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HYPER ZAGREB INDICES AND

ITS COINDICES OF GRAPHS

K. Pattabiraman and M. Vijayaragavan

Abstract. For a (molecular) graph, the hyper Zagreb index is defined as

HM(G) =
∑

uv∈E(G)

(dG(u) + dG(v))2 and the hyper Zagreb coindex is defined

asHM(G) =
∑

uv/∈E(G)

(dG(u)+dG(v))2. In this paper, the hyper Zagreb indices

and its coindices of edge corona product graph, double graph and Mycielskian

graph are obtained.

1. Introduction

All the graphs considered in this paper are connected and simple. For vertex
u ∈ V (G), the degree of the vertex u in G, denoted by dG(u), is the number of
edges incident to u in G. A topological index of a graph is a parameter related to
the graph; it does not depend on labeling or pictorial representation of the graph.
In theoretical chemistry, molecular structure descriptors (also called topological in-
dices) are used for modeling physicochemical, pharmacologic, toxicologic, biological
and other properties of chemical compounds [2]. Several types of such indices exist,
especially those based on vertex and edge distances. One of the most intensively
studied topological indices is the Wiener index. Two of these topological indices
are known under various names, the most commonly used ones are the first and
second Zagreb indices.
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The Zagreb indices have been introduced more than thirty years ago by Gutman
and Trinajstić [3]. They are defined as

M1(G) =
∑

u∈V (G)

dG(u)
2,

M2(G) =
∑

uv∈E(G)

dG(u)dG(v).

Note that the first Zagreb index may also written as M1(G) =
∑

uv∈E(G)

(dG(u) +

dG(v)). The Zagreb indices are found to have appilications in QSPR and QSAR
studies as well, see [1].

The hyper Zagreb index is defined as HM(G) =
∑

uv∈E(G)

(dG(u) + dG(v))
2 and

the hyper Zagreb coindex is defined as HM(G) =
∑

uv/∈E(G)

(dG(u) + dG(v))
2.

For the survey on theory and application of Zagreb indices see [6]. Feng et al.[4]
have given a sharp bounds for the Zagreb indices of graphs with a given matching
number. Khalifeh et al. [5] have obtained the Zagreb indices of the Cartesian
product, composition, join, disjunction and symmetric difference of graphs. Ashrafi
et al. [8] determined the extremal values of Zagreb coindices over some special class
of graphs. Hua and Zhang [10] have given some relations between Zagreb coindices
and some other topolodical indices. Ashrafi et al. [7] have obtained the Zagreb
indices of the Cartesian product, composition, join, disjunction and symmetric
difference of graphs. Shirdel et al [11], have obtained the hyper-Zagreb indices
of the Cartesian product, composition, join and disjunction of graphs. The hyper
Zagreb indices of some classes of chemical graphs are obtained in [11, 13, 14]. In
this paper, we obtain the hyper Zagreb indices and its coindices of the edge corona
product graph, double graph and Mycielskian graph are obtained.

2. Main results

In this section, we compute the hyper Zagreb indices and its coindices of edge
corona product graph, double graph and Mycielskian graph.

2.1. Edge corona product. Let G and H be two graphs on disjoint sets of
n and m vertices, p and q edges, respectively. The edge corona product G • H of
G and H is defined as the graph obtained by taking one copy of G and p copies of
H, and then joining two end vertices of the ith edge of G to every vertex in the ith

copy of H. Now we compute the hyper Zagreb index and its coindex of edge corona
product of two given graphs.

Theorem 2.1. Let G and H be two graphs with n1, n2 vertices and m1, m2

edges, respectively. Then HM(G •H) = (n2 + 1)3HM(G) +m2HM(H) + 4(n2 +
1)(n2 +m2)M1(G) + (8m2 +m1)M1(H) + 16m2

2 + 4m1(n2 + 2m2).

Proof. By the definition of edge corona product, for each vertex x ∈ V (G),
we have dG•H(x) = dG(x)(|V (H)|+ 1) and for each vertex y ∈ V (Hi), dG•H(y) =
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dH(y) + 2. Clearly, |V (G •H)| = |V (G)|+ |E(G)| |V (H)| .

