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INTEGRITY OF FUZZY GRAPHS

M. Saravanan, R. Sujatha, and R.Sundareswaran

Abstract. In this paper, integrity of fuzzy graph is defined. Integrity of spe-
cial types of graphs with constant node strength and node strength sequences

as (pn−1
1 , p2) is discussed. Also, integrity of regular fuzzy graph and complete

fuzzy graph is presented.

1. INTRODUCTION

Graph theory has wide range of applications in the field of computer networks,
chemical structures, biological models, and real life problems. Connectivity plays
a vital role in all these models. The connectivity parameter only discusses the
number of sub graphs. If a graph is designed for a communication network, then
breakage is not the only problem, still there is need to know how many sub net-
works are working, how many are not working, what is the largest working group,
and what are the vulnerabilities that break the network and so on. So the connec-
tivity parameter is not enough to measure the efficiency of a graph in the real life
problems. In an undirected graph, the connectivity, the number of components,
order of the components are inter related to each other. Using these parameters
other vulnerability measures, such as integrity, toughness, rupture degree, tenacity
and more, are defined. These measures give the amount of damage caused by the
vulnerabilities. Integrity concepts in graph theory are introduced by Barefoot, En-
tringer, Swart, K.S. Bagga [1, 2, 3].

In general, all the nodes and edges do not have equal importance, especially in
practical applications. The network processing units represented by nodes need not
have equal capacity similarly, the links represented by edges need not have equal
capacity. The capacity of processing units and its links may be independent, but in
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certain cases, they are dependent on each other. In such cases, vulnerabilities are
needed for weighted graphs. The capacity of processing units and links are noted
as weights of nodes and edges. If the weighted values lies between [0, 1] then given
graph turns to fuzzy graph whose nodes are processing units and edges are links
between processing units and capacities as membership values.

If the target is to break a network, it is not easy to break all processing units.
So it is necessary to break minimum number of nodes and it results in reducing
the working group to a minimum. This measure is calculated by integrity. A good
service provider wants to give a big integrity to the network system. If all the pro-
cessing units and links do not have equal importance the working model turns to
fuzzy graph whose membership value is its percentage of importance. To calculate
the vulnerability of these models, vulnerable parameters such as integrity, tough-
ness, tenacity, rupture, scattering number and binding number for fuzzy graphs are
needed.

In 1975, Rosenfeld [4] introduced the concept of fuzzy graphs from the fuzzy
relations, defined and studied by L.A.Zadeh in 1965 [5]. Basic notations and defini-
tions are introduced by Rosenfeld [4] and developed by Bhattacharya and Bhutani
[6, 7]. In 2008, Nagoor Gani and Radha [8] introduced and studied the properties
of regular fuzzy graphs,total degree and totally regular fuzzy graphs. In this paper,
we have defined integrity of fuzzy graphs and derived the integrity of some special
type of fuzzy graphs.

2. PRELIMINARIES

2.1. Basic definitions in graph theory. A graph G is a pair of sets (V,E),
where V is the set of vertices and E is the set of edges, formed by pairs of vertices.
A path of length n is a sequence of distinct nodes u0, u1, u2, · · · , un. A graph is
connected if every pair of vertices is joined by a path. Closed path is known as cycle.
A cut vertex or a cut point of a graph is one whose removal increase the number of
components. An edge whose removal increases the number of components is called
bridge. A connected acyclic graph is tree. A graph with no parallel edges and loops
is simple graph. A simple graph that contains every possible edge between all the
vertices is called a complete graph. A complete graph with n vertices is denoted
by Kn. A Bipartite graph is a graph whose vertex set V can be divided in to two
sets, whose union is V and their intersection is empty. Let S be any sub set of
V . The number of vertices in S is known as cardinality of S and it denoted as |S|.
The degree of the vertex v, written as d(v), is the number of edges incident with v.
The minimum degree of G is defined as min{d(v)/v ∈ V } and it denoted as δ(G).
The maximum degree of G is defined as max{d(v)/v ∈ V } and it denoted by ∆(G).
The number of vertices in a graph is known as order of the graph and the number
of edges is known as size of the graph.

