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Existence Results for Multiple Positive Solutions of
Riemann–Liouville Fractional Order Three-Point Boundary

Value Problems

K. R. Prasad1, B. M. B. Krushna2 and L. T. Wesen1,3

Abstract. In this paper, we investigate sufficient conditions for the existence
of at least three positive solutions to the Riemann–Liouville fractional order
three-point boundary value problems by means of fixed point theorem. We also

establish the existence of at least 2m − 1 positive solutions to the boundary
value problems for an arbitrary positive integer m.

1. Introduction

Fractional order differential equations have attracted considerable interest be-
cause of their ability to model complex phenomena. Fractional calculus is the field
of mathematical analysis which unifies the theories of integration and differentiation
of any arbitrary real order [4, 6, 8, 9]. In describing the properties of various real
materials, the derivatives and integrals of non-integer order are very much suitable.
They arise in many engineering and scientific disciplines like mathematical model-
ing of systems and processes in various fields such as physics, mechanics, control
systems, flow in porous media, electromagnetics and viscoelasticity.

Boundary value problems associated with linear as well as nonlinear ordinary
or fractional order differential equations have achieved a great deal of interest and
play a pivotal role in many areas of applied mathematics like engineering design
and manufacturing. Major established industries such as automobile, chemical,
electronics and communications, biotechnology and nanotechnology rely on bound-
ary value problems to simulate complex phenomena at various scales for designing
and manufacturing of high technological products and in these applied settings,
positive solutions are meaningful. The existence of positive solutions to fractional
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boundary value problems have been studied by many researchers using different
techniques [2, 5, 3, 1, 10, 11, 13, 12].

This paper is concerned with the existence of multiple positive solutions to the
fractional order differential equations

(1.1) Dα
0+y(t) + f

(
t, y(t)

)
= 0, t ∈ (0, 1),

satisfying three-point boundary conditions

(1.2)

{
y(k)(0) = 0, k = 0, 1, 2, · · ·, n− 2,

ζDβ
0+y(1)− ϑDβ

0+y(η) = 0,

where α ∈ (n − 1, n], n > 2, η ∈ (0, 1), β ∈ (1, α), ζ, ϑ are positive constants and

Dα
0+ , D

β
0+ are the standard Riemann–Liouville fractional order derivatives.

The rest of the paper is organized as follows. In Section 2, we construct the
Green’s function for the associated linear fractional order boundary value problem
and estimate the bounds for the Green’s function. In Section 3, we investigate
sufficient conditions for the existence of at least three positive solutions to the
fractional order boundary value problem (1.1)-(1.2) by using Leggett–Williams fixed
point theorem. We also establish the existence of at least 2m− 1 positive solutions
to the fractional order boundary value problem (1.1)-(1.2) for an arbitrary positive
integer m. In Section 4, as an application, we demonstrate our results with an
example.

2. Green’s Function and Bounds

In this section, we construct the Green’s function for the associated linear
fractional order boundary value problem and estimate the bounds for the Green’s
function, which are needed to establish the main results.

Lemma 2.1. Let ∆ = Γ(α)N ̸= 0. If h(t) ∈ C[0, 1], then the fractional order
differential equations

(2.1) Dα
0+y(t) + h(t) = 0, t ∈ (0, 1),

satisfying the boundary conditions (1.2), has a unique solution

y(t) =

∫ 1

0

G(t, s)h(s)ds,

where G(t, s) is the Green’s function for the problem (2.1), (1.2) and is given by

(2.2) G(t, s) =


G(t,s)
t∈[0,η] =

{
G11(t, s), 0 6 t 6 s 6 η < 1,
G12(t, s), 0 6 s 6 min{t, η} < 1,

G(t,s)
t∈[η,1] =

{
G13(t, s), 0 6 max{t, η} 6 s 6 1,
G14(t, s), 0 < η 6 s 6 t 6 1,
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G11(t, s) =
1

∆

[
ϑtα−1(1− s)α−β−1 − ζtα−1(η − s)α−β−1

]
,

G12(t, s) =
1

∆

[
ϑtα−1(1− s)α−β−1 −N (t− s)α−1 − ζtα−1(η − s)α−β−1

]
,

G13(t, s) =
1

∆

[
ϑtα−1(1− s)α−β−1

]
,

G14(t, s) =
1

∆

[
ϑtα−1(1− s)α−β−1 −N (t− s)α−1

]
,

and N =ϑ− ζηα−β−1.