HM(G •H) =
∑

xy∈E(G•H)

(
dG•H(x) + dG•H(y)

)2

=
∑

xy∈E(G)

(
(n2 + 1)dG(x) + (n2 + 1)dG(y)

)2

+

m2∑
i=1

∑
xy∈E(H)

(
(dH(x) + 2) + (dH(y) + 2)

)2

+
∑

xy∈E(G)

∑
u∈V (H)

(
(n2 + 1)(dG(x) + dG(y)) + (dH(u) + 2)

)2

= (n2 + 1)2
∑

xy∈E(G)

(dG(x) + dG(y))
2

+

m2∑
i=1

∑
xy∈E(H)

(
dH(x) + dH(y))2 + 16 + 8(dH(x) + dH(y)

)
+

∑
xy∈E(G)

∑
u∈V (H)

(
(n2 + 1)(dG(x) + dG(y)) + dH(u) + 2

)2

= (n2 + 1)3HM(G) +m2HM(H) + 4(n2 + 1)(n2 +m2)M1(G)

+(8m2 +m1)M1(H) + 16m2
2 + 4m1(n2 + 2m2).

�

Theorem 2.2. Let G and H be two graphs with n1, n2 vertices and m1, m2

edges, respectively. Then HM(G •H) =
(
m1 +(n2 +1)2

)
HM(G)+ 8m1M1(H)+(

n2
1 − 2m1 +n2m1(m1 − 1)

)
M1(H)+ (n2 +1)(n1n2(n2 +1)− 4n2 − 4m2)M1(G)−

n2(n2+1)2F (G)+8(n2+1)n1m1(n2+m2)−32m1m2−8m1n2(n2−2)+4n2
1(2m2+

n2) +m1(m1 − 1)(4m2 + 8n2
2 + 16n2m2).

Proof. Let xij be the jth vertex in the ith copy of H, i = 1, 2, . . . ,m1,j =
1, 2, . . . , n2, and let yk be the kth in G,k = 1, 2, . . . , n1. Also let xj be the jth vertex
in H.

By the definition of edge corona, for each vertex xij , we have dG•H(xij) =
dH(xj) + 2, and for every vertex yk in G, dG•H(yk) = dG(yk)n2 + dG(yk) = (n2 +
1)dG(yk).

Now, we consider the following four cases of nonadjacent vertex pairs in G•H.

Case 1: The nonadjacent vertex pairs {xij ;xih}, 1 6 i 6 m1,1 6 j < h 6 n2, and
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it is assumed that xjxh /∈ E(H).

m1∑
i=1

∑
xijxih /∈E(G•H)

(
dG•H(xij) + dG•H(xih)

)2

=

m1∑
i=1

∑
xjxh /∈E(H)

(
dH(xj) + dH(xh) + 4

)2

=

m1∑
i=1

∑
xjxh /∈E(H)

(
(dH(xj) + dH(xh))

2 + 8(dH(xj) + dH(xh)) + 16
)

=

m1∑
i=1

(
HM(H) + 16

(n2(n2 − 1)

2
−m2

)
+ 8M1(H)

)
= m1HM(H) + 8m1M1(H) + 8m1n2(n2 − 1)− 16m1m2.

Case 2: The nonadjacent vertex pairs {yk, ys},1 6 k < s 6 n1 and it is assumed

that ykys /∈ E(G).

∑
ykys /∈E(G•H)

(
dG•H(yk) + dG•H(ys)

)2

=
∑

ykys /∈E(G)

(
(n2 + 1)dG(yk) + (n2 + 1)dG(ys)

)2

= (n2 + 1)2
∑

ykys /∈E(G)

(
dG(yk) + dG(ys)

)2

= (n2 + 1)2HM(G).

