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ON THE NEIGHBOURHOOD POLYNOMIAL

OF GRAPHS

Anwar Alwardi and P.M. Shivaswamy

Abstract. Graph polynomials are polynomials associated to graphs that en-
code the number of subgraphs with given properties. In this paper we intro-
duce a new type of graph polynomial called neighbourhood polynomial. We
obtained the neighbourhood polynomial of some interested standard graphs

like complete graph, complete bipartite graph, bi-star graph, spider, wounded
spider graph and for some corona product graphs.

1. Introduction

All the graphs considered here are finite and undirected with no loops and
multiple edges. Let G = (V,E) be a graph. As usual p = |V | and q = |E| denote
the number of vertices and edges of a graph G, respectively. In general, we use ⟨X⟩
to denote the subgraph induced by the set of vertices X and N(v) and N [v] denote
the open neighbourhood and closed neighbourhood of a vertex v, respectively. A
set D of vertices in a graph G is a dominating set if every vertex in V −D is adjacent
to some vertex in D. The domination number γ(G) is the minimum cardinality of
a dominating set of G.

The corona G1 ◦G2 of two graphs G1 and G2 is the graph obtained by taking
one copy of G1 (which has n1 vertices) and n1 copies of G2 and then joining the
ith vertex of G1 to every vertex in the ith copy of G2.

A set S ⊆ V (G) is called a neighbourhood set of G, if G = ∪v∈S⟨N [v]⟩, where
⟨N [v]⟩ is the subgraph of G induced by v and the vertices adjacent to v. The
neighbourhood number of G is the minimum cardinality of a neighbourhood set of
G, and it is denoted by η(G).
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14 ANWAR ALWARDI AND P.M. SHIVASWAMY

For terminology and notations not specifically defined here we refer reader to
[2] and [4] . For more details about neighbourhood number, we refer to [6], and
[7].

2. Neighbourhood polynomial of a graph

Definition 2.1. Let G = (V,E) be a graph. The neighbourhood polyno-
mial of G is defined as N(G, x) =

∑n
i=1 n(G, i)xi, where n(G, i) is the number of

neighbourhood set in G of size i.

Example 2.1. Let G ∼= P5 as in Figure 3. There is only one neighbourhood
set of size two namely {v2, v4}.
There are six neighbourhood sets of size 3 are :
{v2, v3, v4}, {v1, v3, v4}, {v1, v3, v5}, {v1, v2, v4}, {v2, v4, v5}, {v2, v3, v5}.
There are five neighbourhood of size four which they are:
{v2, v3, v4, v5}, {v1, v3, v4, v5}, {v1, v2, v4, v5}, {v1, v2, v3, v5}, {v1, v2, v3, v4}
Also there is one neighbourhood set of size five.
Hence, N(G, x) = x5 + 5x4 + 6x3 + x2 = x2(x3 + 5x2 + 6x+ 1).

s s s s sv1 v2 v3 v4 v5

Figure 1. Path P5

Proposition 2.1. For any complete graph Kn, N(G, x) = (1 + x)n − 1.

Proof. Let G be a complete graph of n vertices. Then there are n neighbour-

hood sets of size one and

(
n

2

)
neighbourhood sets of size two and so on.

N(G, x) =

(
n

1

)
x+

(
n

2

)
x2 + ...+ xn =

∑n
i=1

(
n

i

)
xi

=
∑n

i=0

(
n

i

)
xi − 1 = (1 + x)n − 1. �

Proposition 2.2. For any graph the neighbourhood polynomial of G is

N(G, x) =
n∑

i=η(G)

n(G, i)xi
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where n(G, i) is the number of neighbourhood sets in G of size i and η(G) is the
neighbourhood number of G.

Proposition 2.3. For any graph G = G1 ∪G2,

N(G, x) = N(G1, x)N(G2, x).