Proof. Let y(t) ∈ Cn[0, 1] be the solution of fractional order boundary value
problem given by (2.1) and (1.2). An equivalent integral equation for (2.1) is given
by

y(t) = −
∫ t

0

(t− s)α−1

Γ(α)
h(s)ds+ c1t

α−1 + c2t
α−2 + · · ·+ cnt

α−n.

Utilizing the conditions (1.2), we obtain cn = cn−1 = · · · = c2 = 0 and

c1 =
1

∆

[
ϑ

∫ 1

0

(1− s)α−β−1h(s)ds− ζ

∫ η

0

(η − s)α−β−1h(s)ds

]
.

Hence the unique solution of the problem given by (2.1) and (1.2) is

y(t) =
tα−1

∆

[
ϑ

∫ 1

0

(1− s)α−β−1h(s)ds− ζ

∫ η

0

(η − s)α−β−1h(s)ds
]

− N
∆

∫ t

0

(t− s)α−1h(s)ds

=

∫ 1

0

G(t, s)h(s)ds.

�

Lemma 2.2. Let N > 0. Then the Green’s function G(t, s) given in (2.2) is
nonnegative, for all (t, s) ∈ [0, 1]× [0, 1].

Proof. Consider the Green’s function G(t, s) given by (2.2).
Let 0 6 t 6 s 6 η 6 1. Then

G11(t, s) =
1

∆

[
ϑtα−1(1− s)α−β−1 − ζtα−1(η − s)α−β−1

]
> 1

∆

[
ϑtα−1(1− s)α−β−1 − ζtα−1(η − ηs)α−β−1

]
=

tα−1

∆

[
N
(
1 + βs+O(s2)

)]
(1− s)α−1 > 0.
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Let 0 6 s 6 min{t, η} 6 1. Then

G12(t, s) =
1

∆

[
ϑtα−1(1− s)α−β−1 −N (t− s)α−1 − ζtα−1(η − s)α−β−1

]
> 1

∆

[
ϑtα−1(1− s)α−β−1 −N (t− ts)α−1 − ζtα−1(η − ηs)α−β−1

]
=

tα−1

∆

[
N
(
(1− s)−β − 1

)]
(1− s)α−1

=
tα−1

∆

[
βsN +O(s2)

]
(1− s)α−1 > 0.

Let 0 6 max{t, η} 6 s 6 1. Then

G13(t, s) =
1

∆

[
ϑtα−1(1− s)α−β−1

]
> 0.

Let 0 6 ξ 6 s 6 t 6 1. Then

G14(t, s) =
1

∆

[
ϑtα−1(1− s)α−β−1 −N (t− s)α−1

]
> 1

∆

[
ϑtα−1(1− s)α−β−1 −N (t− ts)α−1

]
=

tα−1

∆

[
ϑβs+ ζηα−β−1 +O(s2)

]
(1− s)α−1 > 0.

�

Lemma 2.3. Let N > 0 and τ ∈ (0, 1). Then the Green’s function G(t, s) given
in (2.2) satisfies the inequalities

(P1) G(t, s) 6 G(1, s), for all (t, s) ∈ [0, 1]× [0, 1],

(P2) G(t, s) > τα−1G(1, s), for all (t, s) ∈ [τ, 1]× [0, 1].

