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DECOMPOSITION OF GRAPH

INTO DIAMETRAL PATHS
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and John Stephen Mangam

Abstract. The diametral path of a graph is the shortest path between two
vertices which has length equal to diameter of that graph. Diametral path
decomposition is introduced as a collection of edge-disjoint diametral paths

of a graph so that every edge of the graph appears in exactly one diametral
path. Diametral path decomposition number de is the cardinality of such a
collection. The diametral path decomposition index De is the number of such

decompositions. In this paper, results on de and De in some classes of graphs
are presented. Also graphs which admit diametral path decomposition are
charecterized.

1. INTRODUCTION

The fundamental concept of path decomposition in graphs as introduced by
Harary [6, 8] continues to be of interest to researchers due to its wide range of
applications in real life. The study on decomposition in the context of diametral
paths helps us to understand, analyse and design networks effectively. Research
in this area helps us analyse problems in transportation, distribution, designing,
communication, team formation and event management. Extensive research has
been dedicated to the study of various types of decompositions and related param-
eters in [1, 2, 3, 4, 9] in context of paths, cycles and common vertices between
the paths. In this paper, a study on decomposition involving diametral paths in
simple, connected, undirected and unweighted graphs is undertaken. In section 2,
preliminaries relevant to this study are discussed. In section 3, diametral path de-
composition is introduced. Also diametral path decomposition number and index
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for some classes of graphs are discussed. In section 4, bounds on number of vertices,
edges in graphs which admit diametral path decomposition are proposed.

2. PRELIMINARIES

The definitions and results are in accordance with [5, 7]. The length of a
path is the number of edges on the path. The distance between two vertices in a
graph is the length of shortest path between them. The eccentricity of a vertex is
the maximum of distances from it to all the other vertices of that graph. While
diameter is the maximum of the eccentricities of all vertices of that graph, the radius
is minimum of these. Peripheral vertices are vertices of maximum eccentricity and
central vertices are of minimum eccentricity. The diametral path of a graph is
the shortest path between two vertices which has length equal to diameter of that
graph.
Given below are a few standard results in certain classes of graphs.

(i) Complete graph Kn: diam(Kn) = 1 where n > 2.
(ii) Wheel Wn: diam(Wn)= 2 where n > 5.
(iii) Star K1,n: diam(K1,n) = 2 where n > 2.
(iv) Complete bipartite graph Kr,s: diam(Kr,s) = 2 where r > 2 or s > 2.
(v) Path Pn: diam(Pn) = n-1 and rad(Pn) = ⌊n/2⌋
(vi) Cycle Cn: diam(Cn) = ⌊n/2⌋ where n > 3.

3. RESULTS ON de AND De

Definition 3.1. Diametral path decomposition is a collection of edge-disjoint
diametral paths of a graph so that every edge of the graph appears in exactly one
diametral path.

Definition 3.2. Diametral path decomposition number de is the cardinality
of such a collection.

Definition 3.3. Diametral path decomposition indexDe is the number of such
decompositions.

Proposition 3.1. Every path Pn(n > 2) admits a diametral path decomposi-
tion. Also de(Pn) = 1 = De(Pn).

Proof. Since every path is the diametral path itself, there exists a decompo-
sition which has only one element which is the path itself. Also there is only one
such decomposition. Hence de(Pn) = 1 = De(Pn). �

Theorem 3.1. (i) Cycle C3 admits a diametral path decomposition.
Also de(C3) = 3 and De(C3) = 1.

(ii) If n is even, cycle Cn admits a diametral path decomposition. Also de(Cn) = 2
and De(Cn) =

n
2 .

Proof. (i) Since diam(C3) = 1, each edge is a diametral path.
We get a decomposition by taking all the edges. Since there are 3 edges in
C3, we can conclude that de(C3) = 3.
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Also De(C3) = 1, as there is only one such decomposition which has all the
edges.