Proof. Any neighbourhood set of size k in G is arising by select the number
of neighbourhood sets of size i in G1, and the vertices of neighbourhood set of size
k − j in G2. And the number of ways of selecting this vertices is equal to the
coefficient of the term xk in the polynomial N(G1, x)N(G2, x). Hence N(G, x) =
N(G1, x)N(G2, x). �

Also by mathematical induction we can generalize Proposition 2.3.

Proposition 2.4. Let G =
∪k

i=1 Gi. Then N(G, x) =
∏k

i=1 N(Gi, x).

Corollary 2.1. For any totally disconnected graph Kn, N(Kn, x) = xn.

Theorem 2.1. Let G1, G2 be graphs of order n1 and n2 respectively. Then

N(G1 +G2, x) =
(
(1 + x)n1 − 1

)(
(1 + x)n2 − 1

)
+N(G1, x) +N(G2, x).

Proof. First, for any neighbourhood set of G1 or G2 is also neighbourhood set
of G1 +G2 that means N(G1, x) and N(G2, x) contains in N(G1 +G2, x). Second,
Any neighbourhood set of G1 + G2 of size k contains j vertices from G1 and any
k − j vertices of G2 that means[(

n1

1

)
x+

(
n1

2

)
x2 +

(
n1

3

)
x3 + ...+

(
n1

n1

)
xn1

]
·[(

n2

1

)
x+

(
n2

2

)
x2 +

(
n2

3

)
x3 + ...+

(
n2

n2

)
xn2

]
,

contains in N(G1 +G2, x). That means

N(G1 +G2, x) =

n1∑
i=1

(
n1

i

)
xi

n2∑
i=1

(
n2

i

)
xi +N(G1, x) +N(G2, x).

Therefore,

N(G1 +G2, x) =

[ n1∑
i=0

(
n1

i

)
xi − 1

][ n2∑
i=0

(
n2

i

)
xi − 1

]
+N(G1, x) +N(G2, x).

Hence, N(G1+G2, x) =
(
(1+x)n1−1

)(
(1+x)n2−1

)
+N(G1, x)+N(G2, x). �

Corollary 2.2. Let G be complete bipartite graph Km,n. Then

N(G, x) =
(
(1 + x)m − 1

)(
(1 + x)n − 1

)
+N(G1, x) +N(G2, x).

Proof. Let G ∼= Km,n and can be construct Km,n by joining the graph G1 =

Km with G2 = Kn, i, e.,Km,n = Km + Kn. Now by using Theorem 2.1 we get
N(G, x) = ((1 + x)m − 1)((1 + x)n − 1

)
+N(G1, x) +N(G2, x). �
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Corollary 2.3. For any star graph K1,n, then

N(K1,n, x) = x(1 + x)n + xn.

Definition 2.2. The bistar graph is constructed fromK2 by attachingm edges
in one vertex and n edges in the other vertex, and is denoted by B(m,n).

@
@

r rrrr r
rrrrr r
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vm

u1

u2

un

Figure 2. Bistar B(m,n)

Theorem 2.2. For any bistar graph B(m,n), m,n > 3, then

N(B(m,n), x) = xm+1 + xn+1 + 2xm+n+1 + x2(1 + x)m+n.

Proof. Let G ∼= B(m,n), wherem,n > 3. Clearly the neighbourhood number
of B(m,n) is two,there is only one minimum neighbourhood set {u, v} see Figure
2. Any neighbourhood set for B(m,n) either contains the two vertices u and v and
any other vertices or contains the vertices of the set v1, v2, ..., vm and the vertex u,
similarly may be contains the vertex v and the set u1, u2, ..., un or the neighbour-
hood set contains all the vertices except u and v. So there is one neighbourhood
set of size m + 1, similarly there is one neighbourhood set of size n + 1. Now to
select neighbourhood set contains three vertices, we have to select two vertices u

and v and to select the third vertex there are

(
m+ n

1

)
ways. Similarly to select

neighbourhood set of four vertices we have

(
m+ n

2

)
ways, in the same way we

can get the number of ways of select neighbourhood set of five vertices. In general

the number of ways to select neighbourhood set of size i, where i > 3 is

(
m+ n

i− 2

)
.

