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NARUMI-KATAYAMA INDEX

OF SOME DERIVED GRAPHS

Nilanjan De

Abstract. The Narumi-Katayama index of a graph G is equal to the product
of degrees of all the vertices of G. In this paper, we examine the Narumi-
Katayama index of some derived graphs such as a Mycielski graph, subdivision
graphs, double graph, extended double cover graph, thorn graph, subdivision

vertex join and edge join graphs.

1. INTRODUCTION

In Chemical graph theory a molecular graph is an unweighted, undirected graph
without self loop or multiple edges such that its vertices corresponds to atoms and
edges to the bonds between them. A topological index is a numeric quantity which
is derived from a molecular graph and it does not depend on labeling or pictorial
representation of a graph. Topological indices correlates the physico-chemical prop-
erties of molecular graph and are used for studying quantitative structure-activity
(QSAR) and structure-property (QSPR) relationship for predicting different prop-
erties of chemical compounds and biological activities. In chemistry, biochemistry
and nanotechnology different topological indices are used for modeling physico-
chemical, pharmacologic, toxicologic, biological and other properties of chemical
compounds.

There exist several types of such indices, especially those based on vertex degree
which is one of the most widely used and have great application in chemical graph
theory. Suppose G be a simple connected graph and V (G) and E(G) respectively
denote the vertex set and edge set of G. Let, n and m respectively denote the
number of vertices and edges of G. Let, for any vertex v ∈ V (G), dG(v) denotes
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its degree, that is the number of neighbor of v and N(v) denotes the set of vertices
which are the neighbors of the vertex v, so that |N(v)| = dG(v).

One of the oldest and well known topological indices is the first and second
Zagreb indices, was first introduced by Gutman et al. in 1972 [18], where they have
examined the dependence of the total π-electron energy on molecular structure. The
first and second Zagreb indices of a graph are denoted by M1(G) and M2(G) and
are respectively defined as

M1(G) =
∑

v∈V (G)

dG(v)
2
=

∑
uv∈E(G)

[dG(u) + dG(v)]

and

M2(G) =
∑

uv∈E(G)

dG(u)dG(v).

These indices are extensively studied in chemical and mathematical literature.
Interested readers are referred to [16, 24, 32, 33, 34, 5] for some recent results
on this topic.

Todeschini et al. [29, 30] have introduced the multiplicative variants of additive
graph invariants, which applied to the Zagreb indices would lead to the first and
second Multiplicative Zagreb Indices. Thus the multiplicative Zagreb indices are
defined as ∏

1
(G) =

∏
uv∈E(G)

dG(u)
2

and ∏
2
(G) =

∏
uv∈E(G)

dG(u)dG(v).

The properties of these multiplicative Zagreb indices for trees were studied by
Gutman [20]. These topological indices were subject to a large number of studies
[35, 25, 28].

Related to multiplicative version of ordinary first Zagreb index, Eliasi, Iran-
manesh and Gutman [14] introduced a new multiplicative graphical invariant and
called multiplicative sum Zagreb index, which is defined as∏

1

∗(G) =
∏

uv∈E(G)

[dG(u) + dG(v)].

In 1984, Narumi and Katayama [27] introduced a multiplicative graph invariant
for representing the carbon skeleton of a saturated hydrocarbon, and named it as a
“simple topological index”. Tomovic and Gutman [31] later renamed this index as
“Narumi-Katayama index” or NK index and is denoted by NK(G). The Narumi-
Katayama index of a graph G is defined as the product of degrees of all its vertices,
that is

NK(G) =
∏

v∈V (G)

dG(v).
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Clearly, the Narumi-Katayama index is just the square root of the first mul-
tiplicative Zagreb index. In this paper, we compute Narumi-Katayama index of
several classes of derived graphs such as Mycielski graph, subdivision graphs, dou-
ble graph, extended double cover graph, thorn graph, subdivision vertex join and
edge join graphs.

2. MAIN RESULTS

In this section, we proceed to introduce different derived graphs that are rele-
vant for this study and hence present the behavior of the Narumi-Katayama index
of these derived graphs. First, we recall a well-known inequalities.

Lemma 2.1. (A.M.-G.M. Inequality) Let x1, x2, ...., xn be non-negative num-
bers, then

x1 + x2 + ....+ xn

n
> n

√
x1x2....xn

with equality if and only if x1 = x2 = .... = xn.