Proof. Consider the Green’s function G(t, s) given by (2.2).
Let 0 6 t 6 s 6 η 6 1. Then, we have

∂G11(t, s)

∂t
=

(α− 1)

∆

[
ϑtα−2(1− s)α−β−1 − ζtα−2(η − s)α−β−1

]
> (α− 1)

∆

[
ϑtα−2(1− s)α−β−1 − ζtα−2(η − ηs)α−β−1

]
=

(α− 1)tα−1

∆

[
N
(
1 + βs+O(s2)

)]
(1− s)α−1 > 0.
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Therefore G11(t, s) is increasing in t, which implies G11(t, s) 6 G11(1, s).
Let 0 6 s 6 min{t, η} 6 1. Then, we have

∂G12(t, s)

∂t

=
(α− 1)

∆

[
ϑtα−2(1− s)α−β−1 −N (t− s)α−2 − ζtα−2(η − s)α−β−1

]
> (α− 1)

∆

[
ϑtα−2(1− s)α−β−1 −N (t− ts)α−2 − ζtα−2(η − ηs)α−β−1

]
=

(α− 1)tα−2

∆

[
N
(
(1− s)−(β−1) − 1

)]
(1− s)α−2

=
(α− 1)tα−2

∆

[
(β − 1)sN +O(s2)

]
(1− s)α−2 > 0.

Therefore G12(t, s) is increasing in t, which implies G12(t, s) 6 G12(1, s).
Let 0 6 max{t, η} 6 s 6 1. Then, we have

∂G13(t, s)

∂t
=

(α− 1)

∆

[
ϑtα−2(1− s)α−β−1

]
> 0.

Therefore G13(t, s) is increasing in t, which implies G13(t, s) 6 G13(1, s).
Let 0 6 η 6 s 6 t 6 1. Then, we have

∂G14(t, s)

∂t
=

(α− 1)

∆

[
ϑtα−2(1− s)α−β−1 −N (t− s)α−2

]
> (α− 1)

∆

[
ϑtα−2(1− s)α−β−1 −N (t− ts)α−2

]
=

(α− 1)tα−2

∆

[
ϑ(β − 1)s+O(s2) + ζηα−β−1

]
(1− s)α−2 > 0.

Therefore G14(t, s) is increasing in t, which implies G14(t, s) 6 G14(1, s).
Let 0 6 t 6 s 6 η 6 1 and t ∈ [τ, 1]. Then

G11(t, s) =
1

∆

[
ϑtα−1(1− s)α−β−1 − ζtα−1(η − s)α−β−1

]
=

tα−1

∆

[
ϑ(1− s)α−β−1 − ζ(η − s)α−β−1

]
= tα−1G11(1, s) > τα−1G11(1, s).

Let 0 6 s 6 min{t, η} 6 1 and t ∈ [τ, 1]. Then

G12(t, s) =
1

∆

[
ϑtα−1(1− s)α−β−1 −N (t− s)α−1 − ζtα−1(η − s)α−β−1

]
> 1

∆

[
ϑtα−1(1− s)α−β−1 −N (t− ts)α−1 − ζtα−1(η − s)α−β−1

]
=

tα−1

∆

[
ϑ(1− s)α−β−1 −N (1− s)α−1 − ζ(η − s)α−β−1

]
= tα−1G12(1, s) > τα−1G12(1, s).
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Let 0 6 max{t, η} 6 s 6 1 and t ∈ [τ, 1]. Then

G13(t, s) =
1

∆

[
ϑtα−1(1− s)α−β−1

]
= tα−1G13(1, s) > τα−1G13(1, s).

Let 0 6 η 6 s 6 t 6 1 and t ∈ [τ, 1]. Then

G14(t, s) =
1

∆

[
ϑtα−1(1− s)α−β−1 −N (t− s)α−1

]
> tα−1

∆

[
ϑ(1− s)α−β−1 −N (1− s)α−1

]
= tα−1G14(1, s) > τα−1G14(1, s),

where τ ∈ (0, 1) satisfies

∫ 1

τ

G(1, s)ds > 0. �

3. Existence of Multiple Positive Solutions in a Cone

In this section, we establish the existence of at least three positive solutions to
the fractional order boundary value problems (1.1)-(1.2) by using Leggett–Williams
fixed point theorem. We also establish the existence of at least 2m− 1 positive so-
lutions to the fractional order boundary value problem (1.1)-(1.2) for an arbitrary
positive integer m.

