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DOMINATION IN SOME CLASSES OF DITREES

M. Kamal Kumar, R. Murali, and V. Chidanandan

Abstract. Domination and other related concepts in undirected graphs are
well studied. Although domination and related topics are extensively studied,
the respective analogies on digraphs have not received much attention. Such
studies in the directed graphs have applications in game theory and other

areas.
A directed graph D is a pair (V,E), where V is a non empty set and E

is a set of ordered pairs of elements taken from set V . V is called vertices and
E set called directed edges.

Let D = (V,E) be a digraph if (x, y) ∈ E then arc is directed from x to
y and is denoted by x → y. The vertex x is called a predecessor of y and y is
called a successor of x. A set S ⊆ V of a digraph D is said to be a dominating
set of D if ∀v /∈ S, v is a successor of some vertex s ∈ S.

In this paper we study domination theory on few well known classes of
directed trees. Directed trees are extensively used in path algorithm, schedul-
ing problems, data processing networks, data compression, causal structures
like family tree, Bayesian network, moral graphs, influence diagram etc. The

concept of dominating function plays a significant role in these models.

1. Introduction

There are vast applications of digraphs in the field of sciences. Some famil-
iar digraph problems are transitive closure, strong connectivity, topological sort,
program evaluation and review technique (PERT), critical path method (CPM),
shortest path, page rank etc. There is an extensive literature on digraphs. Many of
these papers contain not only interesting theoretical results but also important al-
gorithms and applications [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. The underlying graph is a
special case of a directed graph which has been extensively studied. The subclasses
of digraph are directed trees commonly known ditrees have extensive application
in the field of computer science.
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Figure 1. Domination set in digraph.

Domination and other related concepts in undirected graphs are well studied.
Although domination and related topics are extensively studied, the respective
analogs on digraphs have not received much attention. Such studies in directed
graphs have its applications in game theory and other areas.

A directed graph (or a digraph) consists of a nonempty finite set V (D) of
elements called vertices and a finite set A(D) of ordered pair of distinct vertices
called arcs. V (D) is the vertex set and A(D) is called arc set of D.

Let D = (V,A) be a digraph. If (x, y) ∈ A then the arc is directed from x to y
and is denoted by x → y. The vertex x is called a predecessor of y (initial vertex)
and y is called a successor of x (terminal vertex). A set S ⊆ V of D is said to be a
dominating set of D if ∀v /∈ S, v is a successor of some vertex s ∈ S.

The directed dominating set of D is minimal directed dominating set if no
proper subset of S is a directed dominating set. The minimum cardinality among
all the minimal directed dominating set is called domination number of D denoted
by γ(D) (see Figure 1).

Definition 1.1. If v is a vertex of a digraph D, the number of edges for which
v is the initial vertex is called the out-going degree or the out-degree of v and the
number of edges for which v is the terminal vertex is called the incoming degree
or in-degree of v. The out degree of v is denoted by d+(v) and in-degree of v is
denoted by d−(v).

Definition 1.2. The underlying graph of a digraph is an undirected graph
obtained by replacing each arc of the digraph by a corresponding undirected edge
(see Figure 2).

Definition 1.3. A directed tree is a directed graph whose underlying undi-
rected graph is a tree.

Definition 1.4. A directed tree T is called a rooted tree if T contains a
unique vertex called the root, whose in-degree is equal to 0 and the in-degree of all
other vertices of T are equal to 1.

Definition 1.5. In a rooted tree a vertex whose out-degree is 0 is called a leaf
and a vertex which is not a leaf is called an internal vertex.

Definition 1.6. A rooted directed tree T is called an m-ary tree if every
internal vertex of T is of out degree 6 m.

Definition 1.7. A rooted directed tree T is called a complete m-ary tree if
every internal vertex of T is of out degree m.
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Figure 2. Digraphs and the corresponding Underlying graph.

Figure 3. Complete full binary directed tree.

Definition 1.8. A complete m-ary directed tree with m = 2 is called a com-
plete binary tree.