Case 3: The nonadjacent vertex pairs {xij , yk}, 1 6 i 6 m1,1 6 j 6 n2, 1 6 k 6
n1, and it is assumed that the ith edge ei 1 6 i 6 m1 in G does not pass through
yk.

n2∑
j=1

(
dH(xj) + 2 + (n2 + 1)dG(yk)

)2

=

n2∑
j=1

(
d2H(xj) + (n2 + 1)2d2G(yk) + 4dH(xj)

+4(n2 + 1)dG(yk) + 2(n2 + 1)dH(xj)dG(yk) + 4
)

= M1(H) + 8m2 + 4n2 + n2(n2 + 1)2d2G(yk)

+(4n2(n2 + 1) + 4m2(n2 + 1))dG(yk).
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Note that each vertex yk is adjacent to all vertices of dG(yk) copies of H, that
is, each yk is not adjacent to any vertex of m1 − dG(yk) copies of H. Hence

n1∑
k=1

(n1 − dG(yk))

n2∑
j=1

(
dH(xj) + 2 + (n2 + 1)dG(yk)

)2

= n1

(
n1M1(H) + n1(8m2 + 4n2)

)
+
(
4n1(n2 + 1)(n2 +m2)−M1(H)− 8m2 − 4n2

) n1∑
k=1

dG(yk)

+(n2 + 1)
(
n1n2(n2 + 1)− 4n2 − 4m2)

n1∑
k=1

d2G(yk)− n2(n2 + 1)2
n1∑
k=1

d3G(yk)

= (n2
1 − 2m1)M1(H) + (n2 + 1)(n1n2(n2 + 1)− 4n2 − 4m2)M1(G)− n2(n2 + 1)2

F (G) + 4n2
1(2m2 + n2)− 16m1m2 − 8n2m1 + 8n1m1(n2 + 1)(n2 +m2).

Case 4: The nonadjacent vertex pairs {xij , xℓh}, 1 6 i < ℓ 6 m1,1 6 j, h 6 n2.∑
xijxℓh /∈E(G•H)

(
dG•H(xij) + dG•H(xℓh)

)2

=
m1(m1 − 1)

2

n2∑
j=1

n2∑
h=1

(
dH(xj) + dH(xh) + 4

)2

=
m1(m1 − 1)

2

n2∑
j=1

n2∑
h=1

(
d2H(xj) + d2H(xh) + 2dH(xj)dH(xh) + 8dH(xj)

+8dH(xh) + 16
)

=
m1(m1 − 1)

2

n2∑
j=1

(
n2d

2
H(xj) +M1(H) + 4m2dH(xj) + 8n2dH(xj)

+16m2 + 16n2

)
= m1(m1 − 1)

(
n2M1(H) + 16n2m2 + 8n2

2 + 4m2
2

)
.

From the above four cases of nonadjacent vertex pairs, we can obtain the desired
result. This completes the proof. �

2.2. Double graph. Let G be a graph with V (G) = {v1, v2, . . . , vn}. The
vertices of the double graph G∗ are given by the two sets X = {x1, x2, . . . , xn} and
Y = {y1, y2, . . . , yn}. Thus for each vertex vi ∈ V (G), there are two vertices xi and
yi in V (G∗). The double graph G∗ includes the initial edge set of each copies of G,
and for any edge vivj ∈ E(G), two more edges xiyj and xjyi are added. For a given
vertex v in G, let DG(v) =

∑
uv/∈E(G)

(dG(u) + dG(v)). Now we compute the hyper

Zagreb index and its coindex for double of a given graph.
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Theorem 2.3. The hyper-Zagreb index of the double graph G∗ of a graph G is
given by HM(G∗) = 16HM(G).

Proof. From the definition of double graph it is clear that dG∗(xi) = dG∗(yi)
= 2dG(vi), where vi ∈ V (G) and xi, yi ∈ V (G∗) are corresponding clone vertices of
vi. Therefore

HM(G∗) =
∑

uv∈E(G∗)

(dG∗(u) + dG∗(v))2

=
∑

xixj∈E(G∗)

(dG∗(xi) + dG∗(xj))
2 +

∑
yiyj∈E(G∗)

(dG∗(yi) + dG∗(yj))
2

+
∑

xiyj∈E(G∗)

(dG∗(xi) + dG∗(yj))
2 +

∑
xjyi∈E(G∗)

(dG∗(xj) + dG∗(yi))
2

= 4
∑

vivj∈E(G)

(2dG(vi) + 2dG(vj))
2 = 16HM(G).

