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Abstract. In the framework of fuzzy sets and corresponding techniques, we

investigate functions from a nonempty set X into an ordered structure (S,6)
where S is a meet-semilattice.

Each function µ : X → S determines a family of subsets of X, which are
called cut sets. Vice versa, particular family of subsets of X, indexed by the

elements of S uniquely determines a function from X to S.
Further, any function µ : X → S determines a semi-closure operator on

S, which induces an equivalence relation on the semilattice S. Using the above
results, we classify functions in SX .

1. Introduction

Fuzzy sets are functions, and they can be characterized by a family of subsets
of the domain, consisting of cut sets [3, 4, 5]. If cuts are considered as non-indexed
subsets, then it may happen that different fuzzy sets on the same domain have equal
collections of cuts. Conditions under which it happens for lattice valued fuzzy sets
are investigated and presented in [3]. In case when the codomain is an arbitrary
poset these conditions are studied in [3] and [6]. Clearly, equality of the collections
of cuts is an analogue problem in case that the codomain of fuzzy sets is a meet
or join-semilattice. Conditions for such equivalence has not been investigated in
the literature. In paper [2], we have investigated properties of cuts of semilattice
valued fuzzy sets. In the mentioned paper we introduced and investigated semi-
closure systems and dual semi-closure systems and applied these to investigations
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of collections of cut sets of semilattice valued fuzzy sets. The present article is a
continuation of this paper ([2]), and we deal with the problem of finding conditions
for two semilattice valued fuzzy sets to have equal collections of cuts. Our results
are similar to those in papers [3, 4, 6], we follow the same ideas, but here we use
different techniques, combining lattice and poset theoretic tools. Using properties
of the collection of cut sets, we define a binary relation on a semilattice through a
particular extension function. In this way, we obtain a partition of the co-domain
semilattice. In connection to this partition, following the notions from [3, 4], we
introduce equivalent semilattice-valued fuzzy sets. We prove that these mappings
(fuzzy sets) have equal collections of cuts.

2. Preliminaries

2.1. Order; semilattices. Here we give some basic definitions and basic
properties of ordered structures and related notions, which are used throughout
the paper. These are a part of the topic presented e.g., in [1].

A partially ordered set, a poset (S,6) is a nonempty set equipped with an
ordering relation 6. For every p ∈ S, the principal filter generated by p is
denoted by ↑p:

↑p = {x ∈ S | p 6 x}.
Dually, the principal ideal generated by p is denoted by ↓p:

↓p = {x ∈ S | p 6 x}.

If S is a poset and x, y ∈ S, then clearly

x 6 y if and only if ↑y ⊆ ↑x.

A poset is bounded if it has the smallest element, the bottom, denoted by 0,
and the greatest, the top, denoted by 1.

Let C be a collection of subsets of a nonempty set X, ordered by inclusion.
This poset is called a closure system on X if it closed under arbitrary (including
empty) intersections ([1]). A collection of subsets C of X is called a semi-closure
system on X (see [2]) if it is closed under arbitrary non-empty set intersections.
A collection of subsets C is called a dual semi-closure system if it closed under
all intersections of arbitrary nonempty sub-collection ([2]).

A meet-semilattice is a poset in which for every two-element subset {x, y}
there is the greatest lower bound (glb, meet, infimum), denoted by x ∧ y. A join-
semilattice is a poset in which for every two-element subset {x, y} there is the
least upper bound (lub, join, supremum), denoted by x ∨ y.

A lattice is a poset which is a meet-semilattice and a join-semilattice. A meet
or a join are binary operations on S, hence a semilattice is also an algebra, denoted
by (S,∧) or (S,∨) respectively.

A complete lattice is a poset (S,6) in which every subset possesses the
greatest lower bound and the least upper bound. Every complete lattice is bounded.

If (S,6) and (T,6) are posets, then a map f : S −→ T is an order isomor-
phism if it is a bijection compatible with the order in both directions, i.e., if for
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x, y ∈ S,

x 6 y if and only if f(x) 6 f(y).

