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Abstract. In this paper, we propose a new method to find weighted Moore-

Penrose inverse of matrices. Every iteration of the method involves four matrix
multiplications. It is proved that this method converge with fourth-order.
The discussions cover both theoretical and computational aspects. A wide
set of numerical comparisons of our method with other methods shows that

the average number of matrix multiplications and the average CPU time of
proposed method are considerably less than those of other methods both in
computing Moore-Penrose inverse and weighted Moore-Penrose inverse. So,
our new method can be considered as a fast method. For each of the sizes

m × (m + 50), m = 100, 200, 300, 400, 500, ten dense matrices were chosen
randomly to make these comparisons.

1. Introduction

In numerical mathematics, there is an interest in applications of the general-
ized inverses of matrices or operators. In fact, many computational and theoretical
problems require different types of generalized inverses, when a matrix is singular
or rectangular [1]. One of the most important generalized inverses is the so-called
Weighted Moore-Penrose inverse (or, WMP inverse, for short) of a complex ma-
trix. The introduction and importance of weighted Moore-Penrose inverse for an
arbitrary matrix has been made in [1,5,17].

Let A ∈ Cm×n,M ∈ Cm×m and N ∈ Cn×n be complex matrices, whereM and
N are invertible. A matrix X ∈ Cn×m is said to be the WMP inverse of A with
respect to M and N , and denoted by A†

MN , if the following four weighted Penrose
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equations are satisfied

(1.1) AXA = A, XAX = X, (MAX)∗ =MAX, (NXA)∗ = NXA,

in which ∗ denotes the conjugate transpose. It is proved that the WMP inverse

A†
MN uniquely exists when M and N are Hermitian positive definite matrices [1].

Throughout this work, we consider that the matrices M and N to be Hermitian
positive define and subsequently the WMP inverse is uniquely defined.

In particular, when M = Im and N = In, the matrix X is called the Moore-
Penrose inverse or the generalized pseudo-inverse of A and is denoted by A†, while
(2.4) reduced to the well-known Penrose equations originally attributed to [11] in
the following form:

(1.2) AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.

The WMP inverse is viewed as a generalized Moore-Penrose inverse, and is
widely used in control system analysis, statistics, singular differential and differ-
ence equations, Markov chains, iterative methods, weighted least-squares problems,
perturbation theory, neural network problems and many other subjects found in
the literatures (see, e.g. [2,6,9,10,21]).

Algorithms for computing the (weighted) Moore-Penrose inverse of a matrix
are a subject of current research (see, e.g., [8,12,14,16,18,22]). Greville’s parti-
tioning method for numerical computation of generalized inverses was introduced
in [4]. Wang in [20] generalized Greville’s method to the weighted Moore-Penrose
inverse. Many numerical algorithms for computing the (weighted) Moore-Penrose
inverse lack numerical stability. The Greville’s algorithm requires more operations
and consequently it accumulates more rounding errors. Furthermore, it is widely
known that the Moore-Penrose inverse is not necessarily a continuous function of the
elements of the matrix. The existence of this discontinuity provides more burden in
its computation [1]. It is therefore clear that cumulative round-off errors should be
totally eliminated, which is possible only by means of the symbolic implementation.
In this case, variables are stored in the ”exact” form or can be left ”unassigned”,
resulting in no loss of accuracy during the calculation. Anyway, by increasing the
dimension of the input matrix, the computation of its (weighted) MoorePenrose
inverse by the symbolic implementation will take too much time. This made some
numerical analysts to suggest and rely on numerically stable matrix methods.

We denote the weighted conjugate transpose matrix of A by

A# = N−1A∗M.

Also, Ik denotes the identity matrix of the order k. A basic method to find the
WMP inverse is based on the weighted singular value decomposition [19] as follows.
Suppose that rank(A) = r. It is shown there exist U ∈ Cm×m and V ∈ Cn×n,
satisfying U∗MU = Im and V ∗N−1V = In, such that

(1.3) A = U

[
D 0
0 0

]
V ∗,

in which
D = diag(σ1, . . . , σr), σ1 > · · · > σr > 0,
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and σ2
1 , . . . , σ

2
r are the nonzero eigenvalues of A#A. Then, the WMP inverse A†

MN

could be defined by

(1.4) A†
MN = N−1V

[
D−1 0
0 0

]
U∗M.

