# BI-IDEALS IN $\Gamma$-SEMIRINGS 

R.D. Jagatap and Y.S. Pawar


#### Abstract

The concept of a bi-ideal in a $\Gamma$-semiring is introduced. Properties of bi-ideals in a regular $\Gamma$-semiring are studied. Bi-ideals are used to characterize special types of $\Gamma$-semirings viz intra-regular $\Gamma$-semiring,duo $\Gamma$-semiring, simple $\Gamma$-semiring, bi-simple $\Gamma$-semiring, division $\Gamma$-semiring.


## 1. Introduction

The class of $\Gamma$-rings were introduced by Nobusawa ([8]) contains not only rings but also ternary rings $([\mathbf{1 1}])$. As a generalization of a ring, the concept of a semiring was introduced and studied in detail by Vandiver ([14]). A $\Gamma$-semiring was introduced by Rao ( $[\mathbf{9}]$ ) as a generalization of the concepts of ring, $\Gamma$-ring and semiring.

Ideals play an important role in algebraic structures. Steinfeld coined the concept of a quasi-ideal in a semigroup ([12]) and in a ring ([13]). Semiring being a generalization of a ring, Iseki $([4])$ introduced the notion of a quasi-ideal in a semiring without zero. Shabir, Ali, Batool in [10] characterized semiring by using the concept of a quasi-ideal. As $\Gamma$-semiring is an extension of a semiring, Chinram ([1]) successfully extended the concept of a quasi-ideal to a $\Gamma$-semiring. Authors in [5] discussed some properties of quasi-ideals and minimal quasi-ideals of a $\Gamma$ semiring.

As a generalization of the concept of quasi-ideal in different algebraic systems, bi-ideal is introduced. As per the development of quasi-ideals, the concept of biideals is extended from semigroup to semiring by many authors. The notion of a bi-ideal in a semigroup was first introduced by Good and Hughes ([3]) and for rings by Lajos in $[\mathbf{7}]$. Bi-ideal in a semigroup is a special case of $(m, n)$ ideal in a semigroup defined by Lajos ([6]).Shabir,Ali and Batool gave some properties and characterizations of bi-ideals in a semiring in [10].

[^0]Hence it is natural to study the concept of bi-ideals in a $\Gamma$-semiring. In this paper the concept of a bi-ideal is defined. Characterizations of bi-ideals in a regular $\Gamma$-semiring is the prime part of this paper. Efforts are also taken to characterize special types of $\Gamma$-semirings viz. intra-regular $\Gamma$-semiring,duo $\Gamma$-semiring, simple $\Gamma$ semiring, bi-simple $\Gamma$-semiring, division $\Gamma$-semiring using the concept of a bi-ideal

## 2. Preliminaries

In this article we recall some definitions which we need in sequel. For this we follow Dutta and Sardar ([2]).

Definition 2.1. Let $S$ and $\Gamma$ be two additive commutative semigroups. $S$ is a $\Gamma$-semiring if there exists a mapping $S \times \Gamma \times S \longrightarrow S$ ( images to be denoted by $a \alpha b$; for all $a, b \in S$ and for all $\alpha \in \Gamma)$ satisfying the following conditions:
(i) $a \alpha(b+c)=(a \alpha b)+(a \alpha c)$
(ii) $(b+c) \alpha a=(b \alpha a)+(c \alpha a)$
(iii) $a(\alpha+\beta) c=(a \alpha c)+(a \beta c)$
(iv) $a \alpha(b \beta c)=(a \alpha b) \beta c$; for all $a, b, c \in S$ and for all $\alpha, \beta \in \Gamma$.

Obviously, every semiring $S$ is a $\Gamma$-semiring.
Let $S$ be a semiring and $\Gamma$ be a commutative semigroup. Define a mapping $S \times \Gamma \times S \longrightarrow S$ by, $a \alpha b=a b$ for all $a, b \in S$ and $\alpha \in \Gamma$. Then $S$ is a $\Gamma$-semiring.

Definition 2.2. An element $0 \in S$ is an absorbing zero if

$$
0 \alpha a=0=a \alpha 0, a+0=0+a=a, \text { for all } a \in S \text { and } \alpha \in \Gamma .
$$

Throughout the paper $S$ denotes any $\Gamma$-semiring unless otherwise stated.
Definition 2.3. A non-empty subset $T$ of $S$ is a sub- $\Gamma$-semiring of S if $(T,+)$ is a subsemigroup of $(S,+)$ and $a \alpha b \in T$ for all $a, b \in T$ and $\alpha \in \Gamma$.

Definition 2.4. A non-empty subset $T$ of $S$ is a left (respectively right) ideal of $S$ if $T$ is a subsemigroup of $(S,+)$ and $x \alpha a \in T$ (respectively $a \alpha x \in T$ ) for all $a \in T, x \in S$ and $\alpha \in \Gamma$.

Definition 2.5. If $T$ is both left and right ideal of $S$, then $T$ is an ideal of $S$.
If $M, N$ are non-empty subsets of $S$, then

$$
M \Gamma N=\left\{\sum_{i=1}^{n} x_{i} \alpha_{i} y_{i} \mid x_{i} \in M, \alpha_{i} \in \Gamma, \mathrm{y}_{\mathrm{i}} \in \mathrm{~N}\right\}
$$

Principle left ideal, right ideal and two sided ideal generated by $a \in S$ is denoted by $(a)_{l},(a)_{r}$ and (a) respectively.