In the following first we determine Narumi-Katayama index of the Mycielski
graph µ(G) of G.

2.1. The Mycielski Graphs. The construction of the Mycielski graph was
introduced in [26]. The Mycielski graph µ(G) of G contains G itself as an isomor-
phic subgraph, and also (n + 1) additional vertices; a vertex ui corresponding to
each vertex vi and another vertex w. Each vertex ui is connected by an edge to
the vertex w, so that these vertices form a subgraph in the form of a star K1,n .
In addition for each edge vivj of G, the Mycielski graph includes two edges uivj
and viuj . The vertex set of µ(G) is given by V (µ(G)) = V (G) ∪X ∪ {w}, where
V (G) = {v1, v2, ..., vn} and x = {u1, u2, ..., un}. Thus E(µ(G)) = E(G) ∪ {viuj :
vivj ∈ E(G)} ∪ {uiw : 1 6 i 6 n}. Clearly, if G has n vertices and m edges then
has (2n+1) vertices and (3m+n) edges. For different mathematical properties and
applications of the Mycielski graph, we refer the reader to [2, 3, 4, 17, 15, 21].

Theorem 2.1. The Narumi-Katayama index of Mycielski graph µ(G) satisfies
the following inequality

NK(µ(G)) 6 2nnNK(G)

(
2m

n
+ 1

)n

with equality if and only if G is a regular graph.

Proof. Let G be a nontrivial graph of order n and size m and let µ(G) be
its Mycielski graph, then from the construction of Mycielski graph, for each i =
1, 2, ..., n, dµ(G)(vi) = 2dG(vi), dµ(G)(ui) = dG(vi) + 1 and dµ(G)(w) = n Then the
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Narumi-Katayama index of Mycielski graph µ(G) is given by

NK(µ(G)) = dµ(G)(w)
n∏

i=1

dµ(G)(vi)
n∏

i=1

dµ(G)(ui)

= n
n∏

i=1

{2dG(vi)}
n∏

i=1

{dG(vi) + 1}

= 2nnNK(G)

n∏
i=1

{dG(vi) + 1}.

Now using Lemma 2.1, we have

n∏
i=1

{dG(vi) + 1} 6
[
1

n

n∑
i=1

{dG(vi) + 1}

]n

=

[
1

n
(2m+ n)

]n
with equality if and only if G is a regular graph, so the desired result follows from
above. �

Corollary 2.1. If G be a r-regular graph with n vertices then

NK(µ(G)) = n(2r(r + 1))
n
.

2.2. Subdivision Graphs. Let G be a connected graph. We are now con-
cerned with the following derived graphs of G by subdividing each edges of G so
that the vertex set of these graphs are equal to V (G) ∪ E(G).

(a) S(G) is obtained from G by replacing each edge of G by a path of length
two.

(b) R(G) is obtained from G by adding a new vertex corresponding to each
edge of G, then joining each new vertex to the end vertices of the corresponding
edge.

(c) Q(G) is obtained from G by inserting a new vertex into each edge of G,
then joining with edges those pairs of new vertices on adjacent edges of G.

(d) T (G) has its vertices the edges and vertices of G. Adjacency in T (G) is
defined as adjacency or incidence for the corresponding elements of G, T (G) is also
called the total graph of G.

We refer the reader to [6, 13, 36, 16] for mathematical properties and ap-
plications of the these subdivision graphs. First we recall the following important
relevant lemma.

Lemma 2.2. (a) For every vertex v ∈ V (G), we have dS(G)(v) = dQ(G)(v) =
dG(v), dR(G)(v) = dT (G)(v) = 2dG(v).

(b) For every vertex v ∈ V (F (G))\V (G), where F = {S,Q,R, T}, we have
dS(G)(v) = dR(G)(v) = 2, dQ(G)(v) = dT (G)(v) = dL(G)(v) + 1.

In the following first we determine the Narumi-Katayama index of the subdivi-
sion graph S(G), then the triangle parallel graph R(G), then the line superposition
graph Q(G) and the total graph T (G) respectively.
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Theorem 2.2. The Narumi-Katayama index of Subdivision graphs S(G), R(G),
Q(G) and T(G) are given by

(a) NK(S(G)) = 2mNK(G).
(b) NK(R(G)) = 2n+mNK(G).
(c) NK(Q(G)) = NK(G)Π1

∗(G).
(d) NK(T (G)) = 2nNK(G)Π1

∗(G).