So there are

(
m+ n

m+ n− 1

)
ways to select neighbourhood set of size m+ n+ 1 and

there is only one neighbourhood set of size m+ n+ 2.
Therefore,

n(G,m+ n+ 1) =

(
m+ n

m+ n− 1

)
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and n(G,m+ n+ 2) = 1. Hence,

N(G, x) =

x2+xm+1+xn+1+2xm+n+1+

(
m+ n

1

)
x3+

(
m+ n

2

)
x4+ ...+

(
m+ n

m+ n

)
xm+n+2.

Thus,

N(G, x) = x2 + xm+1 + xn+1 + 2xm+n+1 + x2
∑m+n

i=1

(
m+ n

i

)
xi.

Hence, N(G, x) = xm+1 + xn+1 + 2xm+n+1 + x2(1 + x)m+n. �

Theorem 2.3. Let G ∼= Cn ◦K1. Then N(G, x) = xn(1 + x)n.

Proof. Let G be a corona graph Cn◦K1as in Figure 3. There is only one min-

ss
s
s s s

s
s
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s
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u2

u4

u6
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v3
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Figure 3. Corona graph Cn ◦K1

imum neighbourhood set of G, which is the set {v1, v2, ..., vn}. Therefore n(G,n) =

1. To get neighbourhood sets of size n+ 1, we have

(
n

1

)
ways .That means there

are

(
n

1

)
neighbourhood sets of G of size n + 1.Therefore n(G,n + 2) =

(
n

2

)
and

n(G,n+1) =

(
n

2

)
, similarly to get the number of neighbourhood sets of size n+ i,

there are

(
n

i

)
ways.
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Hence,

N(G, x) = xn +

(
n

1

)
xn+1 +

(
n

2

)
xn+2 +

(
n

3

)
xn+3 + ...

+

(
n

n

)
x2n

= xn + xn
n∑

i=1

(
n

i

)
xi

= xn + xn

( n∑
i=0

(

(
n

i

)
xi)− 1

)
= xn(1 + x)n.

Dc(G, x) = (n1 − 2)(n2 − 2)xn1+n2−4

+[(n1 − 2)(n2 − 1) + (n1 − 1)(n2 − 2)]xn1+n2−3

+[n2(n1 − 2)n1(n2 − 2) + (n1 − 1)(n2 − 1)]xn1+n2−2

+[n2(n1 − 1) + n1(n2 − 1)]xn1+n2−1

+xn1+n2 .

�

Now, We can generalize Theorem 2.3 as follows:

Theorem 2.4. For any corona graph G ∼= Cn ◦Km, we have

N(G, x) = xn(1 + x)mn.

Proof. There is only one minimum neighbourhood set of G which is of size n,

that means n(G,n) = 1, similarly n(G,n+ 1) =

(
mn

1

)
and n(G,n+ 2) =

(
mn

2

)
.

In general, It is easy to see that n(G,n+ j) =

(
mn

j

)
, where j = 1, 2, ..,mn.

Therefore,

N(G, x) = xn +

(
(

mn

)
1xn+1 +

(
mn

2

)
xn+2 + ...+

(
mn

mn

)
xn+mn.

Hence

N(G, x) = xn + xn

[(
mn

1

)
x+

(
mn

2

)
x2 + ...+

(
mn

mn

)
xmn

]
= xn + xn

[ mn∑
i=0

(
mn

i

)
− 1]

= xn + xn
[
(1 + x)mn − 1]

= xn(1 + x)mn.

�
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Theorem 2.5. For any corona graph G ∼= Cn ◦Km, we have

N(G, x) = xn

(√
1 + x

)nm(m−1)

.

Proof. There is only one minimum neighbourhood set of G of size n, that
means n(G,n) = 1. Similarly it easy to see that,

n(G,n+ 1) =

(nm(m−1)
2

1

)
,

n(G,n+ 2) =

(nm(m−1)
2

2

)
.