Definition 1.9. A vertex v (other than the root r) of a rooted tree is said
to be at the hth level or has level number h if the directed path from r to v is
of length h. if v1 and v2 are two vertices such that v1 has a lower level number
than v2 and there is a path from v1 to v2, then we say that v1 is an ancestor of
v2, or that v2 is a descendant of v1. In particular, if v1 and v2 are such that v1
has a lower level number than v2 and there is an directed edge from v1 to v2, then
v1 is called the parent of v2, or v2 is called the child of v1. Two vertices with a
common parent are referred to as siblings.

Definition 1.10. If T is a rooted directed tree and h is the largest level number
achieved by a leaf of T , then T is said to have height h. A rooted directed tree of
height h is said to be balanced if the level number of every leaf is h or h− 1.
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Figure 4. Underlying undirected graph of directed thorn rod Pp,t.

Definition 1.11. Let T be a complete binary directed tree of height h. Then
T is called a full binary tree if all the leaves in T are at level h (see Figure 3).

Definition 1.12. A digraph D with vertex set {v1, v2, v3, . . . , vn} is a tourna-
ment if exactly one of the arcs vivj or vjvi is in D for every i ̸= j ∈ {1, 2, 3, . . . , n}.

Definition 1.13. Arborescence is a directed graph with a vertex u called
the root and any other vertex v, there is exactly one directed path from u to v.

In this paper we consider the directed thorn rod, directed thorn star and di-
rected thorn ring [1, 2].

Definition 1.14. A directed thorn rod Pp,t is a digraph whose underlying
undirected graph includes a linear chain (termed as a rod) of p vertices and degree
t terminal vertices at each of the two rod ends (see Figure 4).

Definition 1.15. A directed thorn star is a digraph whose underlying undi-
rected graph is obtained from a k arm star by attaching t− 1 terminal vertices to
each of the star arms and is denoted by Sk,t (see Figure 5).

Definition 1.16. The directed thorny ring C+
n whose underlying undi-

rected graph consists of 2n vertices where n vertices on the cycle are of degree
three and remaining n vertices are pendant vertices (see Figure 6).

The directed thorny ring C∨
n whose underlying undirected graph consists

of n(t − 1) vertices of which n vertices are in the cycle (each of degree t) and the
remaining n(t− 2) are pendant vertices (see Figure 7).

2. Preliminary results of digraphs

The following results are found in [11].

Theorem 2.1. In every digraph D with n vertices,
n∑

i=1

d+(vi) =
n∑

i=1

d−(vi) =

m, the out degree of v is denoted by d+(v) and in-degree of v is denoted by d−(v)
and m is the number of edges in D.

Theorem 2.2. For a digraph D, γ(D) 6 n− 1.
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Figure 5. Underlying undirected graph of directed thorn star Sk,t.

Figure 6. Underlying undirected graph of directed thorn ring C+
n .
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Figure 7. Underlying undirected graph of directed thorn ring C∨
n .

Theorem 2.3. For a underlying graph G, γ(G) 6 γ(D).

Theorem 2.4. For a digraph D, n
1+∆(D) 6 γ(D) 6 n − ∆(D), ∆(D) is the

maximum out degree of D.

Theorem 2.5. If a digraph D is Hamiltonian, then γ(D) 6
⌈
n
2

⌉
.

Theorem 2.6. If a digraph D is strongly connected, then γ(D) 6
⌈
n
2

⌉
.

Theorem 2.7. For a digraph D, 1 6 γ(D) 6 δ−+1
2δ−+1n, δ

− > 1 is the minimum
in degree of D.

Theorem 2.8. For a tournament T , 1 6 γ(T ) 6 ⌊log2(n+ 1)⌋.

Theorem 2.9. For a digraph D, ir(D) 6 γ(D) 6 i(D) 6 β(D) 6 Γ(D) 6
IR(D).

Theorem 2.10. If a digraph D is transitive, then γ(D) = i(D) = β(D) =
Γ(D) = IR(D).

Recalling the following from [11], γ(D) is the domination number of D, i(D)
is the independent domination number of D, β(D) is the maximal independent
domination number of D, Γ(D) is the upper domination number of D, ir(D) is the
irredundance number of D and IR(D) is the upper irredundance number of D.