Definition 2.6. An element $a$ of a $\Gamma$-semiring is a regular if $a \in a \Gamma S \Gamma a$.
If all elements of $\Gamma$-semiring $S$ are regular, then $S$ is a regular $\Gamma$-semiring.
A quasi-ideal $Q$ of a $\Gamma$-semiring $S$ is defined as follows.
Definition 2.7. A non-empty subset $Q$ of $S$ is a quasi-ideal if $Q$ is a subsemigroup of $(S,+)$ and $(S \Gamma Q) \cap(Q \Gamma S) \subseteq Q$.

Obviously, every quasi ideal of $S$ is a sub $\Gamma$-semiring of $S$.
Example 2.1. Let $N$ be the set of natural numbers and $\Gamma=2 N$. Then $N$ is a $\Gamma$-semiring with respect to usual addition and $a \alpha b=$ usual product of $a, \alpha, b$ for $a, b \in N, \alpha \in \Gamma$. Then $Q=3 N$ is a quasi-ideal of a $\Gamma$-semiring $N . \diamond$

## 3. Bi-ideals

In this article we define a bi-ideal, a minimal bi-ideal in a $\Gamma$-semiring and study some of their properties.

Definition 3.1. A non-empty subset $B$ of $\Gamma$-semiring $S$ is said to be a bi-ideal of $S$ if $B$ is a sub- $\Gamma$-semiring of $S$ and $B \Gamma S \Gamma B \subseteq B$.

Clearly every bi-ideal is a sub- $\Gamma$-semiring but not conversely. For this consider the following example.

Example 3.1. Consider the semiring $S=M_{2 \times 2}\left(N_{0}\right)$, where $N$ denotes the set of all natural numbers and $N_{0}=N \cup\{0\}$. If $\Gamma=S$, then $S$ forms a $\Gamma$ semiring with $A \alpha B=$ usual matrix product of $A, \alpha, B$; for all $A, \alpha, B \in S$. $B=\left\{\left.\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right) \right\rvert\, x, y \in N_{0}\right\}$ is a sub- $\Gamma$-semiring of $S$. But $B$ is not a biideal of $S . \diamond$

In the following theorem we mention some properties of bi-ideals in $S$. The proof being straight forward so omitted.

Theorem 3.1. In $S$ the following statements hold
(1) Any one sided (two sided) ideal of $S$ is a bi-ideal of $S$.
(2) Intersection of a right ideal and a left ideal of $S$ is a bi-ideal of $S$.
(3) Every quasi-ideal of $S$ is a bi-ideal of $S$.
(4) Arbitrary intersection of bi-ideals of $S$ is also a bi-ideal of $S$ and hence the set of all bi-ideals of $S$ forms a complete lattice.
(5) If $B$ is a bi-ideal of $S$, then $B \Gamma s$ and $s \Gamma B$ are bi-ideals of $S$, for any $s \in S$.
(6) If $B$ is a bi-ideal of $S$, then $b \Gamma B \Gamma c$ is a bi-ideal of $S$, for $b, c \in S$.
(7) If $B$ is a bi-ideal of $S$ and if $T$ is a sub $\Gamma$-semiring, then $B \cap T$ is a bi-ideal of $T$.
(8) If $A$ and $B$ are bi-ideals of $S$, then $A \Gamma B$ and $B \Gamma A$ are bi-ideals of $S$.
(9) For any $a \in S, S \Gamma a$ is a left ideal and $a \Gamma \mathrm{~S}$ is a right ideal of $S$.

Remark 3.1. (I) Converse of the statement (1) in Theorem 3.1 need not be true. For this consider the following examples.
(1) Consider the semiring $S=M_{2 \times 2}\left(N_{0}\right)$, where $N$ denotes the set of all natural numbers and $N_{0}=N \cup\{0\}$. If $\Gamma=S$, then $S$ forms a $\Gamma$-semiring with
$A \alpha B=$ usual matrix product of $A, \alpha, B$; for all $A, \alpha, B \in S$.
(i) $B=\left\{\left.\left(\begin{array}{ll}0 & x \\ 0 & y\end{array}\right) \right\rvert\, x, y \in N_{0}\right\}$ is a bi-ideal of $S . B$ is a left ideal but not a right ideal of $S$. Therefore $B$ is not an ideal of $S$.
(ii) $B=\left\{\left.\left(\begin{array}{cc}0 & 0 \\ 0 & x\end{array}\right) \right\rvert\, x \in N_{0}\right\}$ is a bi-ideal of $S$ but $B$ is neither a left ideal nor a right ideal of $S$. Hence $B$ is not an ideal of $S$.
(II) Converse of the statement (3) in Theorem 3.2 need not be true. For this consider the following example.
(2) Let $S=\{0,1,2,3\}$. Define two binary operations + and $\cdot$ on $S$ as follows.

| + | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 2 | 0 | 0 | 2 | 0 |
| 3 | 0 | 0 | 0 | 3 |


| . | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 1 |
| 3 | 0 | 0 | 1 | 2 |

Then $S$ forms a semiring. If $\Gamma=S$ and $x \alpha y=x y$, for all $x, y$ in $S$ then $S$ forms a $\Gamma$-semiring. $B=\{0,2\}$ is a bi-ideal of $S$. Hence $B$ is not a quasi-ideal of $S$ because $3 \alpha 2=2 \alpha 3=1 \notin B$, for all $\alpha \in \Gamma$. This implies $(S \Gamma B) \cap(B \Gamma S) \nsubseteq B$. Also $B$ is a two sided ideal of an ideal $I=\{0,1,2\}$ of $S$. But $B$ is not an ideal of $S$ since $3 \alpha 2=1 \notin B$, for all $\alpha \in \Gamma$.
(III) Let $S$ be a non regular $\Gamma$-semiring. Also let $R$ and $L$ be a minimal right ideal and a minimal left ideal of $S$. Then $R \cap L$ is a minimal quasi-ideal of $S$ (see Theorem 4.2 in [5]). Hence $R \cap L$ is a bi-ideal of $S$ by Theorem 3.1 (2). Then by Theorem 3.1 (8) $R \Gamma L$ is a bi-ideal of $S$. Always $R \Gamma L \subseteq R \cap L$. If $R \Gamma L$ is a quasi-ideal of $S$, then $R \Gamma L=R \cap L$ as $R \cap L$ is a minimal quasi-ideal. Therefore $S$ is a regular $\Gamma$-semiring, which is a contradiction. Hence $R \Gamma L$ is not a quasi-ideal of $S$. Thus in a non regular $\Gamma$-semiring $S, R \Gamma L$ is a bi-ideal but not a quasi-ideal.