�
Theorem 2.4. Let G be a connected graph with n vertices and m edges. Then

HM(G∗) = 16HM(G) + 16M1(G).

Proof. Let V (G) = {v1, v2, . . . , vn}. Suppose that xi and yi are the corre-
sponding clone vertices, in G∗, of vi for each i = 1, 2, . . . , n. For any given vertex
vi in G and its clone vertices xi and yi, there exists dG∗(xi) = dG∗(yi) = 2dG(vi)
by the definition of double graph.

For vi, vj ∈ V (G), if vivj /∈ E(G), then xixj /∈ E(G),yiyj /∈ E(G),xiyj /∈
E(G)and yixj /∈ E(G).

So we need only to consider total contribution of the following three types of
nonadjacent vertex pairs to calculate HM(G).

Case 1: The nonadjacent vertex pairs {xi, xj} and {yi, yj}, where vivj /∈ E(G).∑
yiyj /∈E(G∗)

(
dG∗(yi) + dG∗(yj)

)2

=
∑

xixj /∈E(G∗)

(
dG∗(xi) + dG∗(xj)

)2

=
∑

vivj /∈E(G)

(
2dG(vi) + 2dGvj)

)2

= 4HM(G).

Case 2: The nonadjacent vertex pairs {xi, yi} for each i = 1, 2, . . . , n.

n∑
i=1

(
dG∗(xi) + dG∗(yi)

)2

=

n∑
i=1

(
2dG(vi) + 2dG(vi)

)2

= 16

n∑
i=1

d2G(vi)

= 16M1(G).
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Case 3: The nonadjacent vertex pairs {xi.yj} and {yi, xj}, where vivj /∈ E(G).

For each xi, there exist n−1−dG(vi) vertices in the set {y1, y2, . . . , yn}, among
which every vertex together with xi compose a nonadjacent vertex pairs of G∗. The
total contribution of these n − 1 − dG(vi) nonadjacent vertex pairs to calculate
HM(G∗) is

∑
xiyj /∈E(G∗)

(
dG∗(xi) + dG∗(yj)

)2

=
∑

vivj /∈E(G∗)

(
2dG(vi) + 2dG(vj)

)2

= 4DG(vi).

Hence ∑
i ̸=j, xiyj /∈E(G∗)

(
dG∗(xi) + dG∗(yj)

)2

=
n∑

i=1

4DG(vi)

= 8HM(G).

Hence

HM(G∗) =
∑

xixj /∈E(G∗)

(
dG∗(xi) + dG∗(xj)

)2

+
∑

yiyj /∈E(G∗)

(
dG∗(yi) + dG∗(yj)

)2

+

n∑
i=1

(
dG∗(xi) + dG∗(yi)

)2

+
∑

i ̸=j, xiyj /∈E(G∗)

(
dG∗(xi) + dG∗(yj)

)2

= 16HM(G) + 16M1(G).

�
Example 2.1. Let G = H2n, where H2n is the double graph of the star Sn,

see Figure 1. The hyper Zagreb coindices of H2n is HM(H2n) = 16n(n−1)(n+1).

2.3. Mycielskian graph. The Mycielskian graph µ(G) of G contains G itself
as an isomorphic subgraph, together with n + 1 additional vertices, a vertex ui

corresponding to each vertex vi of G, and another vertex w. Each vertex ui is
connected by an edge to w so that these vertices form a subgraph in the form of a
star K1,n. In addition, for each edge vivj of G, the Mycielskian graph incudes two
edges, uivj and viuj . Following lemma follows from the structure of the Mycielskian
graph of a given graph.

