HYPER ZAGREB INDICES AND ITS COINDICES OF GRAPHS

K. Pattabiraman and M. Vijayaragavan

> Abstract. For a (molecular) graph, the hyper Zagreb index is defined as $H M(G)=\sum_{u v \in E(G)}\left(d_{G}(u)+d_{G}(v)\right)^{2}$ and the hyper Zagreb coindex is defined
> as $\overline{H M}(G)=\sum_{u v \notin E(G)}\left(d_{G}(u)+d_{G}(v)\right)^{2}$. In this paper, the hyper Zagreb indices and its coindices of edge corona product graph, double graph and Mycielskian graph are obtained.

1. Introduction

All the graphs considered in this paper are connected and simple. For vertex $u \in V(G)$, the degree of the vertex u in G, denoted by $d_{G}(u)$, is the number of edges incident to u in G. A topological index of a graph is a parameter related to the graph; it does not depend on labeling or pictorial representation of the graph. In theoretical chemistry, molecular structure descriptors (also called topological indices) are used for modeling physicochemical, pharmacologic, toxicologic, biological and other properties of chemical compounds [2]. Several types of such indices exist, especially those based on vertex and edge distances. One of the most intensively studied topological indices is the Wiener index. Two of these topological indices are known under various names, the most commonly used ones are the first and second Zagreb indices.

[^0]The Zagreb indices have been introduced more than thirty years ago by Gutman and Trinajstić [3]. They are defined as

$$
\begin{aligned}
M_{1}(G) & =\sum_{u \in V(G)} d_{G}(u)^{2}, \\
M_{2}(G) & =\sum_{u v \in E(G)} d_{G}(u) d_{G}(v) .
\end{aligned}
$$

Note that the first Zagreb index may also written as $M_{1}(G)=\sum_{u v \in E(G)}\left(d_{G}(u)+\right.$ $\left.d_{G}(v)\right)$. The Zagreb indices are found to have appilications in QSPR and QSAR studies as well, see [1].

The hyper Zagreb index is defined as $H M(G)=\sum_{u v \in E(G)}\left(d_{G}(u)+d_{G}(v)\right)^{2}$ and the hyper Zagreb coindex is defined as $\overline{H M}(G)=\sum_{u v \notin E(G)}\left(d_{G}(u)+d_{G}(v)\right)^{2}$.

For the survey on theory and application of Zagreb indices see [6]. Feng et al.[4] have given a sharp bounds for the Zagreb indices of graphs with a given matching number. Khalifeh et al. [5] have obtained the Zagreb indices of the Cartesian product, composition, join, disjunction and symmetric difference of graphs. Ashrafi et al. [8] determined the extremal values of Zagreb coindices over some special class of graphs. Hua and Zhang $[\mathbf{1 0}]$ have given some relations between Zagreb coindices and some other topolodical indices. Ashrafi et al. [7] have obtained the Zagreb indices of the Cartesian product, composition, join, disjunction and symmetric difference of graphs. Shirdel et al [11], have obtained the hyper-Zagreb indices of the Cartesian product, composition, join and disjunction of graphs. The hyper Zagreb indices of some classes of chemical graphs are obtained in [11, 13, 14]. In this paper, we obtain the hyper Zagreb indices and its coindices of the edge corona product graph, double graph and Mycielskian graph are obtained.

2. Main results

In this section, we compute the hyper Zagreb indices and its coindices of edge corona product graph, double graph and Mycielskian graph.
2.1. Edge corona product. Let G and H be two graphs on disjoint sets of n and m vertices, p and q edges, respectively. The edge corona product $G \bullet H$ of G and H is defined as the graph obtained by taking one copy of G and p copies of H, and then joining two end vertices of the $i^{t h}$ edge of G to every vertex in the $i^{t h}$ copy of H. Now we compute the hyper Zagreb index and its coindex of edge corona product of two given graphs.

Theorem 2.1. Let G and H be two graphs with n_{1}, n_{2} vertices and m_{1}, m_{2} edges, respectively. Then $H M(G \bullet H)=\left(n_{2}+1\right)^{3} H M(G)+m_{2} H M(H)+4\left(n_{2}+\right.$ 1) $\left(n_{2}+m_{2}\right) M_{1}(G)+\left(8 m_{2}+m_{1}\right) M_{1}(H)+16 m_{2}^{2}+4 m_{1}\left(n_{2}+2 m_{2}\right)$.