Furthermore,

(1.5) ∥A∥MN = σ1, ∥A†
MN∥NM =

1

σr
,

in which ∥A∥MN = ∥M 1
2AN− 1

2 ∥2.
The restrictions of computing the WMP inverse using weighted singular value

decomposition encouraged some to develop iteration methods for this purpose. In
2006, Huang and Zhang [8] applied the Schulz iterative method [13]

(1.6) Xk+1 = Xk(2I −AXk), k = 0, 1, 2, . . . ,

to find the WMP inverse using the initial approximation

(1.7) X0 = αA#, 0 < α <
2

σ2
1

.

The Schulz iteration involves only matrix multiplications. The rate of convergence
is quadratic, since for the residual matrix Ek = I −AXk we have Ek+1 = E2

k. This
iteration is numerically stable but for the approximations Xk that are remote from
the solution, convergence can be slow. This made the construction of higher order
iterative methods. In [15], authors stated that the eighth-order convergence, based
on Householder’s method [7], can be obtained with only six matrix multiplications
by the formula

(1.8)

ψk = AXk

ζk = ψk(−2I + ψk)

υk = 2I + ζk

Xk+1 = −Xk(−2I + ψk)υk(2I + ζkυk), k = 0, 1, . . . ,

in which X0 is defined as (1.7).
In this paper, we propose a new method to find WMP inverse. Every iteration

of the method involves four matrix multiplications. It is proved that this method
always converge with fourth-order. Numerical experiments show the efficiency of
our method with respect to the methods (1.6) and (1.8). Indeed, instead of con-
structing a higher order method, we focus on the reduction of the total number
of matrix multiplications, and hence, on reduction of the CPU time required to
convergence. This leads to a fast iterative method. Toward this goal, a theoretical
discussion will be also given to show the behavior of the proposed scheme.

The rest of this paper is organized as follows. In Section 2, we propose our
new method to find the WMP inverse and we prove that it is converge with fourth-
order. In Section 3, some numerical examples are given to show the performance
of the presented method compared with other methods both in computing Moore-
Penrose inverse and weighted Moore-Penrose inverse. For each of sizesm×(m+50),
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m = 100, 200, 300, 400, 500, ten dense matrices were chosen randomly to make these
comparisons. Finally, some conclusions are outlined in Section 4.

2. A new method to find the WMP inverse

In this section, we investigate our iterative method to compute the WMP in-
verse. To this goal, consider the following polynomial

(2.1) g(x) = 12x− 38x2 + 52x3 − 33x4 + 8x5.
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y

 y = g(x)
 y = x 

Figure 1. Graphs of the line y = x and the function y = g(x).

We can find that the real fixed points and the critical points of g(x) as follows:

g(x) = x =⇒ x = 0, 1, 1 + γ,

g′(x) = 0 =⇒ x = 0.3 , 1, 1, 1,

in which

γ =
1

24
− 23

24(829 + 12
√
4857)1/3

+
1

24
(829 + 12

√
4857)1/3 ≈ 0.45

Noting g′′(0.3) = −13.72 < 0 and g(4)(1) = 168 > 0, we can deduce that x = 0.3
is a local maximizer and x = 1 is a local minimizer of g(x). On the other hand,
g(0) = 0 < 1 = g(1) and g(0.3) ≈ 1.33 < 1 + γ = g(1 + γ). Therefore, x = 0, 1
and x = 0.3, 1 + γ are minimizer and maximizer of g(x) in the interval [0, 1 + γ],
respectively. Moreover, the interval [0, 1 + γ] maps into itself by the function g(x).

In the following theorem, it is proved that the sequence xk+1 = g(xk) is fourth-
order convergent to x = 1 for any x0 ∈ (0, 1 + γ).
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Theorem 2.1. For any initial point x0 ∈ (0, 1+γ), the sequence xk+1 = g(xk)
is fourth-order convergent to x = 1, in which the function g(x) is defined by (2.1).

Proof. We know that the function g(x) maps the interval [0, 1+γ] into itself.
Considering an arbitrary initial point x0 ∈ (0, 1 + γ), one can easily obtain the
following considerations (For clarification, see Figure 1):

• The unique solution of the equation g(x) = 1 in the interval [0, 1) is 1
8 .