3. Domination number of few classes of ditrees

Theorem 3.1. If D is a complete full binary rooted tree of maximum level l

then, γ(D) =

1 +
2(2l−1)

3 , for l = 2k, k ∈ N

1 +
4(2l−1−1)

3 , for l = 2k − 1, k ∈ N.
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Proof. Consider l levels namely L0, L1, L2, . . . , Ll−1, Ll ofD, each level Li (0 6
i 6 l) has 2l vertices.

We consider the following cases.
Case (i): For l = 2k.

Vertices in Ll−1 will be labeled ‘1’, therefore vertices of Ll has to be labeled
‘0’. Vertices in Ll−3 will be labeled ‘1’, therefore vertices of Ll−2 has to be labeled
‘0’. Continuing the process we get the root to be labeled ‘1’.

Therefore γ(D) =
(
2l−1 + 2l−3+, . . . ,+25 + 23 + 21

)
+ 1.

Rearranging and finding geometric sum of the series, we get
1 +

(
21 + 23 + 25+, . . . ,+2l−3 + 2l−1

)
.

Hence, γ(D) = 1 +
2
(
(22)

l/2−1
)

22−1 = 1 +
2(2l−1)

3 , for l = 2k, given k ∈ N .

Case (ii): For l = 2k − 1.
Vertices in Ll−1 will be labeled ‘1’, therefore vertices of Ll has to be labeled

‘0’. Vertices in Ll−3 will be labeled ‘1’, therefore vertices of Ll−2 has to be labeled
‘0’. Continuing the process we get the root to be labeled ‘1’.

Therefore γ(D) = 1 +
(
2l−1 + 2l−3+, . . . ,+26 + 24 + 22

)
.

Rearranging and finding the geometric sum of the series, we get γ(D) = 1 +(
22 + 24 + 26+, . . . ,+2l−3 + 2l−1

)
.

Hence, γ(D) = 1 +
4(2l−1−1)

3 , for l = 2k − 1, given k ∈ N .
Hence the proof. �
Theorem 3.2. If D is a complete full binary rooted tree of maximum level l,

then γ(D) =
⌈

n
1+∆(D)

⌉
=

⌈
n

1+2

⌉
=

⌈
n
3

⌉
.

Proof. The proof follows since in a complete full binary rooted tree every
vertex has out degree 2 and since every vertex except the pendant vertex can
dominate two vertices and itself.

Hence the proof. �
Theorems 3.1 and 3.2 leads to the following general result whose proof is similar.

Theorem 3.3. If D is a m-ary full rooted tree of maximum level l, then γ(D) =1 +
m(ml−1)
m2−1 , for l = 2k, k ∈ N

1 +
m2(ml−1−1)

m2−1 , for l = 2k − 1, k ∈ N.

and γ(D) =
⌈

n
1+m

⌉
.

Let D1 be a ditree obtained by reversing all the directions in the rooted full
binary tree (see Figure 8). Then we have the following results.

Theorem 3.4. If D1 is a directed tree of maximum level l then, γ(D1) =1 +
4(2l−1)

3 , for l = 2k, k ∈ N
2(2l+1−1)

3 , for l = 2k − 1, k ∈ N.

Proof. Consider the l levels namely L0, L1, L2, . . . , Ll−1, Ll of D1, each level
Li(0 6 i 6 l), has 2l vertices.



164 M. KAMAL KUMAR, R. MURALI, AND V. CHIDANANDAN

Figure 8. Directed tree D1.

We consider the following cases.
Case (i) For l = 2k.

Vertices in Ll will be labeled ‘1’, therefore vertices of Ll−1 has to labeled ‘0’.
Vertices in Ll−2 will be labeled ‘1’, therefore vertices of Ll−3 has to be labeled ‘0’.
Continuing the process we get the root to be labeled ‘1’.

Therefore γ(D1) =
(
2l + 2l−2+, . . . ,+26 + 24 + 22

)
+ 1.

Rearranging and finding the geometric sum of the series, we get
1 +

(
22 + 24 + 26+, . . . ,+2l−2 + 2l

)
.