Proof. By the definition of edge corona product, for each vertex $x \in V(G)$, we have $d_{G \bullet H}(x)=d_{G}(x)(|V(H)|+1)$ and for each vertex $y \in V\left(H_{i}\right), d_{G \bullet H}(y)=$

$$
\begin{aligned}
d_{H}(y)+2 . \text { Clearly, } & |V(G \bullet H)|=|V(G)|+|E(G)||V(H)| \\
H M(G \bullet H)= & \sum_{x y \in E(G \bullet H)}\left(d_{G} \bullet H\right. \\
= & \sum_{x y \in E(G)}\left(\left(n_{2}+1\right) d_{G}(x)+\left(n_{G} \bullet 1\right) d_{G}(y)\right)^{2} \\
& +\sum_{i=1}^{m_{2}} \sum_{x y \in E(H)}\left(\left(d_{H}(x)+2\right)+\left(d_{H}(y)+2\right)\right)^{2} \\
& +\sum_{x y \in E(G)} \sum_{u \in V(H)}\left(\left(n_{2}+1\right)\left(d_{G}(x)+d_{G}(y)\right)+\left(d_{H}(u)+2\right)\right)^{2} \\
= & \left(n_{2}+1\right)^{2} \sum_{x y \in E(G)}\left(d_{G}(x)+d_{G}(y)\right)^{2} \\
& +\sum_{i=1}^{m_{2}} \sum_{x y \in E(H)}\left(d_{H}(x)+d_{H}(y)\right)^{2}+16+8\left(d_{H}(x)+d_{H}(y)\right) \\
& +\sum_{x y \in E(G)} \sum_{u \in V(H)}\left(\left(n_{2}+1\right)\left(d_{G}(x)+d_{G}(y)\right)+d_{H}(u)+2\right)^{2} \\
= & \left(n_{2}+1\right)^{3} H M(G)+m_{2} H M_{1}(H)+4\left(n_{2}+1\right)\left(n_{2}+m_{2}\right) M_{1}(G) \\
& +\left(8 m_{2}+m_{1}\right) M_{1}(H)+16 m_{2}^{2}+4 m_{1}\left(n_{2}+2 m_{2}\right) .
\end{aligned}
$$

Theorem 2.2. Let G and H be two graphs with n_{1}, n_{2} vertices and m_{1}, m_{2} edges, respectively. Then $\overline{H M}(G \bullet H)=\left(m_{1}+\left(n_{2}+1\right)^{2}\right) \overline{H M}(G)+8 m_{1} \bar{M}_{1}(H)+$ $\left(n_{1}^{2}-2 m_{1}+n_{2} m_{1}\left(m_{1}-1\right)\right) M_{1}(H)+\left(n_{2}+1\right)\left(n_{1} n_{2}\left(n_{2}+1\right)-4 n_{2}-4 m_{2}\right) M_{1}(G)-$ $n_{2}\left(n_{2}+1\right)^{2} F(G)+8\left(n_{2}+1\right) n_{1} m_{1}\left(n_{2}+m_{2}\right)-32 m_{1} m_{2}-8 m_{1} n_{2}\left(n_{2}-2\right)+4 n_{1}^{2}\left(2 m_{2}+\right.$ $\left.n_{2}\right)+m_{1}\left(m_{1}-1\right)\left(4 m^{2}+8 n_{2}^{2}+16 n_{2} m_{2}\right)$.

Proof. Let $x_{i j}$ be the j th vertex in the i th copy of $H, i=1,2, \ldots, m_{1}, j=$ $1,2, \ldots, n_{2}$, and let y_{k} be the k th in $G, k=1,2, \ldots, n_{1}$. Also let x_{j} be the j th vertex in H.

By the definition of edge corona, for each vertex $x_{i j}$, we have $d_{G \bullet H}\left(x_{i j}\right)=$ $d_{H}\left(x_{j}\right)+2$, and for every vertex y_{k} in $G, d_{G \bullet H}\left(y_{k}\right)=d_{G}\left(y_{k}\right) n_{2}+d_{G}\left(y_{k}\right)=\left(n_{2}+\right.$ 1) $d_{G}\left(y_{k}\right)$.

Now, we consider the following four cases of nonadjacent vertex pairs in $G \bullet H$. Case 1: The nonadjacent vertex pairs $\left\{x_{i j} ; x_{i h}\right\}, 1 \leqslant i \leqslant m_{1}, 1 \leqslant j<h \leqslant n_{2}$, and
it is assumed that $x_{j} x_{h} \notin E(H)$.

$$
\begin{aligned}
& \sum_{i=1}^{m_{1}} \sum_{x_{i j} x_{i h} \notin E(G \bullet H)}\left(d_{G \bullet H}\left(x_{i j}\right)+d_{G \bullet H}\left(x_{i h}\right)\right)^{2} \\
= & \sum_{i=1}^{m_{1}} \sum_{x_{j} x_{h} \notin E(H)}\left(d_{H}\left(x_{j}\right)+d_{H}\left(x_{h}\right)+4\right)^{2} \\
= & \sum_{i=1}^{m_{1}} \sum_{x_{j} x_{h} \notin E(H)}\left(\left(d_{H}\left(x_{j}\right)+d_{H}\left(x_{h}\right)\right)^{2}+8\left(d_{H}\left(x_{j}\right)+d_{H}\left(x_{h}\right)\right)+16\right) \\
= & \sum_{i=1}^{m_{1}}\left(\overline{H M}(H)+16\left(\frac{n_{2}\left(n_{2}-1\right)}{2}-m_{2}\right)+8 \overline{M_{1}}(H)\right) \\
= & m_{1} \overline{H M}(H)+8 m_{1} \overline{M_{1}}(H)+8 m_{1} n_{2}\left(n_{2}-1\right)-16 m_{1} m_{2} .
\end{aligned}
$$