In the following theorems we show that every bi-ideal $B$ in $S$ induces bi-ideals in $S$.

Theorem 3.2. If $B$ is a bi-ideal and $T$ is a sub- $\Gamma$-semiring of $S$, then $В \Gamma T$ and $T \Gamma B$ are bi-ideals of $S$.

Proof. Let $a, b \in B \Gamma T$. Hence

$$
a=\sum_{i=1}^{n} a_{i} \alpha_{i} s_{i}, \quad b=\sum_{j=1}^{m} b_{j} \beta_{j} t_{j} ;
$$

$a_{i}, s_{i}, b_{j}, t_{j} \in B ; \alpha_{i}, \beta_{j} \in \Gamma$. Then $a+b=\sum_{i=1}^{n} a_{i} \alpha_{i} s_{i}+\sum_{j=1}^{m} b_{j} \beta_{j} t_{j}$ being a finite sum, $a+b \in B \Gamma T$. Hence $B \Gamma T$ is a subsemigroup of $(S,+)$. As

$$
(B \Gamma T) \Gamma(B \Gamma T)=(B \Gamma T \Gamma B) \Gamma T \subseteq(B \Gamma S \Gamma B) \Gamma T \subseteq B \Gamma T,
$$

we get $B \Gamma T$ is a sub- $\Gamma$-semiring of $S$. Now

$$
(B \Gamma T) \Gamma S \Gamma(B \Gamma T)=B \Gamma(T \Gamma S) \Gamma(B \Gamma T) \subseteq(B \Gamma S \Gamma B) \Gamma T \subseteq B \Gamma T
$$

This shows that $B \Gamma T$ is a bi-ideal of $S$.
Similarly, we can prove that $T \Gamma B$ is a bi-ideal of $\mathrm{b} S$.
Theorem 3.3. If $B$ is a bi-ideal of $S$ and $C$ is a bi-ideal of $B$ such that $C^{2}=C \Gamma C=C$, then $C$ is a bi-ideal of $S$.

Proof. $B$ being a bi-ideal of $S$ we get $B \Gamma S \Gamma B \subseteq B$. Let $C$ be a bi-ideal of $B$ such that $C^{2}=C \Gamma C=C$. Hence $C \Gamma B \Gamma C \subseteq C$. As $C$ is a sub- $\Gamma$-semiring of $B$, it is a sub- $\Gamma$-semiring of $S$. Further

$$
\begin{gathered}
C \Gamma B \Gamma C=(C \Gamma C) \Gamma S \Gamma(C \Gamma C)=C \Gamma(C \Gamma S \Gamma C) \Gamma C \\
\subseteq C \Gamma(B \Gamma S \Gamma B) \Gamma C \subseteq C \Gamma B \Gamma C \subseteq C
\end{gathered}
$$

Thus $C \Gamma S \Gamma C \subseteq C$. This shows that $C$ is a bi-ideal of $S$.
Theorem 3.4. Let $A$ and $C$ be two sub- $\Gamma$-semirings of $S$ and $B=A \Gamma C$. If $A$ is a left ideal or a right ideal of $S$, then $B$ is a bi-ideal of $S$

Proof. Suppose that $A$ is a left ideal of $S$. Hence $A$ is a bi-ideal of $S$. Further

$$
\begin{aligned}
B \Gamma S \Gamma B & =(A \Gamma C) \Gamma S \Gamma(A \Gamma C)=(A \Gamma C) \Gamma(S \Gamma A) \Gamma C \\
& \subseteq(A \Gamma C) \Gamma(A \Gamma C) \subseteq(A \Gamma C)=B
\end{aligned}
$$

This shows that $B$ is a bi-ideal of $S$. Similarly we can show that $B=A \Gamma C$ is a bi-ideal of $S$ if $A$ is a right ideal of $S$.

REmARK 3.2. Similarly we can prove that $B=A \Gamma C$ is a bi-ideal of $S$ if $A$ and $C$ be two sub- $\Gamma$-semirings of $S$ and if $C$ is a left ideal or a right ideal of $S$.

Some characterizations of bi-ideals in a $\Gamma$-semiring are given in the following theorems.

Theorem 3.5. For any non-empty subset $B$ of $S$, following statements are equivalent:
(1) $B$ is a bi-ideal of $S$.
(2) $B$ is a left ideal of some right ideal of $S$.
(3) $B$ is a right ideal of some left ideal of $S$.