• g(x) is increasing in the interval (0, 18 ). Therefore, if xk ∈ (0, 18 ), for some

k, then there exists an index k0 > k such that either xk0 = 1
8 , and so

xk0+1 = 1, or xk0+1 ∈ ( 18 , 1).

• If xk ∈ ( 18 , 1), for some k, then xk+1 ∈ (1, 1 + γ).
• If xk ∈ (1, 1 + γ), for some k, then the sequence {xk+s}s>1 ⊆ [1, 1 + γ) is
a strictly decreasing sequence converging to x = 1.

Noting the above considerations, we can conclude that the sequence xk+1 = g(xk)
is convergent to x = 1. On the other hand,

g′(1) = g′′(1) = g′′′(1) = 0

implies that the convergence is fourth-order (See [3]). �

Using iteration function (2.1), we obtain the following iterative method to find

A†
MN :

Xk+1 = Xk

[
12I − 38(AXk) + 52(AXk)

2 − 33(AXk)
3 + 8(AXk)

4
]
,

that can be rewrite as follows:

(2.2)

ψk = AXk

ζk = ψ2
k

Xk+1 = Xk [12I − 38ψk + ζk(52I − 33ψk + 8ζk)] , k = 0, 1, . . . .

The iterative method (2.2) falls within the domain of methods for matrix in-
version. It requires an initial matrix to start the process and can rapidly converge,
which is an advantage over the existing methods. An important challenge when
applying iterative methods for finding the WMP is related to the initial matrix.
Here, the initial matrix plays a very crucial significance to provide convergence.
Accordingly, we must apply the following initial matrix

(2.3) X0 = βA#,

where β is a suitable constant.
In the sequel, we first give a mathematical analysis to observe that under which

conditions, (2.2) converges.

Lemma 2.1. For the sequence {Xk} generated by (2.2) with the initial matrix
(2.3), it holds that

(2.4)
(MAXk)

∗ =MAXk, (NXkA)
∗ = NXkA,

XkAA
†
MN = Xk, A†

MNAXk = Xk.
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Proof. We will prove the conclusion by induction on k. For k = 0, and using
(2.3), the first two equations can be verified easily. So, we only give a verification to

the last two equations. Using the facts that (AA†
MN )# = AA†

MN and (A†
MNA)

# =

A†
MNA, we have

X0AA
†
MN = βA#AA†

MN = βA#(AA†
MN )# = β(AA†

MNA)
# = βA# = X0,

A†
MNAX0 = βA†

MNAA
# = β(A†

MNA)
#A# = β(AA†

MNA)
# = βA# = X0.

Assume now that the conclusion holds for some k > 0. We show that it continues
to hold for k + 1. Using the iterative method (2.2), one has

(MAXk+1)
∗ =

(
MAXk(12I − 38ψk + 52ψ2

k − 33ψ3
k + 8ψ4

k)
)∗

= 12(Mψk)
∗ − 38(Mψ2

k)
∗ + 52(Mψ3

k)
∗ − 33(Mψ4

k)
∗ + 8(Mψ5

k)
∗

= 12Mψk − 38Mψ2
k + 52Mψ3

k − 33Mψ4
k + 8Mψ5

k

=MAXk(12I − 38ψk + 52ψ2
k − 33ψ3

k + 8ψ4
k)

=MAXk+1,

which uses the fact that (Mψk)
∗ =Mψk, M is Hermitian positive definite (M∗ =

M), and also e.g.,

(Mψ2
k)

∗ = ψ∗
k(Mψk)

∗ = ψ∗
k(Mψk) = ψ∗

kM
∗ψk = (Mψk)

∗ψk =Mψkψk =Mψ2
k.

Thus, the first equality in (2.4) holds for k + 1, and the second equality can be
proved in a similar way. For the third equality in (2.4), using the assumption that

XkAA
†
MN = Xk or equivalently ψkAA

†
MN = ψk and the iterative method (2.2), we

could write down

Xk+1AA
†
MN = Xk(12I − 38ψk + 52ψ2

k − 33ψ3
k + 8ψ4

k)AA
†
MN

= 12XkAA
†
MN − 38XkψkAA

†
MN + 52XkψkψkAA

†
MN

−33Xkψ
2
kψkAA

†
MN + 8Xkψ

3
kψkAA

†
MN

= 12Xk − 38Xkψk + 52Xkψkψk − 33Xkψ
2
kψk + 8Xkψ

3
kψk

= Xk(12I − 38ψk + 52ψ2
k − 33ψ3

k + 8ψ4
k)

= Xk+1.