If S and T are semilattices, then such a bijection has to preserve meets for meet-
semilattices (meet-homomorphism) or joins for join semi-lattices (join-homo-
morphism) respectively, i.e., for x, y ∈ S,

f(x ∧ y) = f(x) ∧ f(y) or f(x ∨ y) = f(x) ∨ f(y).

If S and T are lattices, then such a bijection is supposed to preserve both, (finite)
meets and joins.

Two semilattices are isomorphic as algebras if and only if they are order iso-
morphic in the above sense.

As usual in the set theory, a family of subsets of a set X is a function from an
index set I into the power set P (X). The codomain of the family is a corresponding
collection of subsets of X.

Let (S,6) be a meet (join)-semilattice. For arbitrary M ⊆ S, we define the
set of upper bounds of M ,

Mu := {p ∈ S | x 6 p, for every x ∈M}.

and the set of lower bounds of M ,

M l := {p ∈ S | p 6 x, for every x ∈M}.

2.2. Semilattice-valued functions. Let (S,6) be a semilattice and X ̸= ∅.
A function µ : X → S is a semilattice-valued or S-valued function on S.
Following the terminology of the theory of fuzzy sets, we also say that µ is a
semilattice-valued (S-valued) fuzzy set on X.

By SX we denote the set of all L-valued functions (fuzzy sets) on X:

SX = {µ | µ : X → S}.

We consider SX to be an ordered set whose order is induced by the order in S:

µ 6 ν if and only if for every x ∈ X,µ(x) 6 ν(x).

It is clear that under this order, SX is a semilattice.
Let µ ∈ SX and p ∈ S. Then a cut set (cut) of µ is a subset of µp of X defined

by

µp = {x ∈ X | µ(x) > p}
In other words, a cut set of µ is the inverse image of the principal filter generated
by p:

µp = µ−1(↑p).
The set of all cut sets of µ is denoted by µS :

µS = {µp | p ∈ S}.

In the following, we present some properties of the above introduced functions
in connection to cuts; these are presented in [2] (see also [5]).
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Proposition 2.1. If µ : X → S is a function in SX , then for every x ∈ X,

µ(x) =
∨
{p ∈ S | x ∈ µp}.

Proposition 2.2. Let {Mi | i ∈ S} be a family of subsets of a nonempty set
X, indexed by elements of meet semilattice S in the following way:

For every x ∈ X,
∨
{p | x ∈Mp} exists in S and

(2.1)
∩
{Mp | x ∈Mp} = M∨

{p|x∈Mp}.

Then, {Mi | i ∈ S} is the family of cut sets of S-valued fuzzy set µ : X → S,
defined by

(2.2) µ(x) =
∨
{p ∈ S | x ∈Mp}.

Theorem 2.1. Let F be a semi-closure system over X and its union be X.
Then there is a meet semilattice S and an S-valued fuzzy set µ : X → S such that
µS = F .

Using a dual semi-closure system, one can prove the analogue property for a
join semilattice-valued fuzzy set ([2]).

3. Main results

Throughout the section, (S,6) is supposed to be a meet-semilattice, to which
we sometimes refer briefly as to a semilattice.

We start with some auxiliary properties of functions in SX . Some of these were
developed for lattice valued functions in [3] (see also reference there), and here we
adopt them to meet-semilattices.

Let µ : X → S be a function from SX , and ≈ a binary relation on S, such that
for p, q ∈ S

p ≈ q if and only if µp = µq.

It is obvious that ≈ is an equivalence relation on S.
Let µ : X → S be a function in SX , then µ(X) = {µ(x) | x ∈ X}. The pair

(µ(X),6) is a sub-poset of the semilattice (S,6).
The following is known for posets and lattices ([3, 4], but dealing with semi-

lattices, we prove this property here.

Proposition 3.1. If µ ∈ SX and p, q ∈ S, then

p ≈ q if and only if ↑p ∩ µ(X) = ↑q ∩ µ(X).