Let a′ and b′ be be two real numbers such that 0 < a′ < b′ and S be a
nonnegative continuous concave functional on a cone P. We define the following
convex sets

Pa′ =
{
y ∈ P : ∥y∥ < a′

}
and P

(
S, a′, b′

)
=

{
y ∈ P : a′ 6 S(y), ∥y∥ < b′

}
.

For y ∈ P, we have

(3.1) S
(
y(t)

)
= min

t∈[τ,1]

{
y(t)

}
.

To establish the existence of multiple positive solutions to the fractional order
boundary value problem (1.1)-(1.2) by employing the following Leggett–Williams
fixed point theorem.

Theorem 3.1. [7] Let T : P c → P c be completely continuous and S be a
nonnegative continuous concave functional on P such that S(y) 6 ∥y∥ for all y ∈
P c. Suppose that there exist a, b, c, and d with 0 < d < a < b 6 c such that

(i)
{
y ∈ P (S, a, b) : S(y) > a

}
̸= ∅ and S(Ty) > a for y ∈ P (S, a, b),

(ii) ∥Ty∥ < d for ∥y∥ 6 d,

(iii) S(Ty) > a for y ∈ P (S, a, c) with ∥Ty∥ > b.

Then T has at least three fixed points y1, y2, y3 in P c satisfying

∥y1∥ < d, a < S(y2), ∥y3∥ > d, S(y3) < a.
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Consider the Banach space E =
{
y : y ∈ C[0, 1]

}
equipped with the norm

∥y∥ = max
t∈[0,1]

|y(t)|.

Define a cone P ⊂ E by

P =
{
y ∈ E : y(t) > 0, t ∈ [0, 1] and min

t∈[τ,1]
y(t) > Φ∥y∥

}
,

where Φ = τα−1.
Let T : P → E be the operator defined by

(3.2) Ty(t) =

∫ 1

0

G(t, s)f
(
s, y(s)

)
ds, t ∈ [0, 1].

Lemma 3.1. The operator T defined by (3.2) is a self map on P .

Proof. Let y ∈ P . Clearly, Ty(t) > 0 for t ∈ [0, 1]. Also for y ∈ P,

∥Ty∥ 6
∫ 1

0

G(1, s)f
(
s, y(s)

)
ds

and

min
t∈[τ,1]

Ty(t) = min
t∈[τ,1]

∫ 1

0

G(t, s)f
(
s, y(s)

)
ds

> τα−1

∫ 1

0

G(1, s)f
(
s, y(s)

)
ds

> τα−1∥Ty∥ = Φ∥Ty∥.
Hence, Ty ∈ P and so T : P → P . Standard arguments involving the Arzela–

Ascoli theorem shows that T is completely continuous. �

Let

R = max
t∈[0,1]

{∫ 1

0

G(t, s)ds

}
and S = min

t∈[τ,1]

{∫ 1

τ

G(t, s)ds

}
.

Theorem 3.2. Assume that there exist real numbers d0, d1 and c with 0 <

d0 < d1 <
d1
Φ

< c such that such that the following hold, such that f satisfies the

following conditions:

(A1) f
(
t, y(t)

)
<

d0
S
, for t ∈ [0, 1] and y ∈ [0, d0] ,

(A2) f
(
t, y(t)

)
>

d1
R

, for t ∈ [τ, 1] and y ∈
[
d1,

d1
Φ

]
,

(A3) f
(
t, y(t)

)
<

c

S
, for t ∈ [0, 1] and y ∈ [0, c] .