Integrity of graphs was introduced by Barefoot, Entringer and Swart [1, 2] as
a measure of the vulnerability of graphs. This parameter is used to measure the
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stability of a graph, the number of vertices not in link and the size of the largest
sub network is still in connection. The definition is given as follows: Integrity of a
graph G = (V,E) is, I(G) = min{|S|+m(G−S)/S ∈ V }, where m(G−S) denotes
the order of the largest component in the graph G−S. An I-set of G is any (strict)
subset S of V (G) for which I(G) = |S|+m(G− S).

Theorem 2.1. The integrity of

(1) the complete graph Kn is n
(2) the null graph Kn is 1
(3) the star K1,n is 2

(4) the path Pn is ⌈ 2
√
n+ 1 ⌉ − 2

(5) the cycle Cn is ⌈ 2
√
n ⌉ − 1

(6) the complete bipartite graph Km,n is 1 + min { m,n }
(7) any complete multipartite graph of order p and largest partite set of order

r is p− r + 1.

2.2. Integrity of Weighted Graphs. Sibabrata Ray, Jitender S Deogun,
[9] introduced the concept of integrity in weighted graphs. They discussed the NP-
Completeness of integrity of weighted graphs. They defined the weighted integrity
as follows: The integrity of a weighted graph G = (V,E) is Iω(G) = minS⊂V {ω(S)
+ mω(G − S)/S ⊆ V } where ω : V → R > 0 is vertex weight function, S ⊆ V .
mω(G-S) is the maximum sum of the vertex weights of the connected components
(G− S) with ω(S) = Σv∈Sω(v).

For fuzzy graph, the weight function in section 2.2 is restricted to the interval
(0, 1] instead of R, the set of real numbers.

2.3. Fuzzy Graphs. A fuzzy graph G is a pair of functions G = (σ, µ) where
σ is a fuzzy subset of non empty vertex set V and µ is a symmetric fuzzy relation
on σ. The underlying crisp graph of the fuzzy graph G : (σ, µ) is denoted as
G∗ = (V,E), where E ⊆ V × V . The crisp graph G∗ = (V,E) is a special case
of fuzzy graph G with each vertex and edge having degree of membership 1. The
order p and size q of a fuzzy graph G = (σ, µ) are defined to be p = Σx∈V σ(x)
and q = Σxy∈Eµ(xy). The degree of a vertex u is defined as

∑
u̸=v µ (uv) and

denoted by dG(u) or simply d(u). The total degree of a vertex v ∈ V is defined
as d(u) + σ(u). An edge µ(x, y) is an effective edge if µ(x, y) = σ(x) ∧ σ(y). An
arc of an fuzzy graph is called strong edge if its weight is at least as great as
the connectedness of its end vertices when it is deleted. An arc is strong if and
only if its weight is equal to the strength of connectedness of its end nodes. A
fuzzy graph is said to be a strong fuzzy graph if all edges are effective edges. The
minimum degree of G is δ(G) = min{d(v)/v ∈ V }. The maximum degree of G is
∆(G) = max{d(v)/v ∈ V }. The fuzzy cardinality of S ⊂ V is defined to be sum of
all σ(v), for all v ∈ S. The strong degree of a vertex v ∈ V is defined as the sum of
membership values of all strong arcs incident at v and it is denoted by ds(v). The
minimum strong degree of G is δs(G)= min {ds(v)/v ∈ V }. The maximum strong
degree of G is ∆s(G) = max{ds(v)/v ∈ V }.
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A path Pn in G of length n is a sequence of distinct nodes u0, u1, u2, · · · , un

such that σ(ui−1, ui) > 0, 1 6 i 6 n. The number of edges in the path is called
the length of the path and the degree of membership of a weakest arc is defined
as its strength. A closed path is called a fuzzy cycle if it contains more than one
weakest arc. A fuzzy graph is said to be regular fuzzy graph if all the vertex is of
same degree. A complete fuzzy graph (CFG) is a fuzzy graph G = (σ, µ) such that
µ(x, y) = σ(x) ∧ σ(y). The complement of a fuzzy graph G = (σ, µ) is G = (σ, µ),
where µ = σ(x) ∧ σ(y)− µ(x, y) for x, y ∈ V .