Proof. (1) $\Leftrightarrow(2)$. Suppose that $B$ is a bi-ideal of $S$. Therefore $B \Gamma S \Gamma B \subseteq B$. As $B \Gamma S$ is a right ideal of $S$ (see Result 3.1 in [5]), $(B \Gamma S) \Gamma B \subseteq B$. This shows that $B$ is a left ideal of a right ideal $B \Gamma S$ of $S$. Conversely, suppose that $B$ is a left ideal of a right ideal $R$ of $S$.Then $R \Gamma B \subseteq B, R \Gamma S \subseteq R$ and $B$ is a sub- $\Gamma$-semiring of $S$. Hence $B \Gamma S \Gamma B \subseteq R \Gamma S \Gamma B \subseteq R \Gamma B \subseteq B$. This shows that $B$ is a bi-ideal of $S$.
$(1) \Leftrightarrow(3)$. Suppose that $B$ is a bi-ideal of $S$. Then $(B \Gamma S) \Gamma B \subseteq B$. As $S \Gamma B$ is a left ideal of $S$ (see Result 3.1 in [5]), $B \Gamma(S \Gamma B) \subseteq B$. This shows that $B$ is a right ideal of a left ideal $S \Gamma B$ of $S$. Conversely, suppose $B$ is a right ideal of a left ideal $L$ of $S$. Then $B \Gamma L \subseteq B, S \Gamma L \subseteq L$ and $B$ is a sub- $\Gamma$-semiring of $S$. Further $B \Gamma S \Gamma B \subseteq B \Gamma S \Gamma L \subseteq B \Gamma L \subseteq B$.

This shows that $B$ is a bi-ideal of $S$. Thus we prove that $(1) \Leftrightarrow(2) \Leftrightarrow(3)$.
Theorem 3.6. A sub- $\Gamma$ - semiring $B$ of $S$ is a bi-ideal of $S$ if and only if there exist a left ideal $L$ and a right ideal $R$ of $S$ such that $R \Gamma L \subseteq B \subseteq R \cap L$.

Proof. Suppose that $B$ is a bi-ideal of $S$. Then $B \Gamma S \Gamma B \subseteq B$. Hence $R=$ $B \Gamma S$ is a right ideal of $S$ and $L=S \Gamma$ B is a left ideal of $S$ (see [5]).

$$
R \Gamma L=(B \Gamma S) \Gamma(S \Gamma B)=B \Gamma(S \Gamma S) \Gamma B \subseteq B \Gamma S \Gamma B \subseteq B
$$

As $B$ is a bi-ideal of $S, B$ is a right ideal of a left ideal $L$ and also a left ideal of a right ideal $R$ (see Theorem 3.5). Therefore $B \subseteq R \cap L$. Thus $R \Gamma L \subseteq B \subseteq R \cap L$. Conversely, suppose that $R \Gamma L \subseteq B \subseteq R \cap L$. Therefore

$$
B \Gamma S \Gamma B \subseteq(R \cap L) \Gamma S \Gamma(R \cap L) \subseteq R \Gamma S \Gamma L \subseteq R \Gamma L \subseteq B
$$

This shows $B$ is a bi-ideal of $S$.
Definition 3.2. A bi-ideal $B$ of $S$ is minimal if there is no non zero proper bi-ideal of $S$ contained in $B$.

A property of minimal bi-ideal in a $\Gamma$-semiring $S$ is proved in the following theorem.

Theorem 3.7. If $B$ is a minimal bi-ideal of $S$, then any two non zero elements of $B$ generate the same left (right) ideal of $S$.

Proof. Let $B$ be a minimal bi-ideal of $S$. Let $x$ and $y$ be non zero elements of $B$. Therefore $(x)_{l} \cap B$ is a bi-ideal of $S$. Hence $(x)_{l} \cap B \subseteq B$. $B$ being a minimal bi-ideal of $S$, we have $(x)_{l} \cap B=B$. This implies $B \subseteq(x)_{l} . y \in B$ implies $y \in(x)_{l}$. Therefore $(y)_{l} \subseteq(x)_{l}$. Similarly we can show that $(x)_{l} \subseteq(y)_{l}$. Hence $(x)_{l}=(y)_{l}$. Thus any two non zero elements of $B$ generate the same left ideal of $S$. In the same way we can show that any two non zero elements of a bi-ideal generate the same right ideal of $S$.

## 4. Bi-ideals in a Regular $\Gamma$-semiring

In this article we discuss some characterizations of bi-ideals in a regular $\Gamma$ semiring.

Definition 4.1. Recall that a $\Gamma$-semiring $S$ is regular if $a \in a \Gamma S \Gamma a$, for any $a \in S$.

Necessary and sufficient conditions for a $\Gamma$-semiring to be regular are furnished in the following theorem.

ThEOREM 4.1. Following statements are equivalent in $S$.
(1) $S$ is regular.
(2) For any bi-ideal $B$ of $S, B \Gamma S \Gamma B=B$.
(3) For any quasi-ideal $Q$ of $S, Q \Gamma S \Gamma Q=Q$.

Proof. (1) $\Rightarrow$ (2). Suppose that $S$ is regular. Let $B$ be a bi-ideal of $S$. Hence $B \Gamma S \Gamma B \subseteq B$. For any $b \in B, b \in b \Gamma S \Gamma b$ as $S$ is regular. Therefore $b \Gamma S \Gamma b \subseteq B \Gamma S \Gamma B$, since $b \in B$. Thus $b \in B \Gamma S \Gamma B$. Therefore $B \subseteq B \Gamma S \Gamma B$. Hence $B=B \Gamma S \Gamma B$ as $B \Gamma S \Gamma B \subseteq B$.
$(2) \Rightarrow(3)$. Every quasi-ideal of $S$ being a bi-ideal of $S$, the implication follows.
$(3) \Rightarrow(1)$. Let $R$ be a right ideal and $L$ be a left ideal of $S$. Then $R \cap L$ is a quasiideal of $S$ (see property 11 in [5]). Hence by (3) $R \cap L=(R \cap L) \Gamma S \Gamma(R \cap L)$. Therefore $R \cap L \subseteq(R \Gamma S) \Gamma L \subseteq R \Gamma L$. But always $R \Gamma L \subseteq R \cap L$. Therefore $R \cap L=R \Gamma L$. Thus $S$ is a regular $\Gamma$-semiring.