In general,

n(G,n+ i) =

(nm(m−1)
2

i

)
,

where i = 1, 2, .., nm(m−1)
2

Let nm(m−1)
2 = α. Then

N(G, x) = xn +
((α

1

)
xn+1 +

(
α

2

)
xn+2 + ...+

(
α

α

)
xn+α

= xn + xn
α∑

i=1

(
α

i

)
xi

= xn + xn[(1 + x)α − 1]

= xn(1 + x)α

Hence, N(G, x) = xn(1 + x)
nm(m−1)

2 = xn

(√
1 + x

)nm(m−1)

. �

Theorem 2.6. Let K1,p be a star with p > 2 and let G be a spider graph which
is constructed by subdivide each edges once in k1,p as in Figure 4. Then

N(G, x) = xp(1 + x)p+1 + xp+1(1 + x)p + 2(2p−1 − 1)xp+1 − x2p+1.
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Figure 4. Spider graph with 2p+ 1 vertices

Proof. Let A = {u1, u2, ..., up} and B = {v1, v2, ..., vp}. There is one mini-
mum neighbourhood set of size n which is A. For any neighbourhood set of G there
are three cases:

Case 1. The neighbourhood set contains all the vertices {u1, u2, ..., up}.
Case 2.The neighbourhood set contains all the vertices of B = {v1, v2, ..., vp}

and the vertex u.
Case 3.The neighbourhood set contains some vertices from A and some vertices

from B and vertex the vertex u.
In case 1.There is only one neighbourhood set of size p which is {u1, u2, ..., up}

i.e., n(G, p) = 1 and there are
(
p+1
1

)
ways to extend the neighbourhood set of size p

to size p+1, similarly there are
(
p+1
2

)
neighbourhood sets of size p+2. So in this case

n(G, p) = 1, n(G, p+1) =
(
p+1
1

)
, n(G, p+2) =

(
p+1
2

)
, in general n(G, p+i) =

(
p+1
i

)
,

where 1 6 i 6 p+ 1.
In case 2. There is one neighbourhood set of size p+1 which is {v1, v2, ..., vp, u},

i.e., n(G, p+1) = 1 and there are
(
p
1

)
ways to select neighbourhood set of size p+2.

Similarly
(
p
2

)
ways to select neighbourhood set of size p+3. In general there are

(
p
i

)
ways to select neighbourhood set of size p+ i+ 1, where 1 6 i 6 p− 1. So in this
case n(G, p+1) = 1, n(G, p+2) =

(
p
1

)
, n(G, p+3) =

(
p
2

)
, ... ,n(G, 2p− 1) =

(
p

p−1

)
.

In case 3. To select some vertices from A and other vertices from B, we have
to select the vertex u in every selected neighbourhood set. Therefore, we select one
vertex from A and p− 1 vertices from B and the vertex u, then two vertices from
A and p− 2 vertices from B and the vertex u and so on to get the neighbourhood
sets of size p+ 1.

That means there are
(
p
1

)
+
(
p
2

)
+
(
p
3

)
+ ...+

(
p

p−1

)
ways to select neighbourhood

set of size p+1 in this case. Also
(
p
1

)
+
(
p
2

)
+
(
p
3

)
+...+

(
p

p−1

)
=

(∑p
i=0

(
p
i

))
−2 = 2p−2.

Hence, from all cases we can get η(G, p) = 1, n(G, p+ 1) =
(
p+1
1

)
+ 1+ 2p − 2,

n(G, p+ 2) =
(
p+1
2

)
+

(
p
1

)
, n(G, p+ 3) =

(
p+1
3

)
+
(
p
2

)
,... , n(G, 2p+ 1) =

(
p+1
p+1

)
.