Hence, γ (D1) = 1 +
4
(
(22)

l/2−1
)

22−1 = 1 +
4(2l−1)

3 , for l = 2k, given k ∈ N .

Case (ii) For l = 2k − 1.
Vertices in Ll will be labeled ‘1’, therefore vertices of Ll−1 has to be labeled

‘0’. Vertices in Ll−2 will be labeled ‘1’, therefore vertices of Ll−3 has to be labeled
‘0’. Continuing the process we get the root to be labeled ‘0’.

Therefore γ(D1) =
(
2l + 2l−2+, . . . ,+25 + 23 + 21

)
.

Rearranging and finding the geometric sum of the series, we get γ(D1) =(
21 + 23 + 25+, . . . ,+2l−2 + 2l

)
.

Hence, γ (D1) =
2(2l+1−1)

3 , for l = 2k − 1, given k ∈ N .
Hence the proof. �
Let D2 be a directed graphs whose underlying graph is a complete full m-ary

tree. Then Theorem 3.1 and Theorem 3.4 lead to the following results.

Corollary 3.1. If D = D2 is directed tree of maximum level l then, γ(D2) 61 +
4(2l−1)

3 , for l = 2k, k ∈ N
2(2l+1−1)

3 , for l = 2k − 1, k ∈ N.
�

Corollary 3.2. If D = D2 is a m-ary directed tree of maximum level l then,

γ(D2) 6

1 +
m2(ml−1)

m2−1 , for l = 2k, k ∈ N
m(ml+1−1)

m2−1 , for l = 2k − 1, k ∈ N.
�

For the directed thorn rod Pp,t we now have the following result.

Theorem 3.5. Let D = Pp,t, p > 2, p, t ∈ N . Then, γ(D) 6 (t− 1) +
⌈
p
2

⌉
.
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Proof. For t = 1, Pp,1
∼= Pp. Hence γ(D) 6

⌈
p
2

⌉
.

For t = 2, Pp,2
∼= Pp+2. Hence γ(D) 6

⌈
p+2
2

⌉
.

Let t > 2. By definition, Pp,t = G1 ∪G2 where G1 is a star and G2 is a path.
Consider G1. The maximum value of domination number of the G1 is achieved

only when the direction of all the pendant vertices is towards the end vertex of the
linear chain.

(3.1) γ(G1) 6 (t− 1)

Consider G2. The linear chain is Pp. Therefore

(3.2) γ(G2) 6
⌈p
2

⌉
From Eqns. (3.1) and (3.2), we get γ(D) 6 (t− 1) +

⌈
p
2

⌉
.

Hence the proof. �

For the directed thorn star Sk,t we now have the following result.

Theorem 3.6. Let D = Sk,t, t > 1, t, k ∈ N . Then, γ(D) 6 k(t− 1) + 1.

Proof. For k = 1, Sk,t
∼= K1,t. Hence γ(D) 6 (t− 1).

For k = 2, Sk,t
∼= P3,t. Hence by Theorem 3.5, the proof follows.

Let k > 2. Label Sk,t with k arms as k1, k2, k3, . . . , kk with corresponding
siblings as l1, l2, l3, . . . , lt−1, m1,m2,m3, . . . ,mt−1,. . . , r1, r2, r3, . . . , rt−1 also the
central vertex where the k arms are incident is labeled as u0 (see Fig. 5). The
maximum value of γ(D) is achieved only when the direction of all the pendant
vertices is towards the end vertex of the k arms also the central vertex is to be
labeled 1.

Hence the proof. �

For the directed thorn ring C+
n we now have the following result.

Theorem 3.7. Let D = C+
n ,n > 2, n ∈ N . Then, γ(D) 6 n.

Proof. C+
n consists of 2n vertices out of which ‘n’ vertices are on the cy-

cle which are of degree three and the remaining ‘n’ vertices are pendant vertices.
The maximum value of γ(D) is achieved if either the pendant vertices direction is
towards the vertices of the cycle or vice versa.

Hence the proof. �

For the directed thorn ring C∨
n we now have the following result.