Proof. (a) Using Lemma 2.2 we have,

NK(S(G)) =
∏

v∈V (S(G))

dS(G)(v)

=
∏

v∈V (G)

dS(G)(v)
∏

v∈V (S(G))\V (G)

dS(G)(v)

=
∏

v∈V (G)

dG(v)
∏

v∈V (S(G))\V (G)

2

= 2mNK(G)

which is the desired result.
(b) By using the facts in Lemma 2.2, we get

NK(R(G)) =
∏

v∈V (R(G))

dR(G)(v)

=
∏

v∈V (G)

dR(G)(v)
∏

v∈V (R(G))\V (G)

dR(G)(v)

= 2m
∏

v∈V (G)

2dG(v)

= 2n+mNK(G).

Hence the desired result follows.
(c) Still using Lemma 2.2, we have

NK(Q(G)) =
∏

v∈V (Q(G))

dQ(G)(v)

=
∏

v∈V (G)

dQ(G)(v)
∏

v∈V (Q(G))\V (G)

dQ(G)(v)

=
∏

v∈V (G)

dG(v)
∏

v∈V (Q(G))\V (G)

{
dL(G)(v) + 2

}
= NK(G)

∏
(u,v)∈E(G)

{dG(u) + dG(v)}

= NK(G)Π1
∗(G).

which is the desired result.
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(d) Again, using Lemma 2.2, we have

NK(T (G)) =
∏

v∈V (T (G))

dT (G)(v)

=
∏

v∈V (G)

dT (G)(v)
∏

v∈V (T (G))\V (G)

dT (G)(v)

=
∏

v∈V (G)

2dG(v)
∏

v∈V (T (G))\V (G)

{
dL(G)(v) + 2

}
= 2nNK(G)

∏
(u,v)∈E(G)

{dG(u) + dG(v)}

= 2nΠ1(G)Π1
∗(G).

Hence the desired result follows. �

Next in the following examples, we present the expressions of Narumi-Katayama
index for subdivision graphs of three different classes of graphs, which are direct
consequence of the previous theorem.

Example 2.1. (i) NK(S(Kn)) = 2
n(n−1)

2 (n− 1)
n
.

(ii) NK(R(Kn)) = 2
n(n+1)

2 (n− 1)
n
.

(iii) NK(Q(Kn)) = 2
n(n−1)

2 (n− 1)
n(n+1)

2 .

(iv) NK(T (Kn)) = 2
n(n+1)

2 (n− 1)
n(n+1)

2 .

Example 2.2. (i) NK(S(Cn)) = 22n.
(ii) NK(R(Cn)) = 23n.
(iii) NK(Q(Cn)) = 23n.
(iv) NK(T (Cn)) = 24n.

Example 2.3. (i) NK(S(Pn)) = 22n−3.
(ii) NK(R(Pn)) = 23n−3.
(iii) NK(Q(Pn)) = 32.23n−8.
(iv) NK(T (Cn)) = 32.24n−8.

2.3. Double Graph and Extended Double cover. In this section, we
find the expressions of the Narumi-Katayama index of double graph and extended
double cover graphs. Let G = (V,E) be a simple connected graph with V =
{v1, v2, ....., vn} . The double graph G∗ of a given graph G is constructed by making
two copies of G (including the initial edge set of each) and adding edges u1v2
and u2v1 for every edge uv of G. The extended double cover of G, denoted by
G∗∗ is the bipartite graph with bipartion (X,Y ) where X = {x1, x2, ....., xn} and
Y = {y1, y2, ....., yn} in which xi and yi are adjacent if and only if i = j. For example
the extended double cover of the complete graph is the complete bipartite graph.
The extended double cover was introduced by Alon in [1]. We refer the reader to
[10, 12, 22] for mathematical properties and applications of the these double graph
and extended double cover graphs. In the following we find the Narumi-Katayama
index of double graph and extended double cover graph respectively.
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Theorem 2.3. Let G be a simple connected graph with order n, then the
Narumi-Katayama index of G∗ is given by

NK(G∗) = 4nNK(G)
2
.