Proof. The relation p ≈ q holds if and only if µp = µq if and only if for every
x ∈ X,x ∈ µp if and only if x ∈ µq if and only if µ(x) > p↔ µ(x) > q if and only
if µ(x) ∈ ↑p is equivalent with µ(x) ∈ ↑q if and only if {x ∈ X | µ(x) ∈ ↑p} = {x ∈
X | µ(x) ∈ ↑q} if and only if ↑p ∩ µ(X) = ↑q ∩ µ(X). �

Proposition 3.2. Let µ, ν ∈ SX . If the collections µS and νS of cuts of these
functions coincide, then µ(X) ∼= ν(X) under an ordered isomorphism.
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Proof. µS = νS is equivalent to

(∀p ∈ S)(∃q ∈ S)µp = νq and (∀p ∈ S)(∃q ∈ S)νp = µq.

The mapping f : µ(X) → ν(X) is defined by f(µ(x)) = ν(x). We show that
f is well defined. To do this, we prove firstly that µ(x) = µ(y) if and only if
ν(x) = ν(y). Suppose that ν(x) ̸= ν(y). Let p = ν(x) and q = ν(y). Then, either
ν(x) ̸6 ν(y) or ν(y) ̸6 ν(x) by contraposition of antisymmetry of the relation 6
on S. If ν(x) ̸6 ν(y), then we have p ̸6 ν(y) which means that y ̸∈ νp. By the
assumption, νp = µt, for some t ∈ S. Hence, y ̸∈ µt and µ(y) ̸> t. On the other
hand, x ∈ νp means x ̸∈ µt, by the assumption νp = µt. Further, µ(x) > t. We
have µ(x) ̸= µ(y). The converse is proved analogously. Hence, f is also injective.
Furthermore, if p ∈ ν(X), then p = ν(x), for some x in X. Hence, f(µ(x)) = p
and the mapping is ”onto”. We show that µ(x) 6 µ(y) if and only if ν(x) 6 ν(y).
Suppose that µ(x) 6 µ(y). Let ν(x) = p. Then, x ∈ νp and there is q ∈ S, such that
νp = µq. Now, x ∈ µq and q 6 µ(x) 6 µ(y), hence y ∈ µq. Therefore, y ∈ νp and
ν(x) = p 6 ν(y). Analogously, we prove the converse, i.e. that from ν(x) 6 ν(y) it
follows that µ(x) 6 µ(y). �

The converse of Proposition 3.2 is not satisfied as presented in the following
example.

Example 3.1. Let X = {x, y, z} and meet semilattice S that is given by its
diagram in Figure 1.
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Figure 1: Semilattice S

Let µ, ν, π : X → S be three functions from X to S, defined as follows:

µ =

(
x y z
p t s

)
; ν =

(
x y z
p t r

)
;π =

(
x y z
p u s

)
Then all three functions have order isomorphic posets of images, i.e., µ(X) ∼=

ν(X) ∼= π(X). (See Figure 2).
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Figure 2: Order isomorphic images of meet fuzzy sets

Cut sets of these functions are given in Table 1.

z ∈ S µs νs πs

p {x} {x} {x}
q {y, z} {y, z} {y, z}
r {y} {y, z} {y}
s {y, z} {y} {y, z}
t {y} {y} {y}
u ∅ ∅ {y}
0 {x, y, z} {x, y, z} {x, y, z}

Table 1. Collections of cuts of meet fuzzy set µ, ν and π

The following diagram (Figure 3) shows that the collections of cuts of µ and
ν coincide but the collection of cuts of µ does not coincide with the corresponding
collection for π. u

uu
u

u
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{x, y, z} {x, y, z}u
u
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πs

Figure 3: Collections of cuts of meet fuzzy sets

Starting with a function µ from SX where S is a meet semilattice, we define
a special poset ordered by set inclusion, whose elements are certain subsets of the
set of all images of µ.
For µ ∈ SX , let

Sµ := ({↑p ∩ µ(X) | p ∈ S},⊆).

In the following, the above collection is considered as a poset ordered by inclusion.
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Proposition 3.3. If µ : X → S is a function from SX , then there is an order
isomorphism from the poset Sµ to the poset µS of cuts of µ.