Corollary 4.1. Let $S$ be a regular $\Gamma$-semiring. A sub- $\Gamma$-semiring $B$ is a bi-ideal of $S$ if and only if $B \Gamma S \Gamma B=B$.

Proof. If a sub- $\Gamma$ semiring $B$ is a bi-ideal of $S$, then $B \Gamma S \Gamma B=B$ by Theorem 4.1. Conversely, if $B \Gamma S \Gamma B=B$, then $B$ is a bi-ideal of $S$, by definition.

Corollary 4.2. Let $S$ be a regular $\Gamma$-semiring. $A$ sub- $\Gamma$-semiring $B$ is a bi-ideal of $S$ if and only if $B$ is a quasi-ideal of $S$.

Proof. If a sub- $\Gamma$-semiring $B$ is a bi-ideal of $S$, then $B \Gamma S \Gamma B=B$ by Theorem 4.1. But as $B \Gamma S$ is a right ideal, $S \Gamma B$ a left ideal of $S$ and $S$ being a regular $\Gamma$ semiring we have $(B \Gamma S) \cap(\mathrm{S} \Gamma B)=(B \Gamma S) \Gamma(\mathrm{S} \Gamma B)$. Therefore $(B \Gamma S) \cap(\mathrm{S} \Gamma B)=$ $B \Gamma(S \Gamma S) \Gamma B \subseteq B \Gamma S \Gamma B$, since $S \Gamma S \subseteq S$.Therefore $(B \Gamma S) \cap(\mathrm{S} \Gamma B) \subseteq B$ as $B \Gamma S \Gamma B=B$. Hence $B$ is a quasi-ideal of $S$. Since every quasi-ideal is a bi-ideal, converse follows.

Let $A$ and $B$ be bi-ideals of $S$ with $A \subseteq B \subseteq S$, then surely $A$ is a bi-ideal of $B$. But if $A$ is a bi-ideal of $B$ and $B$ is a bi-ideal of $S$ with $A \subseteq B \subseteq S$, then $A$ need not be a bi-ideal of $S$. But under the condition of regularity we have

Theorem 4.2. Let $B$ be a bi-ideal of $S$. If $B$ itself is a regular sub- $\Gamma$-semiring, then any bi-ideal of $B$ is a bi-ideal of $S$.

Proof. Let $A$ be a bi-ideal of $B$. Then $A \Gamma B \Gamma A \subseteq A$. For any $b \in A$, $b \in b \Gamma B \Gamma b$ as $B$ is regular. $b \Gamma B \Gamma b=b \Gamma(B \Gamma b) \subseteq A \Gamma B$, since $b \in B$ and $b \in A$. Again $b \Gamma B \Gamma b=(b \Gamma B) \Gamma b \subseteq B \Gamma A$ as $b \in B$ and $b \in A$. Then $A \Gamma S \Gamma A \subseteq$ $(A \Gamma B) \Gamma S(B \Gamma A)=A \Gamma(B \Gamma S \Gamma B) \Gamma A \subseteq A \Gamma B \Gamma A$, since $B$ is a bi-ideal of $S$. Therefore $A \Gamma S \Gamma A \subseteq A \Gamma B \Gamma A \subseteq A$, since $A$ is a bi-ideal of $B$. Therefore $A \Gamma S \Gamma A \subseteq A$. This shows that $A$ is a bi-ideal of $S$.

A necessary and sufficient condition for a $\Gamma$-semiring $S$ to be regular is proved in the following theorem .

ThEOREM 4.3. $S$ is a regular if and only if $B \cap I \cap L \subseteq B \Gamma I \Gamma L \quad$ for any bi-ideal $B$, left ideal $L$ and two sided ideal $I$ of $S$.

Proof. Let $S$ be a regular $\Gamma$-semiring, $B$ be a bi-ideal, $I$ be a two sided ideal and $L$ be a left ideal of $S$. Let $a \in B \cap I \cap L . a \in S$ and $S$ is regular imply $a \in a \Gamma S \Gamma a$. Therefore $a \Gamma S \Gamma a \subseteq(a \Gamma S \Gamma a) \Gamma S \Gamma(a \Gamma S \Gamma a)$. Then

$$
a \in(a \Gamma S \Gamma a) \Gamma(S \Gamma a \Gamma S) \Gamma a .
$$

Hence $a \in(B \Gamma S \Gamma B) \Gamma(S \Gamma I \Gamma S) \Gamma L$. Therefore $a \in B \Gamma I \Gamma L$, since $B$ is a bi-ideal, $I$ is an ideal and $a \in L$. Therefore $B \cap I \cap L \subseteq B \Gamma I \Gamma L$.

Conversely, let $R$ be a right ideal and $L$ be a left ideal of $S$. By assumption $R \cap$ $S \cap L \subseteq R \Gamma S \Gamma L$. Hence $R \cap L \subseteq R \Gamma L$. But $R \Gamma L \subseteq R \cap L$ always. Thus we have $R \cap L=R \Gamma L$.