Lemma 2.1. Let G be a connected graph on n vertices and m edges. Then
for each i = 1, 2, . . . , n, we have dµ(G)(vi) = 2dG(vi), dµ(G)(ui) = dG(vi) + 1 and
dµ(G)(w) = n.

The maximum and minimum degree of the graph G are denoted by ∆ and δ,
respectively

Theorem 2.5. Let G be a graph on n vertices and m edges. Then 2m(1+3δ)2+
n(n+ δ+1)2+4HM(G) 6 HM(µ(G)) 6 2m(1+3∆)2+n(n+∆+1)2+4HM(G).

Proof. Let the edge set of µE(G) can be partitioned into three subsets,
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E1 = {xy ∈ E(µ(G))|x = ui, y = vj}, E2 = {xy ∈ E(µ(G))|x = w, y = ui} and

E3 = {xy ∈ E(µ(G))|x = vi, y = vj}.

Case 1: If x = ui and y = vj , then the contribution of the edges in E1 is given by∑
uivj∈E1

(
dµ(G)(ui) + dµ(G)(vj)

)2

=
∑

uivj∈E1

(
1 + dG(vi) + 2dG(vj)

)2

=

n∑
i=1

∑
vj∈NG(vi)

(
1 + dG(vi) + 2dG(vj)

)2

>
n∑

i=1

∑
vj∈NG(vi)

(1 + 3δ)2

=
n∑

i=1

dG(vi)(1 + 3δ)2

= 2m(1 + 3δ)2.

Case 2: If x = w and y = ui, then the contribution of the edges in E2 is given by∑
wui∈E2

(
dµ(G)(ui) + dµ(G)(vj)

)2

=
∑

wui∈E2

(n+ 1 + dG(vi))
2

=

n∑
i=1

(
n+ 1 + dG(vi)

)2

> n(n+ δ + 1)2.

Case 3: If x = vi and y = vj , then the contribution of the edges in E3 is given by∑
vivj∈E3

(
dµ(G)(vi) + dµ(G)(vj)

)2

=
∑

vivj∈E3

(
2dG(vi) + 2dG(vj)

)2

= 4HM(G).

Summarizing the total contributions of the above cases of edges in µ(G), we
have

2m(1 + 3δ)2 + n(n+ δ + 1)2 + 4HM(G) 6 HM(µ(G)).

Similarly, we can obtain HM(µ(G)) 6 2m(1+3∆)2+n(n+∆+1)2+4HM(G).
�

Let ∥n− 1∥G denote the number of vertices of degree n − 1 in G. Now we
compute the hyper Zagreb coindex of Mycielskian graph.

Theorem 2.6. Let G be a graph on n vertices and m edges. Then HM(µ(G)) =(
n(n−1)−2m+10

2

)
HM(G) +mHM(G) + 2

(
n(n− 1)− 2m+ 1

)
M1(G) + 4M2(G) +

4(m+ 4)M1(G) + n(n−1)
2

(
2n(n− 1)− 5m+ 1

)
+
(
5m2 + n3 + 15m+ n+ 8mn

)
−

5(n− 1) ∥n− 1∥G .
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Proof. Let v1, v2, . . . , vn be the vertices of G and let V (µ(G)) =
{v1, . . . , vn, u1, . . . , un, w}. By the structure of Mycielski graph, if vivj /∈ E(G),
then viuj /∈ E(G), and vjui /∈ E(G).

Now we consider the following cases of nonadjacent vertex pairs in µ(G).

Case 1: The nonadjacent vertex pairs {vi, vj} in µ(G).∑
vivj /∈E(µ(G))

(
dµ(G)(vi) + dµ(G)(vj)

)2

=
∑

vivj /∈E(G)

(
2dG(vi) + 2dG(vj)

)2

, by Lemma 2.1

= 4
∑

vivj /∈E(G)

(
dG(vi) + dG(vj)

)2

= 4HM(G).

Case 2: The nonadjacent vertex pairs {ui, uj} in µ(G).