Proof. From the construction of double graph of G it is clear that dG∗(xi) =
dG∗(yi) = 2dG(vi) for i=1,2,,n. Thus the Narumi-Katayama index of the double
graph G∗ is given by

NK(G∗) =
n∏

i=1

dG∗(xi)
n∏

i=1

dG∗(yi) =

{
n∏

i=1

2dG(vi)

}2

= 22nNK(G)
2

which is the desired result. �

Example 2.4. Let G2n be the double graph of Pn. Then the NK-index of G2n

is given by

NK(G2n) = 42(n−1).

Theorem 2.4. The Narumi-Katayama index of G∗∗ satisfies the following in-
equality

NK(G∗∗) 6
(
2m

n
+ 1

)2n

with equality if and only if G is a regular graph.

Proof. If G is a graph with n vertices and m edges then from definition of
extended double cover graph G∗∗ consists of 2n vertices and (n+ 2m) edges and

dG∗∗(xi) = dG∗∗(yi) = dG(vi) + 1

for i = 1, 2, , n. Then using the definition of Narumi-Katayama index, for extended
double cover it is given by

NK(G∗∗) =
n∏

i=1

dG∗∗(xi)
n∏

i=1

dG∗∗(yi) =

{
n∏

i=1

(dG(vi) + 1)

}2

Now using Lemma 2.1 we have{
n∏

i=1

(dG(vi) + 1)

}2

6
(
2m

n
+ 1

)2n

with equality if and only if all the vertices of G are of same degree. This completes
the proof. �

Example 2.5. Let H2n be the double graph of Pn. Then the NK-index of H2n

is given by

NK(H2n) = 16.32(n−2).
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2.4. Thorn Graph. The concept of thorn graph was first introduced by Gut-
man [19] and is obtained by joining a number of edges or thorn to each vertex
of of the given graph G. A thorn graph is denoted by GT , so that V (GT ) =
V (G)∪ V1 ∪ V2 ∪ ...∪ Vn be the vertex set of GT , where Vi, i = 1, 2, ..., n be the set
of vertices of degree one attached to the vertex vi in GT . Let pi be the number of
thorns attached to the vertex vi in GT . Thus if vij denote the vertices of the set Vi

(i = 1, 2, ..., n and j = 1, 2, ..., pi), then dGT (vi) = dG(vi) + pi and |V (GT )| = n+ z

where z =
n∑

i=1

pi. For different study regarding thorn graphs we refer the reader to

[7, 8, 9, 6, 11]. In the following we find an upper bound of the Narumi-Katayama
index of the thorn graph GT and consider some particular cases.

Theorem 2.5. The Narumi-Katayama index of GT satisfies the following in-
equality

NK(GT ) 6
(
2m+ z

n

)n

with equality if and only if dG(v1) + p1 = dG(v2) + p2 = ... = dG(vn) + pn.

Proof. Using the definition of Narumi-Katayama index for thorn graph GT

and using lemma 1, we have

NK(GT ) =
n∏

i=1

dGT (vi) =
n∏

i=1

(dG(vi) + pi)

6
[
1

n

n∑
i=1

(dG(vi) + pi)

]n

=

(
2m+ z

n

)n

Clearly, in the above inequality equality holds if and only if dG(v1)+p1 = dG(v2)+
p2 = ... = dG(vn) + pn. �

Now from the previous theorem the following corollaries are follows.

Corollary 2.2. Let GT be the thorn graph where pi = t, for all i, then

NK(GT ) 6
(m
n

+ t
)n

with equality if G is a regular graph.

Corollary 2.3. Let GT be the thorn graph where pi (> 1) is equal to the
degree of the corresponding vertex vi, for all i, then

NK(GT ) 6
(
3m

n

)n

with equality if G is a regular graph.

Corollary 2.4. Let GT be the thorn graph where dG(vi) + pi = λ, for all i,
then

NK(GT ) =

(
nλ−m

n

)n

.
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2.5. The Subdivision vertex-join graph. The subdivision-vertex join [23]
of two vertex disjoint graphs G1 and G2 with n1 and n2 vertices and m1 and m2

edges is the graph denoted by G1∨̇G2 and is obtained from S(G1) and G2 by joining
each vertices of G1 with every vertex of G2.

Theorem 2.6. The Narumi-Katayama index of G1∨̇G2 satisfies the following
inequality

NK(G1∨̇G2) 6 2m1

[
1

n1
(2m1 + n1n2)

]n1
[
1

n2
(2m2 + n2n1

2)

]n2

with equality if and only if both G1 and G2 are both regular graphs.

