA - (PIN) *E-mail address*: ravindrajagatap@yahoo.co.in

MANAS-491, R, K. NAGAR, KOLHAPUR, MAHARASTRA, INDIA - 416013. *E-mail address:* yspawar1950@gmail.com