(ii) Since diam(Cn) = d = ⌊n
2 ⌋, n = m and n is even, we get d = n

2 or n = 2d or
m = 2d. Sincem = 2d,m edges can be distributed in 2 diametral paths. There
exists a decomposition by taking these 2 diametral paths. Hence de(Cn) = 2.
Also each decomposition has two diametral paths and they are between a
specific pair of vertices. Since there are n

2 pairs of vertices of that kind, there
are n

2 decompositions. Hence De(Cn) =
n
2 .

�

Example 3.1. Consider cycle C6 in Figure 1. It can be noted that diam(C6) =
3. It admits a diametral path decomposition with de(C6) = 2. The decomposition
can be taken as {(A,B,C,D), (A,F,E,D)}. Also De(C6) =

6
2 = 3 The decomposi-

tions are {(A,B,C,D), (A,F,E,D)}, {(B,C,D,E), (B,A, F,E)} and {(C,D,E, F ),
C,B,A, F )}.
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Figure 1. Cycle C6

Theorem 3.2. If n is odd, then wheel Wn(n > 5) admits a diametral path
decomposition. Also de(Wn) = n− 1.

Proof. Since diam(Wn) = 2 and n is odd, there are n − 1(even) peripheral
vertices and one central vertex. Hence there are n−1 edges with peripheral vertices
as end vertices and n−1 edges with central vertex as one end vertex and peripheral

vertex as the other end vertex. There exists a decomposition by taking (n−1)
2

diametral paths through the peripheral vertices and (n−1)
2 diametral paths through

the central vertex. Hence de(Wn) =
(n−1)

2 + (n−1)
2 = n− 1. �
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Example 3.2. Consider wheelW5 in Figure 2. It can be noted that diam(W5) =
2. It admits a diametral path decomposition with de(W5) = 5 − 1 = 4. The de-
composition can be taken as {(A,B,C), (A,D,C), (A,E,C), (B,E,D)}.

e=2e=2

e=2

e=1

e=2

E

A B

CD

Figure 2. Wheel W5

Theorem 3.3. If n is even, then star K1,n(n > 2) admits a diametral path
decomposition. Also de(K1,n) =

n
2 and De(K1,n) = (n− 1)(n− 3)(n− 5) . . . 1.

Proof. Since diam(K1,n) = 2, there are n peripheral vertices and one central
vertex. Also there are n edges with central vertex as one end vertex and peripheral
vertex as the other end vertex. Since n is even and every two edges form a diametral
path, there exists a decomposition by taking n

2 diametral paths through the central
vertex. Hence de(K1,n) =

n
2 .

In forming a decomposition, we include diametral paths one after the other
so that all edges are represented. Beginning with any peripheral vertex, there are
(n − 1) ways in which another peripheral vertex is chosen to form a diametral
path. When we include that diametral path in the collection, there are (n − 2)
peripheral vertices left. Taking any one of the remaining peripheral vertices, there
are (n− 3) ways in which another peripheral vertex is chosen to form a diametral
path. Proceeding this way till all edges are included, we get a decomposition. Hence
the number of decompositions = De(K1,n) = (n− 1)(n− 3)(n− 5) . . . 1. �

Example 3.3. Consider star K1,4 in Figure 3. It admits a diametral path de-
composition with de(K1,4) =

4
2 = 2 and has a decomposition {(A,E,C), (B,E,D)}.

Also De(K1,4) = (4− 1)(4− 3) . . . 1 = 3. The decompositions are

{(A,E,B), (C,E,D)}, {(A,E,C), (B,E,D)}
and

{(A,E,D), (B,E,C)}.