Case 2.1: uiuj /∈ E(µ(G)) and vivj /∈ E(G).∑
uiuj /∈E(µ(G))

(
dµ(G)(ui) + dµ(G)(uj)

)2

=
∑

vivj /∈E(G)

(
dG(vi) + dG(vj) + 2

)2

, by Lemma 2.1

=
∑

vivj /∈E(G)

(
(dG(vi) + dG(vj))

2 + 4(dG(vi) + dG(vj)) + 4
)

= HM(G) + 4M1(G) + 4
(n(n− 1)

2
−m

)
= HM(G) + 4M1(G) + 2n(n− 1)− 4m.

Case 2.2: uiuj /∈ E(µ(G)) and vivj ∈ E(G).∑
uiuj /∈E(µ(G))

(
dµ(G)(ui) + dµ(G)(uj)

)2

=
∑

vivj∈E(G)

(
dG(vi) + dG(vj) + 2

)2

, by Lemma 2.1

=
∑

vivj∈E(G)

(
(dG(vi) + dG(vj))

2 + 4(dG(vi) + dG(vj)) + 4
)

= HM(G) + 4M1(G) + 4m.

If uiuj /∈ E(µ(G)), then there are m edges vivj ∈ E(G) and n(n−1)
2 − m

nonadjacent vertex pair {vi, vj} in G as well as µ(G). By cases 2.1 and 2.2, we have
the contribution of nonadjacent vertex pair of case 2 is given by
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n(n−1)

2 −m
)(

HM(G)+4M1(G)+2n(n−1)−4m
)
+m

(
HM(G)+4M1(G)+4m

)
.

Case 3: The nonadjacent vertex pairs {ui, vi} in µ(G) for each i = 1, 2, . . . , n.

n∑
i=1

(
dµ(G)(ui) + dµ(G)(vi)

)2

=
n∑

i=1

(
3dG(vi) + 1

)2

, by Lemma 2.1

=

n∑
i=1

(
9d2G(vi) + 6dG(vi) + 1

)
= 9M1(G) + 12m+ n.

Case 4: The nonadjacent vertex pairs {ui, vj} in µ(G).∑
uivj /∈E(µ(G))

(
dµ(G)(ui) + dµ(G)(vj)

)
=

∑
vivj /∈E(G)

(
dG(vi) + 1 + 2dG(vj)

)2

, by Lemma 2.1

=
∑

vivj /∈E(G)

(
d2G(vi) + 4d2G(vj) + 2dG(vi) + 4dG(vj) + 4dG(vi)dG(vj) + 1

)
=

∑
vivj /∈E(G)

(
d2G(vi) + d2G(vj)

)
+ 3

∑
vivj /∈E(G)

d2G(vj) + 2
∑

vivj /∈E(G)

(dG(vi) + dG(vi))

+2
∑

vivj /∈E(G)

dG(vj) + 4
∑

vivj /∈E(G)

dG(vi)dG(vj) +
(n(n− 1)

2
−m

)
= HM(G) + 3

( ∑
vk∈V (G)

d2G(vk)− (n− 1) ∥n− 1∥G
)
+ 2M1(G)

+2
( ∑

vk∈V (G)

dG(vk)− (n− 1) ∥n− 1∥G
)
+ 4M2(G) +

n(n− 1)

2
−m

= HM(G) + 3M1(G) + 2M1(G) + 4M2(G) +
n(n− 1)

2
+ 3m− 5(n− 1) ∥n− 1∥G .

Case 5: The nonadjacent vertex pairs {w, vi} in µ(G) for each i = 1, 2, . . . , n.∑
viw/∈E(µ(G))

(
dµ(G)(vi) + dµ(G)(w)

)2

=
∑

vi∈V (G)

(
2dG(vi) + n

)2

, by Lemma 2.1

=
∑

vi∈V (G)

(
4d2G(vi) + n2 + 4ndG(vi)

)
= 4M1(G) + n3 + 8mn.

From the above five cases of nonadjacent vertex pairs, we can obtain the desired
results. This completes the proof. �
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