Proof. The function f : µp → ↑p ∩ µ(X) maps the collection µS of cuts of µ
onto the poset Sµ. By the following sequence of equivalent statements we prove
that the mapping is well defined and injective. ↑p ∩ µ(X) = ↑q ∩ µ(X) if and only
if {x | µ(x) > p} = {x | µ(x) > q} if and only if µp = µq. Since the fact that f
is ”onto” is obvious, f is bijective. Now we show that f preserve the order, i.e.,
that µp ⊆ µq if and only if f(µp) ⊆ f(µq), where f(µp) = ↑p ∩ µ(X). Let µp ⊆ µq

and let m ∈ ↑p ∩ µ(X). It means that m ∈ ↑p and m = µ(x) for some x ∈ X.
Then µ(x) > p for some x ∈ X, i.e., x ∈ µp. It follows that x ∈ µq, by assumption
µp ⊆ µq. Therefore, m ∈ ↑q and m = µ(x) for some x ∈ X, i.e., m ∈ ↑q ∩ µ(X).
In order to prove the converse, we suppose that f(µp) ⊆ f(µq). Let x ∈ µp, i.e.,
let µ(x) > p. We have that µ(x) ∈ ↑p ∩ µ(X), hence µ(x) ∈ ↑q ∩ µ(X) by the
assumption. Hence, µ(x) > q and x ∈ µq, so f is an order isomorphism. �

The following lemma describes a property of complete meet-semilattices which
is used in the sequel.

Lemma 3.1. Let (S,6) be a complete meet-semilattice. If M is a nonempty
subset of S and Mu ̸= ∅, then

∨
M exists.

Proof. Let M ⊆ S. Suppose Mu = {p ∈ S | x 6 p, for every x ∈ M} ̸= ∅.
By the assumption,

∧
Mu exists. Now it is easy to prove that m =

∧
Mu is a

supremum of M . �
Lemma 3.2. Let (S,6) be a complete meet-semilattice, X a nonempty set,

µ ∈ SX and p, q ∈ S. If p and q have an upper bound, then

(3.1) (↑(p ∨ q)) ∩ µ(X) = (↑p∩ ↑ q) ∩ µ(X).

Proof. Suppose that {p, q} ⊆ S and {p, q}u ̸= ∅. Then p ∨ q exist by Lemma
3.1. For all p, q ∈ S, p 6 p∨q and q 6 p∨q. Then ↑(p∨q) ⊆ ↑p and ↑(p∨q) ⊆ ↑q by
properties of filters. This implies ↑(p∨ q) ⊆ ↑p∩↑q, and we have ↑(p∨ q)∩µ(X) ⊆
(↑p ∩ ↑q) ∩ µ(X). Now we show the converse. Let m ∈ (↑p ∩ ↑q) ∩ µ(X). In other
words, m ∈ ↑p, m ∈ ↑q and m = µ(x) for some x ∈ X. Hence m > p, m > q
and m = µ(x) ∈ µ(X). Therefore, m > p ∨ q and m = µ(x), for some x ∈ X, i.e.,
m ∈ ↑(p ∨ q) ∩ µ(X). Thus, we have (↑p ∩ ↑q) ∩ µ(X) ⊆ (↑(p ∨ q)) ∩ µ(X). �

Remark 3.1. If p and q do not have an upper bound, then ↑p∩↑q is the empty
set.

By the previous lemma, in the following we show that Sµ ∪ {∅} is a meet
semilattice under inclusion.

Observe that for a mapping µ : X → S, where (S,6) is a meet (join)-
semilattice, we have

(3.2) (↑p ∩ µ(X)) ∩ (↑q ∩ µ(X)) = (↑p ∩ ↑q) ∩ µ(X).

By (3.2), in the poset Sµ ∪ {∅}, in case of non empty set intersection we have:

(↑p ∩ µ(X)) ∩ (↑q ∩ µ(X)) = (↑(p ∨ q)) ∩ µ(X),
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and in case of empty set intersections:

(↑p ∩ µ(X)) ∩ (↑q ∩ µ(X)) = ∅,

for (↑p ∩ ↑q) = ∅. So, Sµ ∪ {∅} is a meet semilattice.