3. INTEGRITY OF FUZZY GRAPHS

For fuzzy graph, the weight function in Section 2.2 is restricted to the interval
(0, 1] instead of R, the set of real numbers. In this section, the definition of integrity
of weighted graphs are modified to fit for fuzzy graphs.

Definition 3.1. Let G = (σ, µ) be a fuzzy graph. The integrity of G, denoted

by Ĩ(G), is defined as Ĩ(G) = min{|S|+m(G− S)/S ∈ V },where |S| denotes the
cardinality of S, m(G− S) is maximum order of the component of G− S.

Definition 3.2. An Ĩ -set of G is any (strict) subset S of V (G) for which

Ĩ(G) = {|S|+m(G− S)/S ⊂ V }.

Example 3.1. Consider the fuzzy graph G = (σ, µ) with σ∗ = {a, b, c, d}, with
σ(a) = 0.3, σ(b) = 0.2, σ(c) = 0.2, σ(d) = 0.5, µ(a, b)=µ(a, c)=µ(b, c)=µ(a,

d)=µ(c, d)= 1. For this graph, Ĩ-sets are {a, c} and {b, d} and Ĩ (G) = 1.

Theorem 3.1. Let G = (σ, µ) be a fuzzy graph with under lying graph G∗. If

σ is constant, then Ĩ - set of G and I- set of G∗ are same subset S of V (G).

Proof. Given that σ is constant. The adjacent matrix for both G and G∗

are same and then are isomorphic to each other. Also under lying graph G∗ is
a special case of fuzzy graph G with σ = 1 and µ = 1. Therefore the I-set, S,
of G∗, forms same sub graph in G∗ − S and G − S. This implies the maximum
component in G∗ and G are same. Since order and cardinality of G depends only
on vertex membership value and here it is constant, any individual vertex or any
other component does have more order value other than this maximum component.
Also S have same number of vertex in G∗ and G. Hence the subset S of V is the
Ĩ - set of G and I - set of G∗. �

Theorem 3.2. Let G = (σ, µ) be a fuzzy graph with the under lying graph G∗.

If σ is a constant then integrity Ĩ(G), for

(1) null graph is σ
(2) complete graph Kn is nσ
(3) star K1,n is 2σ

(4) path Pn of length n is(⌈ 2
√
n+ 1 ⌉ - 2)σ

(5) cycle Cn is (⌈ 2
√
n ⌉ - 1)σ

(6) complete bipartite graph Km,n is (1 + min{m,n})σ
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(7) complete multipartite graph of order p and largest partite set of order r is
(p− r + 1)σ

From the theorem 3.1, any Ĩ-set of G and I-set of G∗ have same number of
vertices. Therefore the number of vertices for each special graphs G∗, discussed in
theorem 2.1, are same as for G in the above theorem. Thus if σ is constant then

Ĩ(G) is multiple of I(G∗), that is Ĩ(G) = σI(G∗).

Definition 3.3 ([10]). Let G = (σ, µ) be a fuzzy graph with n vertices. The
node-strength sequence (n−s sequence) of G is (p1, p2, · · · , pn) where pi, 0 < pi 6 1
is the strength of node i when nodes are arranged so that their strengths are non
decreasing. In particular, p1 is the smallest node strength and pn is the largest
node strength.

Theorem 3.3. Let Pn be a fuzzy path having n vertices with node strength
sequence (pn−1

1 , p2). Then

Ĩ (Pn) =


p1 (⌈ 2

√
n+ 1 ⌉ - 2) + (p2 - p1), if v∈ S or v ∈ m(G-S)

with σ (v) = p2

p1 (⌈ 2
√
n+ 1 ⌉ - 2), otherwise

Proof. Given Pn is a fuzzy path with n vertices such that (n− 1) vertices of
node strength p1 and the remaining one vertex have node strength as p2, say σ (v)
= p2. Let S be any strict subset of V having x vertices then G− S have x+ 1 or
fewer components and one of them must have at least n−x

x+1 vertices.