Case 2: The nonadjacent vertex pairs $\left\{y_{k}, y_{s}\right\}, 1 \leqslant k<s \leqslant n_{1}$ and it is assumed that $y_{k} y_{s} \notin E(G)$.

$$
\begin{aligned}
& \sum_{y_{k} y_{s} \notin E(G \bullet H)}\left(d_{G \bullet H}\left(y_{k}\right)+d_{G \bullet H}\left(y_{s}\right)\right)^{2} \\
= & \sum_{y_{k} y_{s} \notin E(G)}\left(\left(n_{2}+1\right) d_{G}\left(y_{k}\right)+\left(n_{2}+1\right) d_{G}\left(y_{s}\right)\right)^{2} \\
= & \left(n_{2}+1\right)^{2} \sum_{y_{k} \not y_{s} \notin E(G)}\left(d_{G}\left(y_{k}\right)+d_{G}\left(y_{s}\right)\right)^{2} \\
= & \left(n_{2}+1\right)^{2} \overline{H M}(G) .
\end{aligned}
$$

Case 3: The nonadjacent vertex pairs $\left\{x_{i j}, y_{k}\right\}, 1 \leqslant i \leqslant m_{1}, 1 \leqslant j \leqslant n_{2}, 1 \leqslant k \leqslant$ n_{1}, and it is assumed that the i th edge $e_{i} 1 \leqslant i \leqslant m_{1}$ in G does not pass through y_{k}.

$$
\begin{aligned}
& \sum_{j=1}^{n_{2}}\left(d_{H}\left(x_{j}\right)+2+\left(n_{2}+1\right) d_{G}\left(y_{k}\right)\right)^{2} \\
= & \sum_{j=1}^{n_{2}}\left(d_{H}^{2}\left(x_{j}\right)+\left(n_{2}+1\right)^{2} d_{G}^{2}\left(y_{k}\right)+4 d_{H}\left(x_{j}\right)\right. \\
= & \left.+4\left(n_{2}+1\right) d_{G}\left(y_{k}\right)+2\left(n_{2}+1\right) d_{H}\left(x_{j}\right) d_{G}\left(y_{k}\right)+4\right) \\
& M_{1}(H)+8 m_{2}+4 n_{2}+n_{2}\left(n_{2}+1\right)^{2} d_{G}^{2}\left(y_{k}\right) \\
& +\left(4 n_{2}\left(n_{2}+1\right)+4 m_{2}\left(n_{2}+1\right)\right) d_{G}\left(y_{k}\right) .
\end{aligned}
$$

Note that each vertex y_{k} is adjacent to all vertices of $d_{G}\left(y_{k}\right)$ copies of H, that is, each y_{k} is not adjacent to any vertex of $m_{1}-d_{G}\left(y_{k}\right)$ copies of H. Hence

$$
\begin{aligned}
& \sum_{k=1}^{n_{1}}\left(n_{1}-d_{G}\left(y_{k}\right)\right) \sum_{j=1}^{n_{2}}\left(d_{H}\left(x_{j}\right)+2+\left(n_{2}+1\right) d_{G}\left(y_{k}\right)\right)^{2} \\
= & n_{1}\left(n_{1} M_{1}(H)+n_{1}\left(8 m_{2}+4 n_{2}\right)\right) \\
& +\left(4 n_{1}\left(n_{2}+1\right)\left(n_{2}+m_{2}\right)-M_{1}(H)-8 m_{2}-4 n_{2}\right) \sum_{k=1}^{n_{1}} d_{G}\left(y_{k}\right) \\
& +\left(n_{2}+1\right)\left(n_{1} n_{2}\left(n_{2}+1\right)-4 n_{2}-4 m_{2}\right) \sum_{k=1}^{n_{1}} d_{G}^{2}\left(y_{k}\right)-n_{2}\left(n_{2}+1\right)^{2} \sum_{k=1}^{n_{1}} d_{G}^{3}\left(y_{k}\right) \\
= & \left(n_{1}^{2}-2 m_{1}\right) M_{1}(H)+\left(n_{2}+1\right)\left(n_{1} n_{2}\left(n_{2}+1\right)-4 n_{2}-4 m_{2}\right) M_{1}(G)-n_{2}\left(n_{2}+1\right)^{2} \\
& F(G)+4 n_{1}^{2}\left(2 m_{2}+n_{2}\right)-16 m_{1} m_{2}-8 n_{2} m_{1}+8 n_{1} m_{1}\left(n_{2}+1\right)\left(n_{2}+m_{2}\right) .
\end{aligned}
$$

Case 4: The nonadjacent vertex pairs $\left\{x_{i j}, x_{\ell h}\right\}, 1 \leqslant i<\ell \leqslant m_{1}, 1 \leqslant j, h \leqslant n_{2}$.