Example 3.2. For functions µ, ν and π (Example 3.1), we calculate the cor-
responding subsets of S in Table 2. as follows. Three posets (Sµ,⊆), (Sν ,⊆) and

z ∈ S ↑z ∩ µ(X) ↑z ∩ ν(X) ↑z ∩ π(X)
p {p} {p} {p}
q {s, t} {r, t} {s, u}
r {t} {t, r} {u}
s {s, t} {t} {s, u}
t {t} {t} {u}
u ∅ ∅ {u}
0 {p, t, s} {p, t, r} {p, u, s}
Table 2. Collections of subsets S

(Sπ,⊆) are presented in Figure 4.u u
u uu u
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u u
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Figure 4: Posets of collections of subsets of S
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Next, we introduce our main definition by which we can classify functions in
the collection SX . We start with a meet semilattice using the same definition of
the equivalence relation that was introduced in the lattice case [see [3]].

Our motivation can be seen in Examples 3.1 and 3.2. Observe that the posets
of images for all three fuzzy sets are isomorphic, while the posets of cuts are not. In
order to make the corresponding distinction, for mapping µ, ν, . . ., we investigate
the posets Sµ, Sν , . . . and so on.

Definition 3.1. Let S be meet semilattice and let ∼ be a relation on SX ,
defined as follows:

µ ∼ ν if and only if the correspondence f : µ(x)→ ν(x), x ∈ X,
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is a bijection from µ(X) onto ν(X) which has an extension to an isomorphism from
Sµ onto Sν , given by the map:

(3.3) F (↑p ∩ µ(X)) = ↑
∧
{ν(x) | µ(x) > p} ∩ ν(X), p ∈ S.

Remark 3.2. If x ∈ X, then µ(x) and ν(x) are in the mentioned correspon-
dence. Since this is a bijection, we have that µ(x) = µ(y) if and only if ν(x) = ν(y).

Lemma 3.3. Let µ, ν ∈ SX and µ ∼ ν, and let for p ∈ S,
∧
{ν(x) | µ(x) > p} =

q. Then for any y ∈ X,

µ(y) > p if and only if ν(y) > q.

Proof. Suppose that for p ∈ S, we have
∧
{ν(x) | µ(x) > p} = q. If µ(y) > p,

then ν(y) >
∧
{ν(x) | µ(x) > p} = q.

Now, suppose that ν(y) > q. Then, by µ ∼ ν, we have that F (↑p ∩ µ(X)) =
↑
∧
{ν(x) | µ(x) > p}∩ν(X) is an isomorphism from Sµ onto Sν . By the definition of

q, F (↑p∩µ(X)) = ↑q∩ν(X). By ν(y) > q, we have that ↑ν(y)∩ν(X) ⊆ ↑q∩ν(X).
Hence, ↑µ(y) ∩ µ(X) ⊆ ↑p ∩ µ(X). Since µ(y) ∈ ↑µ(y) ∩ µ(X), we have that
µ(y) ∈ ↑p ∩ µ(X), hence µ(y) > p. �

Proposition 3.4. The relation ∼ is an equivalence relation on SX .

Proof.

• Reflexivity. For every µ ∈ SX , we will show that µ ∼ µ, i.e., F (↑p ∩
µ(X)) = ↑

∧
{µ(x) | µ(x) > p} ∩ µ(X), p ∈ S. Let µ ∈ SX , we have

µ(x) ∈ S. Since f is a bijection, µ(x) → µ(x) is an identity mapping in
µ(X). This mapping determines the identity mapping in extension F as
↑µ(x)∩µ(X)→ ↑µ(x)∩µ(X) in Sµ. Therefore, F (↑p∩µ(X)) = ↑

∧
{µ(x) |

µ(x) > p} ∩ µ(X), p ∈ S, i.e., µ ∼ µ .
• Symmetry. For every µ, ν ∈ SX , if µ ∼ ν then ν ∼ µ. Suppose that µ ∼ ν.