Corollary 3.3. Let D = C∨
n , n > 2, n ∈ N . Then, γ(D) 6 n(t− 2).

By Theorem 2.3 we have γ(G) 6 γ(D), where G is the underlying graph of the
digraph D. Hence by finding the domination number of G, we can obtain the lower
bound of D.

For the undirected graph G which is a thorn rod, thorn star or thorn ring. We
now prove the following result.

Theorem 3.8. Let G = Pp,t, p > 2, p, t ∈ N . Then, γ(G) = 2 +
⌈
p−4
3

⌉
.
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Proof. For t = 1, Pp,1
∼= Pp. Hence γ(G) =

⌈
p
3

⌉
.

For t = 2, Pp,2
∼= Pp+2. Hence γ(G) =

⌈
p+2
3

⌉
.

For t > 2, label the linear chain as u1, u2, u3, . . . , up, left siblings as
l1, l2, l3, . . . , lt−1 and right siblings as r1, r2, r3, . . . , rt−1(see Fig. 4). For finding
the domination number end vertex of the linear chain has to be labeled ‘1’ i.e.
f(u1) = f(up) = 1. Therefore the left siblings, right siblings and the vertex adjacent
to u1 and up are labeled ‘0’, hence f (li) = 0, ∀i = 1, 2, . . . , t − 1, f (rj) = 0, ∀j =
2, . . . , t − 1 and f (u2) = f (up−1) = 0,. The remaining labeling is only for linear
chain which is a path Pp−4.

Hence the proof. �

Theorem 3.9. Let G = Sk,t, t > 1, t, k ∈ N . Then, γ(G) = k.

Proof. For k = 1, Sk,t
∼= K1,t. Hence γ(G) = 1.

For k > 1. Label Sk,t with k arms as k1, k2, k3, . . . , kk with corresponding
siblings as l1, l2, l3, . . . , lt−1, m1,m2,m3, . . . ,mt−1,. . . , r1, r2, r3, . . . , rt−1 also the
central vertex where the k arms are incident is labeled as u0 (see Fig. 5). For
finding the domination number the vertex of the k arms has to be labeled ‘1’. i.e.
f (li) = f (mi) = · · · = f (ri) = 0∀i = 1, 2, . . . , t− 1 and f (ki) = 1.

Hence the proof. �

Theorem 3.10. Let G = C+
n ,n > 2, n ∈ N . Then, γ(G) = n.

Proof. G consists of ‘n’ vertices on the cycle and the remaining vertices are
pendant vertices. Label the vertices in the cycle as u1, u2, u3, . . . , un. For finding
the domination number the vertices in the cycle has to be labeled ‘1’. i.e. f (ui) = 1
and remaining pendant vertices are labeled ‘0’.

Hence the proof. �

Similar to Theorem 3.10 we now have the following result.

Corollary 3.4. Let G = C∨
n ,n > 2, n ∈ N . Then, γ(G) = n. �

The results proved in Theorem 3.5 and Theorem 3.8 lead to the following.

Corollary 3.5. Let D = Pp,t, p > 2, p, t ∈ N . Then,

2 +
⌈
p−4
3

⌉
6 γ(D) 6 (t− 1) +

⌈
p
2

⌉
. �

The results proved in Theorem 3.6 and Theorem 3.9 lead to the following.

Corollary 3.6. Let D = Sk,t, t > 1, t, k ∈N. Then, k 6 γ(D) 6 k(t − 1) +
1. �

The results proved in Theorem 3.7 and Theorem 3.10 lead to the following.

Corollary 3.7. Let D = C+
n , n > 2, n ∈ N . Then, γ(D) = n. �

The results proved in Corollarys 3.3 and 3.4 lead to the following.

Corollary 3.8. Let D = C∨
n , n > 2, n ∈ N . Then, n 6 γ(D) 6 n(t− 2). �
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4. Conclusion

In this paper we study domination theory on few well known classes of di-
rected trees. Directed trees are extensively used in path algorithm, scheduling
problems, data processing networks, data compression, causal structures like fam-
ily tree, Bayesian network, moral graphs, influence diagram etc. The concept of
dominating function plays a significant role in these models.
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