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Inequalities Involving Hyperbolic Functions and
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Edward Neuman

Abstract. Several inequalities involving trigonometric and hyperbolic func-
tions are derived. Main results are obtained with the aid of certain inequal-
ities for the Schwab-Borchardt mean and the new bivariate mean introduced

recently by this author in [25].

1. Introduction

In recent years a significant progress has been made in the area of inequalities
involving circular functions, hyperbolic functions and their inverse functions as
well. A list of published research papers which deal with this topic is too long to be
included here. The interested reader is referred to [1, 5, 10, 12, 15, 16, 32, 33, 34]
and the references therein.

In particular, the following results

(1.1) 1 <
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)
and

(1.2) 1 <
1

2

[( sinx

x

)2

+
tanx

x

]
(0 < |x| < π/2) have attracted attention of several researchers. Inequalities (1)
and (2) have been obtained, respectively, by C. Huygens [7] and J.B. Wilker [37].
Several proofs of these results can be found in mathematical literature (see, e.g.,
[4, 6, 15, 19, 30, 38, 39, 40, 41, 42] and the references therein). In [30]
the authors called inequalities (1) and (2) the first Huygens and the first Wilker
inequalities, respectively, for the trigonometric functions.
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The second Huygens and the second Wilker inequalities for the trigonometric
functions also appear in mathematical literature. They read, respectively, as follows
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(0 < |x| < π/2). For the proofs of the last two results the interested reader
is referred to [30] and [38], respectively. Counterparts of inequalities (1)-(4) for
hyperbolic functions also appear in mathematical literature. Recently the Huygens
and Wilker type inequalities have been proven for the lemniscate functions (see
[20]), generalized trigonometric functions (see [8]) Jacobian elliptic functions (see
[11, 14, 21]) and for the Jacobian theta functions (see [21]).

Inequalities (1) and (2) follow easily from the left inequality in

(1.5) (cosx)1/3 <
sinx

x
<

cosx+ 2

3

(0 < |x| < π/2) which has been established by D.D. Adamović and D.S. Mitrinović
(see, e.g., [9]). The second inequality in (5) is due to N. Cusa and C.Huygens (see
[7] for more details regarding this result).

This paper is the second part of our paper [15] and is organized as follows.
In Section 2 we give definitions of some bivariate means. Among means included
there the Schwab-Borchardt mean and a new mean introduced recently by this
author play a crucial role in proofs of the main results of this paper. The latter
are presented in Section 3. Altogether about a dozen of new inequalities for the
trigonometric and hyperbolic functions are established.

2. Bivariate means used in this paper

In what follows the letters a and b will always stand for positive and unequal
numbers.

The important mean utilized in this paper is called the Schwab-Borchardt mean
and is defined as follows:

(2.1) SB(a, b) ≡ SB =


√
b2 − a2

cos−1(a/b)
if a < b,

√
a2 − b2

cosh−1(a/b)
if b < a

(see, e.g., [2], [3]). It is well known that the mean SB is strict, nonsymmetric and
homogeneous of degree one in its variables.

Another bivariate mean used in this paper is defined as follows:

(2.2) N(a, b) ≡ N =
1

2

(
a+

b2

SB(a, b)

)
(see [25]). It’s easy to see that mean N is also strict, nonsymmetric and homoge-
neous of degree one in its variables.
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We will give now another formula for mean SB (see [25]):

(2.3) SB(a, b) ≡ SB =


b
sin r

r
= a

tan r

r
if a < b,

b
sinh s

s
= a

tanh s

s
if b < a,

where

(2.4) cos r = a/b if a < b and cosh s = a/b if a > b.

For the later use let us also record similar formulas for the mean N . We have
([25]

(2.5) N(a, b) ≡ N =
1

2
b
(
cos r +

r

sin r

)
=

1

2
a
(
1 +

r

sin r cos r

)
provided a < b. Similarly, if a > b, then

(2.6) N(a, b) ≡ N =
1

2
b
(
cosh s+

s

sinh s

)
=

1

2
a
(
1 +

s

sinh s cosh s

)
.

In what follows he symbols G, A, and Q will be used to denote, respectively,
the geometric, arithmetic, and the root-square means of a and b. Recall that

G =
√
ab, A =

a+ b

2
, Q =

√
a2 + b2

2
.

For the sake of presentation let us recall definitions of certain bivariate means
of a and b.