$$
\begin{aligned}
& \sum_{x_{i j} x_{\ell h} \notin E(G \bullet H)}\left(d_{G \bullet H}\left(x_{i j}\right)+d_{G \bullet H}\left(x_{\ell h}\right)\right)^{2} \\
&= \frac{m_{1}\left(m_{1}-1\right)}{2} \sum_{j=1}^{n_{2}} \sum_{h=1}^{n_{2}}\left(d_{H}\left(x_{j}\right)+d_{H}\left(x_{h}\right)+4\right)^{2} \\
&= \frac{m_{1}\left(m_{1}-1\right)}{2} \sum_{j=1}^{n_{2}} \sum_{h=1}^{n_{2}}\left(d_{H}^{2}\left(x_{j}\right)+d_{H}^{2}\left(x_{h}\right)+2 d_{H}\left(x_{j}\right) d_{H}\left(x_{h}\right)+8 d_{H}\left(x_{j}\right)\right. \\
&\left.+8 d_{H}\left(x_{h}\right)+16\right) \\
&= \frac{m_{1}\left(m_{1}-1\right)}{2} \sum_{j=1}^{n_{2}}\left(n_{2} d_{H}^{2}\left(x_{j}\right)+M_{1}(H)+4 m_{2} d_{H}\left(x_{j}\right)+8 n_{2} d_{H}\left(x_{j}\right)\right. \\
&=\left.+16 m_{2}+16 n_{2}\right) \\
& m_{1}\left(m_{1}-1\right)\left(n_{2} M_{1}(H)+16 n_{2} m_{2}+8 n_{2}^{2}+4 m_{2}^{2}\right) .
\end{aligned}
$$

From the above four cases of nonadjacent vertex pairs, we can obtain the desired result. This completes the proof.
2.2. Double graph. Let G be a graph with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The vertices of the double graph G^{*} are given by the two sets $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$. Thus for each vertex $v_{i} \in V(G)$, there are two vertices x_{i} and y_{i} in $V\left(G^{*}\right)$. The double graph G^{*} includes the initial edge set of each copies of G, and for any edge $v_{i} v_{j} \in E(G)$, two more edges $x_{i} y_{j}$ and $x_{j} y_{i}$ are added. For a given vertex v in G, let $D_{G}(v)=\sum_{u v \notin E(G)}\left(d_{G}(u)+d_{G}(v)\right)$. Now we compute the hyper Zagreb index and its coindex for double of a given graph.

Theorem 2.3. The hyper-Zagreb index of the double graph G^{*} of a graph G is given by $H M\left(G^{*}\right)=16 H M(G)$.

Proof. From the definition of double graph it is clear that $d_{G^{*}}\left(x_{i}\right)=d_{G^{*}}\left(y_{i}\right)$ $=2 d_{G}\left(v_{i}\right)$, where $v_{i} \in V(G)$ and $x_{i}, y_{i} \in V\left(G^{*}\right)$ are corresponding clone vertices of v_{i}. Therefore

$$
\begin{aligned}
& H M\left(G^{*}\right)=\sum_{u v \in E\left(G^{*}\right)}\left(d_{G^{*}}(u)+d_{G^{*}}(v)\right)^{2} \\
= & \sum_{x_{i} x_{j} \in E\left(G^{*}\right)}\left(d_{G^{*}}\left(x_{i}\right)+d_{G^{*}}\left(x_{j}\right)\right)^{2}+\sum_{y_{i} y_{j} \in E\left(G^{*}\right)}\left(d_{G^{*}}\left(y_{i}\right)+d_{G^{*}}\left(y_{j}\right)\right)^{2} \\
& +\sum_{x_{i} y_{j} \in E\left(G^{*}\right)}\left(d_{G^{*}}\left(x_{i}\right)+d_{G^{*}}\left(y_{j}\right)\right)^{2}+\sum_{x_{j} y_{i} \in E\left(G^{*}\right)}\left(d_{G^{*}}\left(x_{j}\right)+d_{G^{*}}\left(y_{i}\right)\right)^{2} \\
= & 4 \sum_{v_{i} v_{j} \in E(G)}\left(2 d_{G}\left(v_{i}\right)+2 d_{G}\left(v_{j}\right)\right)^{2}=16 H M(G) .
\end{aligned}
$$

Theorem 2.4. Let G be a connected graph with n vertices and m edges. Then $\overline{H M}\left(G^{*}\right)=16 \overline{H M}(G)+16 M_{1}(G)$.

Proof. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Suppose that x_{i} and y_{i} are the corresponding clone vertices, in G^{*}, of v_{i} for each $i=1,2, \ldots, n$. For any given vertex v_{i} in G and its clone vertices x_{i} and y_{i}, there exists $d_{G^{*}}\left(x_{i}\right)=d_{G^{*}}\left(y_{i}\right)=2 d_{G}\left(v_{i}\right)$ by the definition of double graph.

For $v_{i}, v_{j} \in V(G)$, if $v_{i} v_{j} \notin E(G)$, then $x_{i} x_{j} \notin E(G), y_{i} y_{j} \notin E(G), x_{i} y_{j} \notin$ $E(G)$ and $y_{i} x_{j} \notin E(G)$.