This shows that $S$ is a regular $\Gamma$-semiring.
Remark 4.1. If $Q_{1}$ and $Q_{2}$ are quasi-ideals of $S$, then $Q_{1} \Gamma Q_{2}$ need not be a quasi-ideal of $S$. For this consider the following example. If

$$
T=\left\{\left.\left(\begin{array}{ll}
a & 0 \\
b & 1
\end{array}\right) \right\rvert\, a, b \in R^{+}\right\}
$$

then $T$ is a semigroup with respect to usual matrix multiplication. If

$$
S=\left\{\left.\left(\begin{array}{cc}
a & 0 \\
b & 1
\end{array}\right) \right\rvert\, a, b \in R^{+}\right\} \cup\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

and $\Gamma=\mathrm{S}$, then $S$ is a $\Gamma$-semiring with usual matrix multiplication and + is defined by $A+B=0$ if $A, B \in S$ and $A+0=0+A=A$, for all $A \in S$.

If

$$
Q_{1}=\left\{\left.\left(\begin{array}{cc}
a & 0 \\
b & 1
\end{array}\right) \right\rvert\, a, b \in R^{+}, 0<a<b\right\} \cup\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

and

$$
Q_{2}=\left\{\left.\left(\begin{array}{cc}
a & 0 \\
b & 1
\end{array}\right) \right\rvert\, a, b \in R^{+}, a>0, b>5\right\} \cup\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

Then $Q_{1}$ is a right ideal and $Q_{2}$ is a left ideals of $S$. And hence $Q_{1}$ and $Q_{2}$ are quasi-ideals of $S$. But $Q_{1} \Gamma Q_{2}$ is a not a quasi-ideal of $S$.
$Q_{1} \Gamma Q_{2}$ need not be a quasi-ideal of $S$ when both $Q_{1}$ and $Q_{2}$ are quasi-ideal of $S$. But in a regular $\Gamma$-semiring we have $Q_{1} \Gamma Q_{2}$ is a quasi-ideal of $S$.

Theorem 4.4. Let $S$ be a regular $\Gamma$-semiring. If $Q_{1}$ is a sub $\Gamma$-semiring and $Q_{2}$ is a bi-ideal of $S$, then $Q_{1} \Gamma Q_{2}$ and $Q_{2} \Gamma Q_{1}$ are quasi-ideals of $S$.

Proof. Let $Q_{1}$ be a sub- $\Gamma$-semiring and $Q_{2}$ be a bi-ideal of $S$. In a regular $\Gamma$ semiring quasi-ideals and bi-ideals coincide (see Corollary 4.2). Hence by Theorem 3.2, $Q_{1} \Gamma Q_{2}$ and $Q_{2} \Gamma Q_{1}$ are bi-ideals of $S$. Therefore $Q_{1} \Gamma Q_{2}$ and $Q_{2} \Gamma Q_{1}$ are quasi-ideals of $S$ by Corollary 4.2 .

Every quasi-ideal of $S$ being a sub- $\Gamma$-semiring and a bi-ideal of $S$, by applying Thoerem 4.4, we get

Corollary 4.3. Let $S$ be a regular $\Gamma$-semiring. If $Q_{1}$ and $Q_{2}$ are quasi-ideals of $S$, then $Q_{1} \Gamma Q_{2}$ and $Q_{2} \Gamma Q_{1}$ are quasi-ideals of $S$.

We know that a sub- $\Gamma$-semiring of a $\Gamma$-semiring $S$ need not be a bi-ideal of $S$ ( see example 3.1).

A necessary and sufficient condition for a sub- $\Gamma$-semiring of a $\Gamma$-semiring $S$ to be a bi-ideal of $S$ is given in the following theorem.

Theorem 4.5. A sub- $\Gamma$-semiring of a regular $\Gamma$-semiring $S$ is a bi-ideal of $S$ if and only if $B$ can be represented as $B=R \Gamma L$, where $R$ is a right ideal and $L$ is a left ideal of $S$.

Proof. Let $B$ be a sub $\Gamma$-semiring of a regular $\Gamma$-semiring $S$. Suppose that $B$ is a bi-ideal of $S$. Hence by Theorem 3.6, there exist a right ideal $R$ and a left ideal $L$ of $S$ such that $R \Gamma L \subseteq B \subseteq R \cap L$. As $S$ is regular, $R \Gamma L=R \cap L$. Therefore $B=R \Gamma L=R \cap L$.Conversely, suppose that $B=R \Gamma L$, for a right ideal $R$ and a left ideal $L$. Therefore $B \Gamma S \Gamma B=(R \Gamma L) \Gamma S \Gamma(R \Gamma L) \subseteq R \Gamma S \Gamma L \subseteq R \Gamma L=B$. This shows that $B$ is a bi-ideal of $S$.

## 5. Bi-ideals in Special $\Gamma$-semirings

This article deals with various types of $\Gamma$-semirings and their characterizations using bi-ideals.

### 5.1. Intra-regular $\Gamma$-semirings.

Definition 5.1. A $\Gamma$-semiring $S$ is an intra-regular $\Gamma$-semiring if for any $x \in S$, $x \in S \Gamma x \Gamma x \Gamma S$.

Following theorem is a property of a regular and intra-regular $\Gamma$-semiring.
Theorem 5.1. If a $\Gamma$-semiring $S$ is regular and intra-regular, then for any bi-ideal $B$ and a left ideal $L$ of $S, B \cap L \subseteq B \Gamma L \Gamma B$.

Proof. Let $a \in B \cap L$. As $a \in S$ and $S$ is regular, $a \in a \Gamma S \Gamma a$. Therefore we have

$$
a \Gamma S \Gamma a \subseteq(a \Gamma S \Gamma a) \Gamma S \Gamma(a \Gamma S \Gamma a) \subseteq(a \Gamma S \Gamma a) \Gamma S \Gamma(S \Gamma a \Gamma a \Gamma S) \Gamma S \Gamma a .
$$

Hence we get
$a \Gamma S \Gamma a \subseteq(a \Gamma S \Gamma a) \Gamma(\mathrm{S} \Gamma S \Gamma a) \Gamma(a \Gamma S \Gamma a) \subseteq(B \Gamma S \Gamma B) \Gamma(\mathrm{S} \Gamma S \Gamma L) \Gamma(B \Gamma S \Gamma B)$
as $a \in B \cap L$. Thus we get $a \Gamma S \Gamma a \subseteq B \Gamma L \Gamma B$. Therefore $a \in B \cap L$ implies $a \in B \Gamma L \Gamma B$. This shows that $B \cap L \subseteq B \Gamma L \Gamma B$.