Two Seiffert means P and T are defined as follows:

(2.7) P = A
v

sin−1 v
, T = A

v

tan−1 v

(see [35] and [36]), where

v =
a− b

a+ b
.

Clearly 0 < |v| < 1. We shall also use the logarithmic mean L and the Neuman-
Sándor mean M , introduced in [28] and studied in [13, 17, 18, 22, 23, 29, 31].
The last two means are defined as follows

(2.8) L =
a− b

log a− log b
= A

v

tanh−1 v
, M = A

v

sinh−1 v
.

It is known (see [28]) that

(2.9) G < L < P < A < M < T < Q.

Thus the means listed in the last chain are comparable. Moreover, four means
which appear in (8) and (9) are generated by the Schwab-Borchardt mean. The
following result

(2.10)
L = SB(A,G), P = SB(G,A),

M = SB(Q,A), T = SB(A,Q)

has been established in [28].
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In what follows, let k > 1. The following means

(2.11) Λk ≡ Λk(a, b) = A(1− 1

k
v2)

and

(2.12) Ωk ≡ Ωk(a, b) = A(1 +
1

k
v2).

have been introduced in [24].

3. Main results

In this section we shall establish several inequalities for functions under discus-
sion. Those results are obtained with the aid of inequalities satisfied by bivariate
means included in the previous section.

Our first result reads as follows

Theorem 3.1. The following inequality

(3.1)
1 + 2 cosh t

2 + cosh t
<

sinh t

t

(0 < |t| < arcsinh (1)) is valid.

Proof. In order to prove the desired result we shall utilize the following in-
equality

2Q+A

Q+ 2A
<

M

A

which is established in [26]. This is equivalent to the inequality

2
√
1 + v2 + 1√
1 + v2 + 2

<
v

sinh−1 v
.

Here we have used a formula Q = A
√
1 + v2 and the last part of (13). We let now

v = sinh t. Then the inequality 0 < |v| < 1 implies that 0 < |t| < sinh−1(1). The
proof is complete. �

In the proof of the next result we shall employ the following result established
in [27]

(3.2) SB(b, a) < A < N(a, b), if a < b

and

(3.3) N(a, b) < A < SB(b, a), if a > b.

We are in a position to prove the following result

Theorem 3.2. If 0 < |t| < π/2, then

(3.4)
sin t

tanh−1(sin t)
<

1 + cos t

2
<

1

2

(
cos t+

t

sin t

)
.

Moreover, if t ̸= 0, then

(3.5)
1

2

(
cosh t+

t

sinh t

)
<

1 + cosh t

2
<

sinh t

sin−1(tanh t)
.
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Proof. Inequality (21) can be obtained using (19) with a = cos t and b = 1.
Making use of (6) and (7) we easily obtain

(3.6) SB(1, cos t) =
sin t

tanh−1(sin t)

and

(3.7) N(cos t, 1) =
1

2

(
cos t+

t

sin t

)
.

The assertion now follows from (20). We shall now prove that the inequality (22)
holds true using (20) with a = cosh t and b = 1 To this aim we employ formulas
(6), (7), (10) and (11) to obtain

(3.8) N(cosh t, 1) =
1

2

(
cosh t+

t

sinh t

)
and

(3.9) SB(1, cosh t) =
sinh t

cos−1(1/ cosh t)
=

sinh t

sin−1(tanh t)
.

The desired result now follows using (20). �

We shall establish now the following

Theorem 3.3. Let 0 < |t| < π/2. Then

(3.10) 3 + cos2 t
tanh−1(sin t)

sin t
< 2

(
cos t+

t

sin t

)
.

Also, if t ̸= 0, then

(3.11) 3 + cosh2 t
sin−1(tanh t)

sinh t
< 2

(
cosh t+

t

sinh t

)
.

Proof. We shall prove both inequalities (27) and (28) using the following one
(see [26])

(3.12) b+N(b, a) < 2N(a, b)

which holds true for all a ̸= b. Using (7) we write (29) as follows

(3.13) 3b+
a2

SB(b, a)
< 2

(
a+

b2

SB(a, b)

)
.