So we need only to consider total contribution of the following three types of nonadjacent vertex pairs to calculate $\overline{H M}(G)$.
Case 1: The nonadjacent vertex pairs $\left\{x_{i}, x_{j}\right\}$ and $\left\{y_{i}, y_{j}\right\}$, where $v_{i} v_{j} \notin E(G)$.

$$
\begin{aligned}
\sum_{y_{i} y_{j} \notin E\left(G^{*}\right)}\left(d_{G^{*}}\left(y_{i}\right)+d_{G^{*}}\left(y_{j}\right)\right)^{2} & =\sum_{x_{i} x_{j} \notin E\left(G^{*}\right)}\left(d_{G^{*}}\left(x_{i}\right)+d_{G^{*}}\left(x_{j}\right)\right)^{2} \\
& \left.=\sum_{v_{i} v_{j} \notin E(G)}\left(2 d_{G}\left(v_{i}\right)+2 d_{G} v_{j}\right)\right)^{2} \\
& =4 \overline{H M}(G) .
\end{aligned}
$$

Case 2: The nonadjacent vertex pairs $\left\{x_{i}, y_{i}\right\}$ for each $i=1,2, \ldots, n$.

$$
\begin{aligned}
\sum_{i=1}^{n}\left(d_{G^{*}}\left(x_{i}\right)+d_{G^{*}}\left(y_{i}\right)\right)^{2} & =\sum_{i=1}^{n}\left(2 d_{G}\left(v_{i}\right)+2 d_{G}\left(v_{i}\right)\right)^{2} \\
& =16 \sum_{i=1}^{n} d_{G}^{2}\left(v_{i}\right) \\
& =16 M_{1}(G) .
\end{aligned}
$$

Case 3: The nonadjacent vertex pairs $\left\{x_{i} . y_{j}\right\}$ and $\left\{y_{i}, x_{j}\right\}$, where $v_{i} v_{j} \notin E(G)$.
For each x_{i}, there exist $n-1-d_{G}\left(v_{i}\right)$ vertices in the set $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$, among which every vertex together with x_{i} compose a nonadjacent vertex pairs of G^{*}. The total contribution of these $n-1-d_{G}\left(v_{i}\right)$ nonadjacent vertex pairs to calculate $\overline{H M}\left(G^{*}\right)$ is

$$
\begin{aligned}
\sum_{x_{i} y_{j} \notin E\left(G^{*}\right)}\left(d_{G^{*}}\left(x_{i}\right)+d_{G^{*}}\left(y_{j}\right)\right)^{2} & =\sum_{v_{i} v_{j} \notin E\left(G^{*}\right)}\left(2 d_{G}\left(v_{i}\right)+2 d_{G}\left(v_{j}\right)\right)^{2} \\
& =4 D_{G}\left(v_{i}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \sum_{i \neq j,}\left(x_{i} y_{j} \notin E\left(G^{*}\right)\right. \\
&\left.=d_{G^{*}}\left(x_{i}\right)+d_{G^{*}}\left(y_{j}\right)\right)^{2} 4 D_{G}\left(v_{i}\right) \\
&=8 \overline{H M}(G) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\overline{H M}\left(G^{*}\right)= & \sum_{x_{i} x_{j} \notin E\left(G^{*}\right)}\left(d_{G^{*}}\left(x_{i}\right)+d_{G^{*}}\left(x_{j}\right)\right)^{2}+\sum_{y_{i} y_{j} \notin E\left(G^{*}\right)}\left(d_{G^{*}}\left(y_{i}\right)+d_{G^{*}}\left(y_{j}\right)\right)^{2} \\
& +\sum_{i=1}^{n}\left(d_{G^{*}}\left(x_{i}\right)+d_{G^{*}}\left(y_{i}\right)\right)^{2}+\sum_{i \neq j, x_{i} y_{j} \notin E\left(G^{*}\right)}\left(d_{G^{*}}\left(x_{i}\right)+d_{G^{*}}\left(y_{j}\right)\right)^{2} \\
= & 16 \overline{H M}(G)+16 M_{1}(G) .
\end{aligned}
$$

Example 2.1. Let $G=H_{2 n}$, where $H_{2 n}$ is the double graph of the star S_{n}, see Figure 1. The hyper Zagreb coindices of $H_{2 n}$ is $\overline{H M}\left(H_{2 n}\right)=16 n(n-1)(n+1)$.
2.3. Mycielskian graph. The Mycielskian graph $\mu(G)$ of G contains G itself as an isomorphic subgraph, together with $n+1$ additional vertices, a vertex u_{i} corresponding to each vertex v_{i} of G, and another vertex w. Each vertex u_{i} is connected by an edge to w so that these vertices form a subgraph in the form of a star $K_{1, n}$. In addition, for each edge $v_{i} v_{j}$ of G, the Mycielskian graph incudes two edges, $u_{i} v_{j}$ and $v_{i} u_{j}$. Following lemma follows from the structure of the Mycielskian graph of a given graph.

Lemma 2.1. Let G be a connected graph on n vertices and m edges. Then for each $i=1,2, \ldots, n$, we have $d_{\mu(G)}\left(v_{i}\right)=2 d_{G}\left(v_{i}\right), d_{\mu(G)}\left(u_{i}\right)=d_{G}\left(v_{i}\right)+1$ and $d_{\mu(G)}(w)=n$.

The maximum and minimum degree of the graph G are denoted by Δ and δ, respectively

Theorem 2.5. Let G be a graph on n vertices and m edges. Then $2 m(1+3 \delta)^{2}+$ $n(n+\delta+1)^{2}+4 H M(G) \leqslant H M(\mu(G)) \leqslant 2 m(1+3 \Delta)^{2}+n(n+\Delta+1)^{2}+4 H M(G)$.