Proof. From the definition of subdivision-vertex join of two graphs G1 and
G2 it is clear that,

degG1∨̇G2
(v) =

 dG2(v) + n1, if v ∈ V (G2)
dG1(v) + n2, if v ∈ V (G2)
2, if v ∈ V (S(G1)\V (G2)

Thus the Narumi-Katayama index of subdivision-vertex join of G1 and G2 is given
by

NK(G1∨̇G2) =
∏

v∈V (G1)

dG1∨̇G2
(v)

∏
v∈V (G2)

dG1∨̇G2
(v)

∏
v∈V (S(G)1)\V (G1)

dG1∨̇G2
(v)

=
∏

v∈V (G1)

(dG1(v) + n2)
∏

v∈V (G2)

(dG2(v) + n1)
∏

v∈V (S(G)1)\V (G1)

2

Now using the inequality between arithmetic and geometric mean we have

∏
v∈V (G1)

(dG1(v) + n2) 6

 1

n1

∑
v∈V (G1)

(dG1(v) + n2)

n1

=

[
1

n1
(2m1 + n1n2)

]n1

with equality if and only if G1 is regular. Similarly we have∏
v∈V (G1)

(dG2
(v) + n1) 6

[
1

n2
(2m2 + n2n1)

]n2

with equality if and only if G2 is a regular graph . Hence from above the desired
result follows. �

Corollary 2.5. If Gi be a ri-regular graph for i = 1, 2 then the Narumi-
Katayama index of G1∨̇G2 is given by

NK(G1∨̇G2) = 2
n1r1

2 (r1 + n2)
n1(r2 + n1)

n2 .

Example 2.6. NK(Kp∨̇Kq) = 2
p(p−1)

2 (p+ q − 1)
p
(p+ q − 1)

q
.
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2.6. The Subdivision edge-join graph. The subdivision-edge join [23] of
two vertex disjoint graphs G1 and G2 with n1 and n2 vertices and m1 and m2 edges
is the graph denoted by G1 Y G2 and is obtained from S(G1) and G2 by joining
each vertices of S(G1)\V (G1) with every vertex of G2.

Theorem 2.7. The Narumi-Katayama index of G1 YG2 satisfies the following
inequality

NK(G1 YG2) 6 NK(G1)(2 + n2)
m1

(
2m2

n2
+m1

)n2

with equality if and only if G2 is regular.

Proof. From the definition of subdivision-vertex join of two graphs G1 and
G2 it is clear that [23],

dG1YG2(v) =

 dG1(v), if v ∈ V (G1)
dG2(v) +m1, if v ∈ V (G2)
2 + n2, if v ∈ V (S(G1)\V (G2)

Thus the Narumi-Katayama index of subdivision-vertex join of G1 and G2 is given
by

NK(G1 YG2) =
∏

v∈V (G1)

dG1YG2(v)
∏

v∈V (G2)

dG1YG2(v)
∏

v∈V (S(G)1)\V (G1)

dG1YG2(v)

=
∏

v∈V (G1)

dG1(v)
∏

v∈V (G2)

(dG2(v) +m1)
∏

v∈V (S(G)1)\V (G1)

(2 + n2)

= NK(G1)(2 + n2)
m1

∏
v∈V (G2)

(dG2(v) +m1).

Now using the Lemma 1, we have

∏
v∈V (G2)

(dG2(v) +m1) 6

 1

n2

∑
v∈V (G2)

(dG2(v) +m1)

n2

=

[
1

n2
(2m2 + n2m1)

]n2

with equality if and only if G2 is a regular graph. Hence the desired result follows
from above. �

Corollary 2.6. If G2 be a r-regular graph and G1 be any arbitrary graph,
then the Narumi-Katayama index of G1YG2 is given by

NK(G1 YG2) = NK(G1)(r +m1)
n2(2 + n2)

m1 .

3. Conclusion

In this paper, we compute Narumi-Katayama index of several classes of derived
graphs such as Mycielski graph, subdivision graphs, double graph, extended double
cover graph, thorn graph, subdivision vertex join and edge join graphs. For fur-
ther study, Narumi-Katayama index of some other derived graphs and for different
composite graphs can be computed.
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