We let in (6) a = cos t and b = 1 to obtain

(3.14) SB(cos t, 1) =
sin t

t

and employ (23) to obtain, with the aid of (30), the desired result (27). Inequality
(28) can be established in a similar manner. We use (30) with a = cosh t and b = 1
followed by application of (26) and an easy to verify formula

(3.15) SB(cosh t, 1) =
sinh t

t

to obtain the asserted result. The proof is complete. �
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It is worth mentioning that the left hand sides of (27) and (28) are greater than
the functions

4
2 + cos t

3
and

4
2 + cosh t

3
,

respectively. The last two inequalities follow easily from the following one

a+ 2b

3
<

b+N(b, a)

2

(see [26]). We leave the proofs to the interested readers.
Our next result reads as follows

Theorem 3.4. The following inequality

(3.16) 2
t

sin t
< 1 +

sin t

t

( 2

1 + cos t

)2
.

is valid provided 0 < |t| < π/2. A similar inequality

(3.17) 2
t

sinh t
< 1 +

sinh t

t

( 2

1 + cosh t

)2
.

also holds true for all t ̸= 0.

Proof. We shall establish first (33). To this aim let us introduce a mean

U = SB(1− u, 1 + u),

where 0 < |u| < 1. Letting

u =
1− cos t

1 + cos t
we have

(3.18) U = SB
( 2 cos t

1 + cos t
,

2

1 + cos t

)
=

2

1 + cos t
SB(cos t, 1).

Let us record an equation

(3.19) U =
2

1 + cos t

sin t

t
.

In these computations we have utilized homogeneity of SB and formula (31), as
well. We use now the invariance property of the Schwab-Borchardt mean

SB(a, b) = SB(A,
√
Ab)

(see [3]) to obtain

U = SB(1− u, 1 + u) = SB(1,
√
1 + u) = SB(1,

√
λ),

where

(3.20) λ = 1 + u =
2

1 + cos t
.

Next we shall utilize the inequality

(ab2)1/3 < SB(a, b)
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(see [28]) to obtain λ1/3 < U or what is the same that

1 <
U

λ
U2.

Application of the inequality of arithmetic and geometric means yields

1 <
1

2
(
U

λ
+ U2).

This in conjunction with (36) and (37) yields the assertion. Proof of the inequality
(34) is very similar to the one presented above. First we define a mean

V = SB(1 + u, 1− u),

where now we let

u =
cosh t− 1

cosh t+ 1
.

From now it suffices to follow the lines used earlier. The proof is completed. �

We close this section with two inequalities involving two circular and two hy-
perbolic functions.

Theorem 3.5. Let f(t) stands either for sin(t) (0 < |t| < π/2) or for sinh(t)
(0 < |t| < sinh−1(1)). Then

(3.21)
f(t)

t
<

6

6 + f2(t)

Further let g(t) stands either for tan(t) (0 < |t| < π/4) or for tanh(t) (t ̸= 0).
Then

(3.22)
g(t)

t
<

3

3− g2(t)
.

Proof. To obtain the desired results we shall utilize some inequalities satisfied
by the means Ωk and Λk defined in (17) and (16), respectively. It has been proven
in [24, (4.4)] that

PΩ6 < A2

where the first Seiffert mean P is defined in (12) and Ω6 = A
(
1 +

1

6
v2
)
(see (17)).

This implies the inequality

v

sin−1 v

(
1 +

1

6
v2
)
< 1.

Letting v = sin t (0 < |t| < π/2) we obtain inequality (39) for f(t) = sin t. In order
to establish inequality (39) for f(t) = sinh(t) we utilize the following one

MΛ6 < A2,

(see [24, (4.4)]), where the formula for M is included in (13). Making use of (16)

we get Λ6 = A
(
1 +

1

6
v2
)
. This yields

v

sinh−1 v

(
1 +

1

6
v2
)
< 1.
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A substitution v = sinh t, where

(3.23) 0 < |t| < sinh−1(1)

gives the asserted result. Let us note that the two-sided inequality (41) follows from
the simultaneous inequality 0 < |v| < 1. We shall prove now the second assertion.
To this aim we employ the inequality

TΛ3 < A2,

(see [24, (4.2)]), where the formula for T is included in (12). Making use of (16)

with k = 3 yields Λ3 = A
(
1− 1

3
v2
)
. Hence

v

tan−1 v

(
1− 1

3
v2
)
< 1.

Letting v = tan t and taking into account that 0 < |v| < 1 we obtain the desired
inequality when g(t) = tan t. To complete the proof of the inequality (39) with
g(t) = tanh t we use the inequality LΩ3 < A2 (see [24, (4.1)]) and follow the lines
already used above. We omit further details. �
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