Proof. Let the edge set of $\mu E(G)$ can be partitioned into three subsets,

$$
\begin{gathered}
E_{1}=\left\{x y \in E(\mu(G)) \mid x=u_{i}, y=v_{j}\right\}, E_{2}=\left\{x y \in E(\mu(G)) \mid x=w, y=u_{i}\right\} \text { and } \\
E_{3}=\left\{x y \in E(\mu(G)) \mid x=v_{i}, y=v_{j}\right\}
\end{gathered}
$$

Case 1: If $x=u_{i}$ and $y=v_{j}$, then the contribution of the edges in E_{1} is given by

$$
\begin{aligned}
\sum_{u_{i} v_{j} \in E_{1}}\left(d_{\mu(G)}\left(u_{i}\right)+d_{\mu(G)}\left(v_{j}\right)\right)^{2} & =\sum_{u_{i} v_{j} \in E_{1}}\left(1+d_{G}\left(v_{i}\right)+2 d_{G}\left(v_{j}\right)\right)^{2} \\
& =\sum_{i=1}^{n} \sum_{v_{j} \in N_{G}\left(v_{i}\right)}\left(1+d_{G}\left(v_{i}\right)+2 d_{G}\left(v_{j}\right)\right)^{2} \\
& \geqslant \sum_{i=1}^{n} \sum_{v_{j} \in N_{G}\left(v_{i}\right)}(1+3 \delta)^{2} \\
& =\sum_{i=1}^{n} d_{G}\left(v_{i}\right)(1+3 \delta)^{2} \\
& =2 m(1+3 \delta)^{2} .
\end{aligned}
$$

Case 2: If $x=w$ and $y=u_{i}$, then the contribution of the edges in E_{2} is given by

$$
\begin{aligned}
\sum_{w u_{i} \in E_{2}}\left(d_{\mu(G)}\left(u_{i}\right)+d_{\mu(G)}\left(v_{j}\right)\right)^{2} & =\sum_{w u_{i} \in E_{2}}\left(n+1+d_{G}\left(v_{i}\right)\right)^{2} \\
& =\sum_{i=1}^{n}\left(n+1+d_{G}\left(v_{i}\right)\right)^{2} \\
& \geqslant n(n+\delta+1)^{2} .
\end{aligned}
$$

Case 3: If $x=v_{i}$ and $y=v_{j}$, then the contribution of the edges in E_{3} is given by

$$
\begin{aligned}
\sum_{v_{i} v_{j} \in E_{3}}\left(d_{\mu(G)}\left(v_{i}\right)+d_{\mu(G)}\left(v_{j}\right)\right)^{2} & =\sum_{v_{i} v_{j} \in E_{3}}\left(2 d_{G}\left(v_{i}\right)+2 d_{G}\left(v_{j}\right)\right)^{2} \\
& =4 H M(G)
\end{aligned}
$$

Summarizing the total contributions of the above cases of edges in $\mu(G)$, we have
$2 m(1+3 \delta)^{2}+n(n+\delta+1)^{2}+4 H M(G) \leqslant H M(\mu(G))$.
Similarly, we can obtain $H M(\mu(G)) \leqslant 2 m(1+3 \Delta)^{2}+n(n+\Delta+1)^{2}+4 H M(G)$.

Let $\|n-1\|_{G}$ denote the number of vertices of degree $n-1$ in G. Now we compute the hyper Zagreb coindex of Mycielskian graph.

THEOREM 2.6. Let G be a graph on n vertices and m edges. Then $\overline{H M}(\mu(G))=$ $\left(\frac{n(n-1)-2 m+10}{2}\right) \overline{H M}(G)+m H M(G)+2(n(n-1)-2 m+1) \bar{M}_{1}(G)+4 \bar{M}_{2}(G)+$ $4(m+4) M_{1}(G)+\frac{n(n-1)}{2}(2 n(n-1)-5 m+1)+\left(5 m^{2}+n^{3}+15 m+n+8 m n\right)-$ $5(n-1)\|n-1\|_{G}$.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of G and let $V(\mu(G))=$ $\left\{v_{1}, \ldots, v_{n}, u_{1}, \ldots, u_{n}, w\right\}$. By the structure of Mycielski graph, if $v_{i} v_{j} \notin E(G)$, then $v_{i} u_{j} \notin E(G)$, and $v_{j} u_{i} \notin E(G)$.