Proposition 3.2. Complete graph Kn(n > 2) admits a diametral path decom-
position. Also de(Kn) = nC2 and De(Kn) = 1.
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Figure 3. Star K1,4

Proof. Since diam(Kn) = 1, every edge is a diametral path. Hence there
exists a decomposition with all the edges. Also de(Kn) = nC2 , as there are nC2

edges in Kn. As there is only one such decomposition which has all the edges,
De(Kn) = 1. �

Example 3.4. Consider complete graph K4 in Figure 4. It admits a diametral
path decomposition with de(K4) = 4C2 = 6. The decomposition is

{(A,B), (B,C), (C,D), (D,A), (A,C), (B,D)}.
Also De(K4) = 1, as there is only one such decomposition.
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Figure 4. Complete Graph K4

Theorem 3.4. If r or s is even, then complete bipartite graph Kr,s(r > 2 and
s > 2) admits a diametral path decomposition. Also de(Kr,s) =

rs
2 .
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Proof. When r or s is even, rs the number of edges is even. Since diam(Kr,s) =
2, there exists a decomposition by taking rs

2 diametral paths so each edge is uniquely
placed in one of them. Hence de(Kr,s) =

rs
2 . �

Example 3.5. Consider complete bipartite graph K2,3 in Figure 5. It has a
diametral path decomposition with de(K2,3) =

rs
2 = 6

2 = 3. The decomposition is
{(A,C,B), (A,D,B), (A,E,B)}.
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Figure 5. Complete bipartite graph K2,3

4. BOUNDS

Theorem 4.1. If a graph G admits a diametral path decomposition with de(G) <
nC2 , then G is Kn free.

Proof. Suppose G has Kn. nC2 edges of Kn are in G. Since de(G) < nC2 ,
there should be a diametral path with two or more edges of Kn. Since there is an
edge between every pair of vertices in Kn, a diametral path cannot have two or
more edges of Kn. This is impossible. Hence we can conclude that G cannot have
Kn. Hence G is Kn free. �

Theorem 4.2. If a tree with r pendant vertices admits a diametral path de-
composition, then

(i) Every pendant vertex is a peripheral vertex.
(ii) The number of pendant vertices is even.
(iii) de =

r
2 .
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Proof. Consider a tree with r pendant vertices which admits diametral path
decomposition.

(i) Since every edge is uniquely placed in one of the diametral paths, the pendant
edge appears in some diametral path. Since it is a pendant edge, it can appear
only at the end of the diametral path. Hence the pendant vertex is a peripheral
vertex.

(ii) Since pendant vertices are end vertices of the diametral path and they cannot
appear in two diametral paths, the number of pendant vertices is even.

(iii) Since there are r pendant vertices and every two pendant vertices have a
diametral path between them, the number of diametral paths in the decom-
position = de =

r
2 .

�

Theorem 4.3. If a graph G(n,m) with diam(G) = d admits a diametral path
decomposition with de(G) = k, then

(i) d+ 1 6 n < k(d+ 1).
(ii) m = kd.
(iii) If de(G) = 1, then G is a path.

Proof. Let diam(G) = d and de(G) = k.

(i) Since diam(G) = d, there is atleast one diametral path. Hence n > d+ 1, as
there are atleast d+1 vertices of the diametral path. Since diam(G) = d and
de(G) = k, there are k number of diametral paths with d+1 vertices on each.
But if n = k(d+1), the graph would be a disconnected graph as the diametral
paths do not have a common vertex or an edge. Hence n < k(d + 1). Hence
we can conclude that d+ 1 6 n < k(d+ 1).

(ii) Since diam(G) = d and de(G) = k, there are k number of diametral paths
with d edges in each. Since repetition of edges is not allowed, m = kd.

(iii) Since de(G) = 1, there is only one diametral path with all the edges of the
graph. Since the graph is the diametral path itself, G is a path.

�

5. CONCLUSION

In this paper, a study has been undertaken on how to partition edges in such
a way that every edge appears in some diametral path and no edge appears in two
diametral paths in a collection of diametral paths named diametral path decompo-
sition. Further to this study, the focus would be to find the number of diametral
path decompositions for wheels Wn(n > 5) where n is odd and complete bipar-
tite graphs Kr,s where r or s is even. Also the future work would be to identify
applications of this concept.
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