It means F is an isomorphism and F (↑p∩µ(X)) = ↑
∧
{ν(x) | µ(x) > p}∩

ν(X) = ↑q ∩ ν(X), p ∈ S. By Lemma 3.3 we have µ(x) > p ↔ ν(x) > q.
Now, we want to show F−1(↑q ∩ ν(X)) = ↑

∧
{µ(x) | ν(x) > p} ∩ µ(X) =

↑p ∩ µ(X), q ∈ S, that is:
(i) ↑

∧
{µ(x) | ν(x) > q} ∩ µ(X) ⊆ (↑p ∩ µ(X)), and

(ii) ↑p ∩ µ(X) ⊆ ↑
∧
{µ(x) | ν(x) > q} ∩ µ(X).

(i) If ν(x) > q, by assumption: µ(x) > p and
∧
{µ(x) | ν(x) > q} > p.

Then we have ↑
∧
{µ(x) | ν(x) > q} ⊆ ↑p and also ↑

∧
{µ(x) | ν(x) >

q} ∩ µ(X) ⊆ ↑p ∩ µ(X) by properties of filter.
(ii) Let µ(x) ∈ ↑p ∩ µ(X). It means that µ(x) > p, hence, ν(x) > q

and µ(x) >
∧
{µ(y) | ν(y) > q}. Therefore µ(x) ∈ ↑

∧
{µ(y) | ν(y) >

q} ∩ µ(X). We have ↑p ∩ µ(X) ⊆ ↑
∧
{µ(x) | ν(x) > q} ∩ µ(X). From (i)

and (ii) we have ∼ is a symmetric on SX .
• Transitivity. For every µ, ν, ρ ∈ SX , we have to prove that from µ ∼ ν

and ν ∼ ρ it follows that µ ∼ ρ. Suppose µ ∼ ν, it means that mapping
f : µ(X)→ ν(X) is a bijection such that F : Sµ → Sν is an isomorphism
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by the definition

F (↑p ∩ µ(X)) = ↑
∧
{ν(x) | µ(x) > p} ∩ ν(X), p ∈ S,

and suppose ν ∼ ρ, it means that a mapping f : ν(X)→ ρ(X), such that
F : Sν → Sρ is an isomorphism by the definition

G(↑q ∩ ν(X)) = ↑
∧
{ρ(x) | ν(x) > q} ∩ ρ(X), q ∈ S.

We show that µ ∼ ρ i.e., that a mapping f ◦ g is a bijection such that
F ◦G is an isomorphism, i.e., we show that

(F ◦G)(↑p ∩ µ(X)) = ↑
∧
{ρ(x) | µ(x) > p} ∩ ρ(X), p ∈ S.

Let p ∈ S and ↑p ∩ µ(X) ∈ Sµ,

(F ◦G)(↑p ∩ µ(X)) = G(F (↑p ∩ µ(X))) = G(↑
∧
{ν(x) | µ(x) > p} ∩ ν(X)).

By Lemma 3.3, we have

(F ◦G)(↑p ∩ µ(X)) = G(↑q ∩ ν(X))) = ↑
∧
{ρ(x) | ν(x) > q} ∩ ρ(X).

Again by Lemma 3.3,

(F ◦G)(↑p ∩ µ(X)) = ↑
∧
{ρ(x) | µ(x) > p} ∩ ρ(X), p ∈ S.

It means that µ ∼ ρ.

�
We say that semilattice-valued sets µ and ν on X are equivalent if µ ∼ ν.

The following example shows two meet-fuzzy sets on X that are equivalent.

Example 3.3. For functions µ, ν (Example 3.1), two isomorphic ordered images
of two meet-fuzzy sets are given in Figure 2.