Now we consider the following cases of nonadjacent vertex pairs in $\mu(G)$.
Case 1: The nonadjacent vertex pairs $\left\{v_{i}, v_{j}\right\}$ in $\mu(G)$.

$$
\begin{aligned}
& \sum_{v_{i} v_{j} \notin E(\mu(G))}\left(d_{\mu(G)}\left(v_{i}\right)+d_{\mu(G)}\left(v_{j}\right)\right)^{2} \\
= & \sum_{v_{i} v_{j} \notin E(G)}\left(2 d_{G}\left(v_{i}\right)+2 d_{G}\left(v_{j}\right)\right)^{2}, \text { by Lemma } 2.1 \\
= & 4 \sum_{v_{i} v_{j} \notin E(G)}\left(d_{G}\left(v_{i}\right)+d_{G}\left(v_{j}\right)\right)^{2} \\
= & 4 \overline{H M}(G) .
\end{aligned}
$$

Case 2: The nonadjacent vertex pairs $\left\{u_{i}, u_{j}\right\}$ in $\mu(G)$.
Case 2.1: $u_{i} u_{j} \notin E(\mu(G))$ and $v_{i} v_{j} \notin E(G)$.

$$
\begin{aligned}
& \sum_{u_{i} u_{j} \notin E(\mu(G))}\left(d_{\mu(G)}\left(u_{i}\right)+d_{\mu(G)}\left(u_{j}\right)\right)^{2} \\
= & \sum_{v_{i} v_{j} \notin E(G)}\left(d_{G}\left(v_{i}\right)+d_{G}\left(v_{j}\right)+2\right)^{2}, \text { by Lemma 2.1 } \\
= & \sum_{v_{i} v_{j} \notin E(G)}\left(\left(d_{G}\left(v_{i}\right)+d_{G}\left(v_{j}\right)\right)^{2}+4\left(d_{G}\left(v_{i}\right)+d_{G}\left(v_{j}\right)\right)+4\right) \\
= & \overline{H M}(G)+4 \overline{M_{1}}(G)+4\left(\frac{n(n-1)}{2}-m\right) \\
= & \overline{H M}(G)+4 \overline{M_{1}}(G)+2 n(n-1)-4 m .
\end{aligned}
$$

Case 2.2: $u_{i} u_{j} \notin E(\mu(G))$ and $v_{i} v_{j} \in E(G)$.

$$
\begin{aligned}
& \sum_{u_{i} u_{j} \notin E(\mu(G))}\left(d_{\mu(G)}\left(u_{i}\right)+d_{\mu(G)}\left(u_{j}\right)\right)^{2} \\
= & \sum_{v_{i} v_{j} \in E(G)}\left(d_{G}\left(v_{i}\right)+d_{G}\left(v_{j}\right)+2\right)^{2}, \text { by Lemma 2.1 } \\
= & \sum_{v_{i} v_{j} \in E(G)}\left(\left(d_{G}\left(v_{i}\right)+d_{G}\left(v_{j}\right)\right)^{2}+4\left(d_{G}\left(v_{i}\right)+d_{G}\left(v_{j}\right)\right)+4\right) \\
= & H M(G)+4 M_{1}(G)+4 m .
\end{aligned}
$$

If $u_{i} u_{j} \notin E(\mu(G))$, then there are m edges $v_{i} v_{j} \in E(G)$ and $\frac{n(n-1)}{2}-m$ nonadjacent vertex pair $\left\{v_{i}, v_{j}\right\}$ in G as well as $\mu(G)$. By cases 2.1 and 2.2 , we have the contribution of nonadjacent vertex pair of case 2 is given by

$$
\left(\frac{n(n-1)}{2}-m\right)\left(\overline{H M}(G)+4 \overline{M_{1}}(G)+2 n(n-1)-4 m\right)+m\left(H M(G)+4 M_{1}(G)+4 m\right)
$$

Case 3: The nonadjacent vertex pairs $\left\{u_{i}, v_{i}\right\}$ in $\mu(G)$ for each $i=1,2, \ldots, n$.

$$
\begin{aligned}
\sum_{i=1}^{n}\left(d_{\mu(G)}\left(u_{i}\right)+d_{\mu(G)}\left(v_{i}\right)\right)^{2} & =\sum_{i=1}^{n}\left(3 d_{G}\left(v_{i}\right)+1\right)^{2}, \text { by Lemma } 2.1 \\
& =\sum_{i=1}^{n}\left(9 d_{G}^{2}\left(v_{i}\right)+6 d_{G}\left(v_{i}\right)+1\right) \\
& =9 M_{1}(G)+12 m+n
\end{aligned}
$$

Case 4: The nonadjacent vertex pairs $\left\{u_{i}, v_{j}\right\}$ in $\mu(G)$.