### 5.2. Duo $\Gamma$-semirings.

Definition 5.2. A $\Gamma$-semiring $S$ is a right (left) duo $\Gamma$-semiring if every right (left) ideal of $S$ is a left (right) ideal of $S$. A $\Gamma$-semiring $S$ is a duo $\Gamma$-semiring if every one sided ideal of $S$ is a two sided ideal of $S$.

We know every bi-ideal need not be one sided or two sided ideal (see in Remark 3.1 Example (1)). But in a regular duo $\Gamma$-semiring we have

Theorem 5.2. If $S$ is a regular right (left) duo $\Gamma$-semiring, then every bi-ideal of $S$ is a left (right) ideal of $S$.

Proof. Let $S$ be a regular right duo $\Gamma$-semiring and $B$ be a bi-ideal of $S$. By Theorem 4.5, there exist a right ideal $R$ and a left ideal $L$ such that $B=R \Gamma L=$ $R \cap L$. As $S$ is a right duo $\Gamma$-semiring, $R \cap L$ is a left ideal of $S$. Therefore $B=R \cap L$ is a left ideal of $S$.

Similarly we can show that in a regular left duo $\Gamma$-semiring $S$ every bi-ideal is a right ideal of $S$.

As a duo $\Gamma$-semiring $S$ is a both left duo $\Gamma$-semiring and right duo $\Gamma$-semiring, by Theorem 5.2 we have

Theorem 5.3. If $S$ is a regular duo $\Gamma$-semiring, then every bi-ideal of $S$ is a two sided ideal of $S$.

### 5.3. Simple $\Gamma$-semirings.

Definition 5.3. A $\Gamma$-semiring $S$ is a left(right) simple $\Gamma$-semiring if $S$ has no proper left (right) ideal. A $\Gamma$-semiring $S$ is a simple $\Gamma$-semiring if $S$ has no proper ideal.

Definition 5.4. A $\Gamma$-semiring $S$ with zero is a left (right) 0 -simple. $\Gamma$-semiring if $S$ has no non zero proper a left (right) ideal and $S \Gamma S \neq\{0\}$. A $\Gamma$-semiring $S$ with zero is 0 -simple $\Gamma$-semiring if $S$ has no non zero proper ideal and $S \Gamma S \neq\{0\}$.

Every bi-ideal of $S$ need not be right (left) ideal of $S$ (see in Remark 3.1 and Example (1)). But in (left $\backslash$ right) simple $\Gamma$-semiring we have:

Theorem 5.4. If a $\Gamma$-semiring $S$ is a left (right) simple $\Gamma$-semiring, then every bi-ideal of $S$ is a right ideal (left ideal) of $S$.

Proof. Let $S$ be a left simple $\Gamma$-semiring and $B$ be a bi-ideal of $S$. Then $S \Gamma B$ is a left ideal and $S \Gamma B \subseteq S$. But $S$ is a left simple $\Gamma$-semiring and hence $S \Gamma B=S$. Further $B \Gamma S=B \Gamma S \Gamma B \subseteq B$. This implies that $B$ is a right ideal of $S$. Similaly we can prove for a right simple $\Gamma$-semiring.

Every quasi-ideal is a bi-ideal in $S$ but not conversely (see in Remark 3.1 and Example (2)). In a 0 -simple $\Gamma$-semiring we have:

Theorem 5.5. If a $\Gamma$-semiring $S$ with zero is left (right) 0 -simple $\Gamma$-semiring, then the set of bi-ideals of $S$ coincide with the set of quasi-ideals of $S$.

Proof. Let $S$ be a left 0 -simple $\Gamma$-semiring. As every quasi-ideal is a bi-ideal of $S$, we have to only show that any bi-ideal is a quasi-ideal of $S$.Let $B$ be a bi-ideal of $S$.Then $S \Gamma B$ is a left ideal of $S . S \Gamma B \subseteq S \Gamma S \neq\{0\}$ as $S$ is left 0 -simple. $S$ is left 0 -simple and $S \Gamma B$ is a non zero left ideal of $S$ imply $S \Gamma B=S$. Further $(B \Gamma S) \cap(S \Gamma B) \subseteq B \Gamma S=B \Gamma S \Gamma B \subseteq B$. This shows that $B$ is a quasi-ideal of $S$. In the same way we can prove for a right 0 -simple $\Gamma$-semiring.

### 5.4. Bi-simple $\Gamma$-semirings.

Definition 5.5. A $\Gamma$-semiring $S$ is a bi-simple $\Gamma$-semiring if $S$ has no bi-ideal other than $S$ itself.

Next theorem gives a characterization of a bi-simple $\Gamma$-semiring.
Theorem 5.6. If $S$ is a $\Gamma$-semiring, then $S$ is a bi-simple $\Gamma$-semiring if and only if $a \Gamma S \Gamma a=a$, for all $a \in S$.