Then the fractional order boundary value problem (1.1)-(1.2) has at least three
positive solutions.
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Proof. We seek three fixed points y1, y2, y3 ∈ P of T defined by (3.2). It
is easy to check that S is a nonnegative continuous concave functional on P with
S(y) 6 ∥y∥ for y ∈ P and from Lemma 3.1, the operator T is completely con-
tinuous and fixed points of T are solutions of the fractional order boundary value
problem (1.1)-(1.2). First we prove that if there exist a positive number r such

that f
(
t, y(t)

)
<

r

S
, for t ∈ [0, 1] and y ∈ [0, r], then T : P r → P r. For y ∈ Pr and

t ∈ [0, 1], we have

∥Ty∥ = max
t∈[0,1]

{∣∣∣ ∫ 1

0

G(t, s)f
(
s, y(s)

)
ds
∣∣∣}

6 r

S
min
t∈[τ,1]

∫ 1

τ

G(t, s)ds = r.

Thus ∥Ty∥ 6 r. Hence Ty ∈ Pr. Hence, we have shown that if (A1) and (A3) hold

then T maps P d0 into Pd0 and P c into Pc. Next, we show that
{
y ∈ P

(
S, d1,

d1

Φ

)
:

S(y) > d1

}
̸= ∅ and S(Ty) > d1 for all y ∈ P

(
S, d1,

d1

Φ

)
. In fact, the constant

function

d1 +
d1
Φ

2
∈
{
y ∈ P

(
S, d1,

d1
Φ

)
: S(y) > d1

}
.

Moreover, for y ∈ P

(
S, d1,

d1
Φ

)
, we have

d1
Φ

> ∥y∥ > y(t) > min
t∈[τ,1]

{
y(t)

}
= S(y) > d1,

for all t ∈ [τ, 1]. Thus, in view of (A2) we see that

S
(
y(t)

)
= min

t∈[τ,1]

{∫ 1

0

G(t, s)f
(
s, y(s)

)
ds

}
> min

t∈[τ,1]

{∫ 1

τ

G(t, s)f
(
s, y(s)

)
ds

}
>

d1
R

max
t∈[0,1]

{∫ 1

0

G(t, s)ds

}
= d1,
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as required. Finally, we show that S(Ty) > d1 if y ∈ P (S, d1, c) and ∥Ty∥ >
d1
Φ
.

For this, we suppose that y ∈ P (S, d1, c) and ∥Ty∥ >
d1
Φ
. Then

S
(
Ty(t)

)
= min

t∈[τ,1]

{∫ 1

0

G(t, s)f
(
s, y(s)

)
ds

}
> Φ

∫ 1

0

G(1, s)f
(
s, y(s)

)
ds

> max
t∈[0,1]

{∫ 1

0

G(t, s)f
(
s, y(s)

)
ds

}
>

d1
R

max
t∈[0,1]

{∫ 1

0

G(t, s)ds

}
= d1.

Thus, all the conditions of Theorem 3.2 are satisfied. Therefore, the fractional order
boundary value problem (1.1)-(1.2) has at least three positive solutions y1, y2, y3
such that

∥y1∥ < d0, d1 < min
t∈[τ,1]

{
y2
}
, ∥y3∥ > d0, min

t∈[τ,1]

{
y2
}
< d1.

�

Now we establish the existence of at least 2m − 1 positive solutions to the
fractional order boundary value problem (1.1)-(1.2), by using induction on m.

Theorem 3.3. Let m be an arbitrary positive integer. Assume that there exist
numbers dr(r = 1, 2, 3, · · ·,m) and bs(s = 1, 2, 3, · · ·,m − 1) with 0 < d1 < b1 <
b1
Φ

< d2 < b2 <
b2
Φ

< · · · < dm−1 < bm−1 <
bm−1

Φ
< dm such that f satisfies the

following conditions:

(A4) f
(
t, y(t)

)
<

dr
S
, t ∈ [0, 1] and y ∈

[
0, dr

]
, r = 1, 2, 3, · · ·,m,

(A5) f
(
t, y(t)

)
>

bs
R
, t ∈ [τ, 1] and y ∈

[
bs,

bs
Φ

]
, s = 1, 2, 3, · · ·,m− 1.

Then the fractional order boundary value problem (1.1)-(1.2) has at least 2m − 1
positive solutions in P dm .