Let H denotes the maximum order connected component of (G− S).
The following cases are possible.
Case 1: If v ∈ S, then (x−1) vertices have node strength as p1 and v has node

strength as p2 in S. Also every vertex in G− S have node strength p1. Therefore,
|S| = (x− 1)p1 + p2 and m(G− S) = (n−x

x+1 )p1.

Hence Ĩ(Pn) = min{(x − 1)p1 + p2 + (n−x
x+1 ) p1 } = min { p1 ( x2+n

x+1 ) +(p2
- p1) }. Minimum of this function attained at x =

√
n+ 1 − 1 and the minimum

value is 2
√
n+ 1− 2. For integer, by rounding up the value, the result is Ĩ (Pn) =

p1 (⌈ 2
√
n+ 1 ⌉ - 2) + (p2 - p1).

Case 2: If v not in S but v ∈ H, then S have x vertices with node strength p1
and H have (n−x

x+1 ) -1 vertices of node strength p1 and one vertex with strength p2.

Then |S| = xp1 and m(G− S) = (n−x
x+1 − 1)p1 + p2.

Therefore Ĩ (Pn) = min { xp1 + (n−x
x+1 − 1) p1 + p2 }

= min{ ( x2+n
x+1 ) p1 + (p2 - p1) }

= p1 (⌈ 2
√
n+ 1 ⌉ - 2) + (p2 - p1).

Case 3: If v is not in both S and H then |S| = xp1 and m(G-S) = (n−x
x+1 ) p1.

Then Ĩ (Pn) = min { p1 (n−x
x+1 + x)}

= min { ( x2+n
x+1 ) p1 }
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= p1 (⌈ 2
√
n+ 1 ⌉ - 2).

Thus from case 1, 2 and 3, it is concluded that,

Ĩ (Pn) =


p1 (⌈ 2

√
n+ 1 ⌉ - 2) + (p2 - p1) , if v ∈ S or v ∈ m(G− S)

with σ (v) = p2

p1 (⌈ 2
√
n+ 1 ⌉ - 2) , otherwise

�

Example 3.2. Example for cases 1 & 2: Consider the fuzzy graph G:
(σ, µ) with σ∗ = {a, b, c, d}, with σ(a) = 0.2, σ(b) = 0.3, σ(c) = σ(d) = 0.2,

µ(a, b) = µ(b, c) = µ(c, d) = 1. For this graph, Ĩ-sets are {b} and {a, c} with Ĩ (G)
= 0.7.

Example 3.3. Example for case 3: Consider the fuzzy graph G = (σ, µ)
with σ∗ = {a, b, c, d}, with σ(a) = 0.3, σ(b) = σ(c) = σ(d) = 0.2, µ(a, b)=µ(b,

c)=µ(c, d)= 1. For this graph, Ĩ-set, S = {b} and Ĩ (G) = 0.6.

Theorem 3.4. Let G be a non-trivial connected fuzzy graph. Then Ĩ (G) =

σ(v) + minv∈V Ĩ(G− v)

Proof. Clearly if Ĩ-set is ∅, then Ĩ(G) = m(G), otherwise Ĩ(G) < m(G).

Therefore Ĩ(G) = min∅⊂S⊂V {|S|+m(G− S)}.
=minv∈V minT⊂V−v { |T∪{v}| + m(G-(T∪{v}))}
=minv∈V {σ(v) +minT⊂V−v{|T |+m((G− v)− T )}}
= σ(v) + minv∈V Ĩ(G− v) �

Theorem 3.5. Let Cn be a fuzzy cycle having n vertices with node strength
sequence (pn−1

1 , p2). Then

Ĩ (Cn) =


p1 (⌈ 2

√
n ⌉ - 1) + (p2 - p1) , if v∈ S or v ∈ m(G-S)

with σ (v) = p2

p1 (⌈ 2
√
n ⌉ - 1) , otherwise

Proof. Let Cn be a fuzzy cycle having n vertices with σ (v) = p2 and σ (u)
= p1 for all u ∈ V other than v. Let Pn−1 be a path defined by Cn − w, where
w ∈ V .