Consequently, the third equality in (2.4) holds for k + 1. The fourth equality can
similarly be proved, and the desired result follows. �

Lemma 2.2. Let A is the matrix (1.3) and take X0 as (2.3). Considering the
conditions of Lemma 2.1, for each approximate inverse produced by (2.2), it holds
that

(N−1V )−1Xk(U
∗M)−1 =

[
Dk 0
0 0

]
,

in which Dk is a diagonal matrix.
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Proof. Using relation (1.3) and definition of A#, we have

X0 = βA# = (N−1V )

[
D0 0
0 0

]
(U∗M),

in which

D0 = βD

is a diagonal matrix. Therefore,

(N−1V )−1X0(U
∗M)−1 =

[
D0 0
0 0

]
.

Now, the principle of mathematical induction and Lemma 2.1 lead to

(N−1V )−1Xk(U
∗M)−1 =

[
Dk 0
0 0

]
,

in which Dk is the following diagonal matrix:
(2.5)
Dk+1 := φ(Dk) = Dk

[
12I − 38(DDk) + 52(DDk)

2 − 33(DDk)
3 + 8(DDk)

4
]
.

This complete the proof. �

In the following theorem, we prove that the method (2.2) is fourth-order con-
vergent.

Theorem 2.2. Assume that A is a m×n matrix whose weighted singular value
decomposition is given by (1.4). Let furthermore that the initial matrix is available
by (2.3) in which

(2.6) 0 < β <
7

5σ2
1

.

Then, the sequence of iterates produced by (2.2) converges to the WMP inverse

A†
MN with fourth-order.

Proof. By considering (1.4) and in order to establish this result, we must
show that

(2.7) lim
k→∞

(N−1V )−1Xk(U
∗M)−1 =

[
D−1 0
0 0

]
.

Let

Dk = diag(d
(k)
1 , . . . , d(k)r ),

in which

d
(0)
i = βσi, i = 1, . . . , r.

It follows from Lemma 2.2 and relation (2.5) that
(2.8)

d
(k+1)
i = φ(d

(k)
i ) = d

(k)
i

[
12− 38σid

(k)
i + 52(σid

(k)
i )2 − 33(σid

(k)
i )3 + 8(σid

(k)
i )4

]
.

Take t
(k)
i = σid

(k)
i . Then, t

(k+1)
i = g(t

(k)
i ) and, regarding (2.6), t

(0)
i = βσ2

i ∈ (0, 75 ).

According to Theorem 2.1, we have lim
k→∞

t
(k)
i = 1 with fourth-order. Thus, d

(k)
i →
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σ−1
i with fourth-order, too. This shows the fourth-order of convergence for the

presented method (2.2). The proof is complete. �

3. Numerical experiments

In this section, we will make some numerical comparisons of our proposed
method (2.2) with the method (1.8) and Schulz method (1.6). To do so, we focus on
the total number of matrix multiplications and CPU times required for convergence.
We compare the behavior of different methods for some randomly generated dense
matrices.

All tests were carried out with a Matlab code, while the computer specifications
are Microsoft Windows XP Intel(R), Pentium(R) 4, CPU 3.2 GHz, with 2 GB of
RAM.

Consider the initial matrix X0 according to (2.3), with β from (2.6). Since
σ2
1 is a (the largest) eigenvalue of A#A, we have σ2

1 6 ∥A#A∥∞ 6 ∥A#∥∞ ∥A∥∞.
Therefore, the selection

β =
1

∥A#∥∞ ∥A∥∞
satisfies both in (1.7) and (2.3). The stop criterion is

∥Xk+1 −Xk∥∞
1 + ∥Xk∥∞

< 10−7

and the maximum number of iterations is set to 100 in our written codes as the
maximum number of cycle for the methods considered in comparisons.

We present two different types of tests. Test 1 is devoted to compare the
schemes for finding the weighted Moore-Penrose inverse, while test 2 gives some
comparison for finding the Moore-Penrose inverse.