Proof. We use induction on m. First, for m = 1, we know from the condition
(A4) that T : P d1 → Pd1 , then it follows from the Schauder fixed point theorem that
the fractional order boundary value problem (1.1)-(1.2) has at least one positive
solution in P d1 . Next, we assume that this conclusion holds for m = l. In order to
prove that this conclusion holds for m = l+1, we suppose that there exist numbers

dr(r = 1, 2, 3, · · ·, l+1) and bs(s = 1, 2, 3, · · ·, l) with 0 < d1 < b1 <
b1
Φ

< d2 < b2 <
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b2
Φ

< · · · < dl < bl <
bl
Φ

< dl+1 such that f satisfies the following conditions:

(3.3)

 f
(
t, y(t)

)
<

dr
S
, t ∈[0, 1] and y ∈ [0, dr],

r = 1, 2, 3, · · ·, l + 1,

(3.4)

 f
(
t, y(t)

)
>

bs
R
, t ∈ [τ, 1] and y ∈

[
bs,

bs
Φ

]
,

s = 1, 2, 3, · · ·, l.

By assumption m = l, the fractional order boundary value problem (1.1)-(1.2) has
at least 2l− 1 positive solutions y∗i , i = 1, 2, 3, · · ·, 2l− 1 in P dl

. At the same time,
it follows from Theorem 3.2, (3.3) and (3.4) that the fractional order boundary
value problem (1.1)-(1.2) has at least three positive solutions y1, y2 and y3 in P dl+1

such that ∥y1∥ < dl, bl < min
t∈[0,1]

y2(t), ∥y3∥ > dl, min
t∈[0,1]

y3(t) < dl. Obviously, y2

and y3 are distinct from y∗i , i = 1, 2, 3, · · ·, 2l − 1 in P dl
. Therefore the fractional

order boundary value problem (1.1)-(1.2) has at least 2l + 1 positive solutions in
P dl+1

which shows that this conclusion also holds for m = l + 1. This completes
the proof. �

4. Example

In this section, as an application, we demonstrate our results with an example.

Consider the fractional order three-point boundary value problem

(4.1) D2.8
0+ y(t) + f(t, y) = 0, t ∈ (0, 1),

(4.2) y(0) = 0, y′(0) = 0, 7D1.6
0+ y(1)− 5

2
D1.6

0+ y
(1
2

)
= 0,

where

f(t, y) =


√
1− t2

165
+ 12[y2 − y] +

1

196
, 0 6 y 6 2,

√
1− t2

165
+ 8[log2y + y] +

1

196
, y > 2.

Then, the Green’s function G(t, s) for the associated linear fractional order bound-
ary value problem is given by

G11(t, s) =
1

8.05

[
7t1.8(1− s)0.2 − 1

2
t1.8

(1
2
− s

)0.2]
,

G12(t, s) =
1

8.05

[
7t1.8(1− s)0.2 − 4.82(t− s)1.8 − 1

2
t1.8

(1
2
− s

)0.2]
,

G13(t, s) =
1

8.05

[
7t1.8(1− s)0.2

]
,

G14(t, s) =
1

8.05

[
7t1.8(1− s)0.2 − 4.82(t− s)1.8

]
.
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Clearly, the Green’s function G(t, s) is positive and f is continuous and increasing
on [0,∞). By direct calculations, we get Φ = 0.02368,R = 0.085341, S = 0.068697.

If we choose d0 = 1.5, d1 = 2.05 and c = 1500, then 0 < d0 < d1 <
d1
Φ

6 c and f

satisfies

(i) f(t, y) < 21.83501 =
d0
S
, t ∈ [0, 1] and y ∈ [0, 1.5] ,

(ii) f(t, y) > 24.02128 =
d1
R

, t ∈ [0.65, 1] and y ∈
[
2.05, 86.57095

]
,

(iii) f(t, y) < 21835.01463 =
c

S
, t ∈ [0, 1] and y ∈ [0, 1500] .

Then, all the conditions of Theorem 3.2 are satisfied. Therefore, by Theorem 3.2,
the fractional order boundary value problem (4.1)-(4.2) has at least three positive
solutions.
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