$$
\begin{aligned}
& \sum_{u_{i} v_{j} \notin E(\mu(G))}\left(d_{\mu(G)}\left(u_{i}\right)+d_{\mu(G)}\left(v_{j}\right)\right) \\
= & \sum_{v_{i} v_{j} \notin E(G)}\left(d_{G}\left(v_{i}\right)+1+2 d_{G}\left(v_{j}\right)\right)^{2}, \text { by Lemma 2.1 } \\
= & \sum_{v_{i} v_{j} \notin E(G)}\left(d_{G}^{2}\left(v_{i}\right)+4 d_{G}^{2}\left(v_{j}\right)+2 d_{G}\left(v_{i}\right)+4 d_{G}\left(v_{j}\right)+4 d_{G}\left(v_{i}\right) d_{G}\left(v_{j}\right)+1\right) \\
= & \sum_{v_{i} v_{j} \notin E(G)}\left(d_{G}^{2}\left(v_{i}\right)+d_{G}^{2}\left(v_{j}\right)\right)+3 \sum_{v_{i} v_{j} \notin E(G)} d_{G}^{2}\left(v_{j}\right)+2 \sum_{v_{i} v_{j} \notin E(G)}\left(d_{G}\left(v_{i}\right)+d_{G}\left(v_{i}\right)\right) \\
& +2 \sum_{v_{i} v_{j} \notin E(G)} d_{G}\left(v_{j}\right)+4 \sum_{v_{i} v_{j} \notin E(G)} d_{G}\left(v_{i}\right) d_{G}\left(v_{j}\right)+\left(\frac{n(n-1)}{2}-m\right) \\
= & \overline{H M}(G)+3\left(\sum_{v_{k} \in V(G)} d_{G}^{2}\left(v_{k}\right)-(n-1)\|n-1\|_{G}\right)+2 \bar{M}_{1}(G) \\
= & +2\left(\sum_{v_{k} \in V(G)} d_{G}\left(v_{k}\right)-(n-1)\|n-1\|_{G}\right)+4 \bar{M}_{2}(G)+\frac{n(n-1)}{2}-m \\
= & \overline{H M}(G)+3 M_{1}(G)+2 \bar{M}_{1}(G)+4 \bar{M}_{2}(G)+\frac{n(n-1)}{2}+3 m-5(n-1)\|n-1\|_{G} .
\end{aligned}
$$

Case 5: The nonadjacent vertex pairs $\left\{w, v_{i}\right\}$ in $\mu(G)$ for each $i=1,2, \ldots, n$.

$$
\begin{aligned}
\sum_{v_{i} w \notin E(\mu(G))}\left(d_{\mu(G)}\left(v_{i}\right)+d_{\mu(G)}(w)\right)^{2} & =\sum_{v_{i} \in V(G)}\left(2 d_{G}\left(v_{i}\right)+n\right)^{2}, \text { by Lemma } 2.1 \\
& =\sum_{v_{i} \in V(G)}\left(4 d_{G}^{2}\left(v_{i}\right)+n^{2}+4 n d_{G}\left(v_{i}\right)\right) \\
& =4 M_{1}(G)+n^{3}+8 m n .
\end{aligned}
$$

From the above five cases of nonadjacent vertex pairs, we can obtain the desired results. This completes the proof.

References

[1] J. Devillers and A.T. Balaban (Eds.). Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach Science Publishers, Amsterdam, The Netherlands, 1999.
[2] I. Gutman and O.E. Polansky. Mathematical concepts in organic chemistry. Springer-verlag, Berlin 1986.
[3] I. Gutman and N. Trinajstić. Graph theory and molecular orbits. Total π-election energy of alternant hydrocarbons. Chem. Phy. Lett., 17(4)(1972), 535-538.
[4] M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi. The first and second Zagreb indices of some graph operations. Discrete Appl. Math., 157(4)(2009), 804-811.
[5] L. Feng and A. Ilić. Zagreb, Harary and hyper-Wiener indices of graphs with a given matching number. Appl. Math. Lett. 23(8)(2010), 943-948.
[6] I. Gutman and K. C. Das. The first Zagerb index 30 years after. MATCH Commun. Math. Comput. Chem., 50(2004), 83-92.
[7] A. R. Ashrafi, T. Došlić and A. Hamzeha. The Zagreb coindices of graph operations. Discrete Appl. Math., 158(16)(2010), 1571-1578.
[8] A. R. Ashrafi, T. Došlić and A. Hamzeha. Extremal graphs with respect to the Zagreb coindices. MATCH Commun. Math.Comput. Chem., 65(1)(2011), 85-92.
[9] T. Došlić. Vertex-weighted Wiener polynomials for composite graphs. Ars Math. Contemp., 1(1)(2008), 66-80.
[10] H. Hua and S. Zhang. Relations between Zagreb coindices and some distance-based topological indices. MATCH Commun. Math.Comput. Chem., 68(1)(2012), 199-208.
[11] G. H. Shirdel. H.Rezapour and A.M. Sayadi. The hyper-Zagreb index of graph operations. Iranian. J. Math. Chem., 4(2)(2013), 213-220.
[12] I. Gutman, B. Furtula, Z. Kovijanić-Vukičević and G. Popivoda. Zagreb indices and coindices. MATCH Commun. Math. Comput. Chem., 74(1)(2015), 5-16.
[13] M. R. Farahani. Computing the hyper-Zagreb index of hexagonal nanotubes. J. Chem. \mathcal{E} Materials Research, 2(1)(2015), 16-18.
[14] M. R. Farahani. The hyper-Zagreb index of $T U S C_{4} C_{8}(S)$ nanotubes. Int. J. Engg. $\&$ Tech. Research, 3(1)(2015), 1-6.

Received by editors 29.08.2016; Revised version 07.09.2016; Available online 12.09.2016.
Department of Mathematics, Annamalai University, Annamalainagar-608002, India E-mail address: pramank@gmail.com

Department of Mathematics, Annamalai University, Annamalainagar-608002, India E-mail address: mvragavan09@gmail.com

[^0]: 2010 Mathematics Subject Classification. 05C12; 05C76.
 Key words and phrases. optional, but desirable.