Test 1. In this test, we compute the weighted Moore-Penrose inverse of randomly
generated dense matrix A of the size m× n, n = m+ 50, as follows:

A = 10 rand(m,n)− 10 rand(m,n),

where different Hermitian positive definite matrices M and N (which have also
been constructed randomly) are in what follows:

M = qr(10 rand(m,m)− 10 rand(m,m)), M =M∗M ;

N = qr(10 rand(n, n)− 10 rand(n, n)), N = N∗N.

For each m = 100, 200, 300, 400, 500, we have performed 10 tests and compared
the average values of the matrix multiplications and the elapsed times in seconds.
The results of comparisons are reported in Fig. 2, in terms of the number of matrix
multiplications, and the computational time (in seconds) in Fig. 3. We observe
that method (2.2) is better than others both in number of matrix multiplications
and CPU time.
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Figure 2. The average number of matrix multiplications to compute the
weighted Moore-Penrose inverse by different methods
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Figure 3. The average elapsed times to compute the weighted Moore-Penrose
inverse by different methods

Test 2. In this test, we compute the Moore-Penrose inverse of randomly generated
dense matrix A of the size m× n, n = m+ 50, as follows:

A = 10 rand(m,n)− 10 rand(m,n).
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Again, for each m = 100, 200, 300, 400, 500, we have performed 10 tests and com-
pared the average values of the matrix multiplications and the elapsed times in
seconds. The results of comparisons are reported in Fig. 4, in terms of the number
of matrix multiplications, and the computational time (in seconds) in Fig. 5. We
observe that method (2.2) is better than others both in number of matrix multipli-
cations and CPU time.
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Figure 4. The average number of matrix multiplications to compute the Moore-
Penrose inverse by different methods
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Figure 5. The average elapsed times to compute the Moore-Penrose inverse by
different methods
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4. Conclusions

In this paper, we proposed a new method to find the weighted Moore-Penrose
inverse. It is proved that this method converge with fourth-order. Although our
method is not a higher order scheme, a wide set of random numerical experiments
showed that its number of matrix multiplications and its CPU time are considerably
less than those of higher order methods. So, our method could be considered as an
efficient method.
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ing weighted Moore-Penrose inverse, Comput. Math. Appl. 55(8)(2008), 1720–1734.
[13] G. Schulz, Iterative Berechnung der reziproken matrix, Z. Angew. Math. Mech. 13(1)(1933),

57–59.
[14] S. K. Sen, H. Agarwal and S. Sen, Chemical equation balancing: an integer programming

approach, Math. Comput. Model. 44(7-8)(2006), 678–691.
[15] F. Soleimani, F. Soleymani, A. Cordero and J.R. Torregrosa, On the extension of House-

holder’s method for weighted Moore-Penrose inverse, Appl. Math. Comput. 231(2014), 407–
413.

[16] F. Soleymani, On a fast iterative method for approximate inverse of matrices, Commun.

Korean Math. Soc. 28(2)(2013), 407–418.
[17] W. Sun and Y. Wei, Inverse order rule for weighted generalized inverse, SIAM J. Matrix

Anal. Appl. 19(3)(1998), 772–775.
[18] M.Z. Ullah, F. Soleymani and A.S. Al-Fhaid, An efficient matrix iteration for computing

weighted Moore-Penrose inverse, Appl. Math. Comput. 226(2014),441–454.

279



[19] C.F. Van Loan, Generalizing the singular value decomposition, SIAM J. Numer. Anal.
13(1)(1976), 76–83.

[20] G.R. Wang, A new proof of Greville’s method for computing the weighted MP inverse, J.

Shanghai Normal University (Nat. Sci.), 3(1985), 32–38.
[21] Y. Wei, Perturbation bound of singular linear system, Appl. Math. Comput. 105(2-3)(1999),

211–220.
[22] L. Weiguo, L. Juan, Q. Tiantian, A family of iterative methods for computing Moore-Penrose

inverse of a matrix, Linear Algebra Appl. 438(1)(2013), 47–56.

Received by editor 31.07.2016; Available online 05.09.2016.

Department of Mathematics, Bu-Ali Sina University, Hamedan, Iran
E-mail address: esmaeili@basu.ac.ir

Department of Mathematics, Bu-Ali Sina University, Hamedan, Iran

E-mail address: rerfanifar92@basu.ac.ir

Department of Mathematics, Bu-Ali Sina University, Hamedan, Iran

E-mail address: mrashidi94@basu.ac.ir

280