All of the subsets ↑ z ∩ µ(X) and ↑ z ∩ ν(X), z ∈ S can be seen in Table 2.
The collections Sµ and Sν which are isomorphic can be seen in Figure 4.
Therefore µ, ν ∈ SX have equal families of cuts. Obviously, collections of cuts

µS and νS coincide and we have Sµ
∼= µS and Sν

∼= νS as lattice isomorphisms
with respect to inclusion. Therefore, meet-fuzzy sets µ, ν ∈ SX are equivalent.

The following example shows two meet fuzzy sets µ, ν ∈ SX that are not
equivalent.

Example 3.4. For functions µ and π (Example 3.1), two ordered isomorphic
images of two meet-fuzzy sets are obtained (Figure 2). Furthermore, in Table 2.
(Example 3.2) subsets ↑z ∩ µ(X) and ↑z ∩ π(X), for every z ∈ S are presented.
Collections Sµ and Sπ are not isomorphic (Figure 4). Therefore, meet-fuzzy sets
µ, π ∈ SX are not equivalent. The collections µS and πS of cuts ordered by inclusion
(Figure 3) do not coincide. But it’s always true that Sµ

∼= µS and Sπ
∼= πS by

Proposition 3.3.
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Remark 3.3. If F : Sµ → Sν is an ordered isomorphism then we have
two collections of cuts µS and νS that coincide. Furthermore, we have an or-
dered isomorphism from µ(X) onto ν(X). But having an ordered isomorphism
f : µ(X)→ ν(X), is not sufficient to show that two collections of cuts coincide, as
it is illustrated in Example 3.2.

Let µ, ν ∈ SX and if µ and ν are equivalent meet-fuzzy sets, then by the next
theorem they have equal families of cuts.

Theorem 3.1. Let µ, ν ∈ SX . Then µ ∼ ν, if and only if fuzzy sets µ and ν
have equal families of cuts.

Proof. Suppose that µ ∼ ν. Then we show that µS = νS , i.e., for every p ∈ S,
there is q ∈ S such that µp = νq. Now we take p ∈ S, and we have two cases below.
Case (1), if p ∈ µ(X). Let p = µ(x) for some x ∈ X. We show that µp = νq for
q = ν(x). Take y ∈ µp if and only if µ(y) > p = µ(x) if and only if ν(y) > ν(x) =
q if and only if y ∈ νp. Case (2), if p ∈ S is not in µ(X). Let x ∈ µp. Now we show
that x ∈ νq, for q =

∧
{ν(z) | µ(z) > p}. We have:

µ(x) > p if and only if ↑µ(x) ∩ µ(X) ⊆ ↑p ∩ µ(X),

←→ ↑ν(x) ∩ ν(X) ⊆ ↑
∧
{ν(z) | µ(z) > p} ∩ ν(X),

←→
∧
{ν(z) | µ(z) > p} 6 ν(x),

←→ x ∈ ν∧{ν(z)|µ(z)>p},

←→ x ∈ νq.

Now we proof the converse, i.e., if µS = νS then µ ∼ ν. By Proposition 3.3 we
know Sµ

∼= µS , Sν
∼= νS and µS = νS . It implies that Sµ

∼= Sν . Hence, there is
isomorphism from Sµ to Sν , where ↑p ∩ µ(X) 7→ ↑p ∩ ν(X), i.e., µ ∼ ν. �

4. Conclusion and further work

We have presented an investigation of functions from a set to a semilattice,
actually we were dealing with semilattice-valued fuzzy sets. We were concentrated
on the situation in which the collections of cuts of these functions coincide. Using
the combined techniques of poset and lattice valued fuzzy sets we defined an equiv-
alence relation on SX , where S is a semilattice and X a nonempty domain. This
equivalence relates fuzzy sets with equal collections of cuts.

As a further work, we plan to investigate properties of classes obtained by the
mentioned equivalence, in terms of set and order theoretic features of the corre-
sponding collections of cut sets.
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[3] Šešelja, B., Tepavcević, A., On Natural Equivalence Relation on Fuzzy Power Set, Fuzzy Set
and Systems, Vol. 148 (2008), 201–210.



48 H.O.L. MONIM, I.E. WIJAYANTI, AND S. WAHYUNI
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