Proof. Suppose that $S$ is a bi-simple $\Gamma$-semiring. For any $a \in S, a \Gamma S \Gamma a$ is a sub $\Gamma$-semiring of $S$. By Theorem 3.1(9) $S \Gamma a$ is a right ideal of $S$. Therefore

$$
(a \Gamma S \Gamma a) \Gamma S \Gamma(a \Gamma S \Gamma a)=(a \Gamma S) \Gamma(a \Gamma S \Gamma a \Gamma S) \Gamma a \subseteq a \Gamma S \Gamma a
$$

Hence $a \Gamma S \Gamma a$ is a bi-ideal of $S$. $a \Gamma S \Gamma a \subseteq S$ and $S$ is a bi-simple $\Gamma$-semiring imply $a \Gamma S \Gamma a=S$, for all $a \in S$.

Conversely, suppose that $a \Gamma S \Gamma a=S$, for all $a \in S$. Let $B$ be a bi-ideal of $S$ such that $B \subseteq S$. For any $b \in B$, by assumption $b \Gamma S \Gamma b=S . S=b \Gamma S \Gamma b \subseteq$ $B \Gamma S \Gamma B \subseteq B$ imply $B=S$. Hence $S$ is a bi-simple $\Gamma$ semiring.

### 5.5. Division $\Gamma$-semirings.

Definition 5.6. A $\Gamma$-semiring $S$ with zero is a division $\Gamma$-semiring if for any non zero $a \in S$ and non zero $\alpha \in \Gamma$ there exist $b \in S, \beta \in \Gamma$ such that $a \alpha b \beta x=x$ and $\quad x \beta b \alpha a=x$, for $x \in S$.

In the next theorem we prove a property of a division $\Gamma$-semiring.
Theorem 5.7. If $S$ is a division $\Gamma$-semiring, then $S$ has no proper non zero bi-ideal.

Proof. Let $S$ be a division $\Gamma$-semiring and $B$ be a non zero bi-ideal of $S$. Let $0 \neq a \in B$ and $0 \neq \alpha \in \Gamma .0 \neq a \in S, 0 \neq \alpha \in \Gamma$ and $S$ is a division $\Gamma$-semiring imply for any non zero $\alpha \in \Gamma$ there exist $b \in S$ and $\beta \in \Gamma$ such that $a \alpha b \beta x=x$ and $x \beta b \alpha a=x$, for $x \in S$. $a \alpha b \beta x=x$ implies $x \in B \Gamma S$ as $a \in B$. As this is true for any $x \in S$, we get $S \subseteq B \Gamma S$. But $B \Gamma S \subseteq S$. Therefore $B \Gamma S=S$. Similarly $x \beta b \alpha a=x$ implies $S \Gamma B=S$. Therefore $S=S \Gamma B=B \Gamma S$. Using these relations we have $S=S \Gamma B=B \Gamma S \Gamma B$. As $B$ is a bi-ideal of $S, B \Gamma S \Gamma B \subseteq B$. Hence $S \subseteq B$. Thus $S=B$ as $B \subseteq S$. This shows that $S$ has no proper non zero bi-ideal.

## References

[1] R. Chinram, A note on quasi-ideals in $\Gamma$-semirings. Int. Math. Forum, 3(26)(2008), 12531259.
[2] T.K. Dutta and S.K. Sardar, Semi-prime ideals and irreducible ideals of $\Gamma$-semiring. Novi Sad J. Math., 30(1)(2000), 97-108.
[3] R.A. Good and D.R.Hughes, Associated groups for a semigroup. Bull. Amer. Math. Soc., 58(1952), 624-625.
[4] K.Iseki, Quasi-ideals in a semiring without zero. Proc. Japan Acad, 34(2)(1958), 79-81.
[5] R.D. Jagatap and Y.S. Pawar, Quasi-ideals and Minimal Quasi-ideals in $\Gamma$-semirings. Novi Sad J. Math., 39(2)(2009), 79-87.
[6] S. Lajos, On $(m, n)$ ideals of semigroups. Abstracts of Second Hungar Math. Congress Vol. I, (1960), pp. 42-44.
[7] S. Lajos and F. Szasz, On the bi-ideals in Associative ring. Proc. Japan Acad., 46(6)(1970), 505-507.
[8] N.Nobusawa, On a generalization of the ring theory. Osaka J. Math., 1(1)(1964), 81-89.
[9] M. M. K. Rao, 「-semirings 1. Southeast Asian Bull. Math., 19(1995), 49-54.
[10] M. Shabir, A. Ali and S. Batool, A note on quasi-ideals in semirings. Southeast Asian Bull. Math., 27(5)(2004), 923-928.
[11] M.F. Smiley, An Introduction to Hestenes Ternary Rings. American Mathematical Monthly, 76(3)(1969), 245-248.
[12] O. Steinfeld, On ideals quotients and prime ideals. Acta. Math. Acad. Sci. Hungar, 4(1953), 289-298.
[13] O. Steinfeld, Uher die quasi-ideals von halbgruppen. Publ. Math. Debrecen, 4(1956), 262-275.
[14] H.S. Vandiver, On Some simple Types of Semirings. American Mathematical Monthly, 46(1939), 22-26.

$$
\text { Received by editors } 28.10 .2015 \text {; Revised version } 09.04 .2016 \text {; Available online } 25.04 .2016
$$

R.D. Jagatap: Y. C. College of Science, Karad, India
Y.S. Pawar: Department of Mathematics, Shivaji University, Kolhapur, Maharashtra, India

E-mail address: ravindrajagatap@yahoo.co.in; pawar_y_s@yahoo.com


[^0]:    2010 Mathematics Subject Classification. 16Y60, 16 Y 99.
    Key words and phrases. Bi-ideal, Quasi-ideal, Minimal bi-ideal, Simple $\Gamma$-semiring, Bi-simple $\Gamma$-semiring, Duo $\Gamma$-semiring, Division $\Gamma$-semiring.