Case 1: If w = v then every vertex in Pn−1 has degree strength as p1. Then

by previous theorem 3.3, Ĩ (Pn−1) = p1 (⌈ 2
√
n ⌉ - 2) and by above theorem 3.4

Ĩ (Cn)= (⌈ 2
√
n ⌉ - 2)p1 + p2 = (⌈ 2

√
n ⌉ - 1)p1 + (p2 - p1)

Case 2: If w ̸= v then node strength of Pn−1 is (Pn−2
1 , p2), then by theorem

3.3, Ĩ (Pn−2)is either p1 (⌈ 2
√
n ⌉ - 2) or p1 (⌈ 2

√
n ⌉ - 2) + (p2 - p1). Now Ĩ

(Cn) = Ĩ (Pn−1) + σ (v) implies p1 (⌈ 2
√
n ⌉ - 1) or p1 (⌈ 2

√
n ⌉ - 1) + (p2 -

p1).
Hence
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Ĩ (Cn) =


p1 (⌈ 2

√
n ⌉ - 1) + (p2 - p1) , if v∈ S or v ∈ m(G-S)

with σ (v) = p2

p1 (⌈ 2
√
n ⌉ - 1) , otherwise

�
Theorem 3.6. Let G be a complete fuzzy graph having n vertices with node

strength sequence (pn−1
1 , p2). Then Ĩ (G)= (n-1) p1 + p2.

Proof. For any strict subset S ⊂ V , the complete fuzzy graph G with n
vertices is divided into two connected components S and G−S having |S|+m(G−
S) = (n− 1)p1 + p2. Thus Ĩ(G) = (n− 1)p1 + p2. �

Corollary 3.1. (S.Mathew and M.S. Sunitha proved in [10]), Complete fuzzy
graphs having node strength sequence (pn−1

1 , p2) have δ(G) = ∆ (G)= δs(G) =

∆s(G) = (n− 1)p1. The above theorem results in, δ(G) = ∆(G) = Ĩ(G)− p2.

Corollary 3.2. In a complete fuzzy graph G, if the node strength sequence is
(pn−1

1 , p2), then µ(x,y) = p1 for all x, y. This implies G is a regular fuzzy graph
with d(u) = (n-1)p1. Thus the theorem can be restated as if G is a regular fuzzy

graph having n vertices with node strength sequence (pn−1
1 , p2)then, Ĩ (G)=(n-1) µ

+ p2.

Corollary 3.3. If G is a regular fuzzy graph having n vertices with node

strength sequence (pk1 , p
n−k
2 ) then, Ĩ(G) = kp1 + (n− k)p2 = kµ+ (n− k)p2.

Theorem 3.7. Let G be a fuzzy graph with node strength sequence (pm+n−1
1 ,

p2)where the under lying graph G∗ is Km,n, then

Ĩ (G)=

{
mp1 + p2 if m 6 n

np1 + p2 m > n

Proof. Bipartite the vertex set V as V1 and V2 such that | V1 | = m and | V2

| = n and σ(v) = p2. If v ∈ V1 and m 6 n, then Ĩ (G)= mp1+p2. If v ∈ V1 and

m>n, then Ĩ (G)= np1+p2. Similarly If v ∈ V2 and m<n, then Ĩ (G)= mp1+p2. If

v ∈ V2 and m > n, then Ĩ (G)= np1+p2. Consolidating all the above possibilities,

we get, Ĩ (G)=

{
mp1+p2 if m 6 n

np1 + p2 m > n

�
Corollary 3.4. Let G be a fuzzy graph with node strength sequence (pn−1

1 ,

p2) where the under lying graph G∗ is a star K1,n, then Ĩ (G) = p1 + p2.

Theorem 3.8. Let G be a fuzzy null graph Kn with node strength sequence

(p1, p2, · · · , pn). Then Ĩ (Kp) = pn.

4. Conclusion

This paper attempts in developing the integrity concepts in fuzzy graphs. For
the node strength sequence (pn−1

1 , p2) and for constant vertex degree, integrity of
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special types of fuzzy graphs are developed. For complete fuzzy graph, this integrity
parameter is compared with other connectivity parameters.
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