Therefore,
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N(G, x) = xp +

(
p+ 1

1

)
xp+1 +

(
p+ 1

1

)
xp+2 + ...+

(
p+ 1

p+ 1

)
x2p+1 + xp+1

+

(
p

1

)
xp+2 +

(
p

2

)
xp+3 + ...+

(
p

p− 1

)
x2p + (2p − 2)xp+1.

= xp + xp
[∑p+1

i=1

(
p+1
i

)
xi
]
+ xp+1 + xp+1

[∑p−1
i=1

(
p
i

)
xi
]
+ 2(2p−1 − 1)xp+1

= xp+xp
[(∑p+1

i=0

(
p+1
i

)
xi
)
−1

]
+xp+1+xp+1

[∑p
i=1

(
p
i

)
xi−xp

]
+2(2p−1−1)xp+1

= xp
∑p+1

i=0

(
p+1
i

)
)xp + xp+1 − x2p+1 + xp+1

[∑p
i=0

(
p
i

)]
− 1 + 2(2p−1 − 1)xp+1

= xp(1 + x)p+1 + xp+1(1 + x)p + 2(2p−1 − 1)xp+1 − x2p+1. �

Theorem 2.7. Let G ∼= Fm be a friendship graph with 2m + 1 vertices as in
Figure 5. Then

N(G, x) = x(1 + x)2m +
m∑
i=0

(m
i

)
2m−ixm+i.

E
EE

#
##

s s s
ssssss

s
sss

1

2
3

4

m

Figure 5. Friendship graph

Proof. Let G be a friendship graph of 2m + 1 vertices, where m > 2. Then
η(G) = 1, n(G, 1) = 1,n(G, 2) =

(
2m
1

)
, n(G, 3) =

(
2m
2

)
, in general the number of

ways of selecting neighbourhood set of size i which containing the center is
(
2m
i−1

)
.

Also there are 2m number of neighbourhood sets of size m which does not contain
the center vertex. Similarly there are

(
m
1

)
2m−1 ways to select neighbourhood set of

size m+1 which does not contain the center. In general there are
(
m
i

)
2m−i ways to

select a neighbourhood set of size m+ i which does not contain the center vertex.
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Therefore,
N(G, x) = x+

(
2m
1

)
x2 +

(
2m
2

)
x3+

...+
(
2m
2m

)
x2m+1 + 2mxm +

(
m
1

)
2m−1xm+1 +

(
m
2

)
2m−2xm+2 + ...+

(
m
m

)
x2m

= x+ x
∑2m

i=1

(
2m
i

)
xi +

∑m
i=0

(
m
i

)
2m−ixm+i

= x+ x
(∑2m

i=0

(
2m
i

)
xi − 1

)
+

∑m
i=0

(
m
i

)
2m−ixm+i

= x(1 + x)2m +
∑m

i=0

(
m
i

)
2m−ixm+i. �

Theorem 2.8. Let K1,p be a star with p > 3 and let G be a wounded spider
graph which is constructed by subdivided s edges, where 1 6 s 6 p− 1, from k1,p.
Then N(G, x) = (1+x)p +(2s − 1)xp +(1+x)sxp +xp+1(1+x)s −xp+1 −xp+s+1.

Proof. Let G be a wounded spider graph as in Figure 6 clearly the neigh-
bourhood number of G is s+1 the set {u, v1, v2, ..., vs} is minimum dominating set
of G that means η(G) = s+ 1.
There are four cases to construct a neighbourhood set for G.

Case 1. The neighbourhood set contains the set {u, v1, v2, ..., vs}. So to extend

this neighbourhood set to neighbourhood set of size s+ 2 there are

(
p

1

)
ways and

to extend to neighbourhood set of size s + 3 there are

(
p

2

)
ways. In general to

extend the neighbourhood set {u, v1, v2, ..., vs} to neighbourhood set of G of size

s+ 1 + i there are

(
p

i

)
ways.

Therefore,

xs+1 +

(
p

1

)
xs+2 +

(
p

2

)
xs+3 + ...+

(
p

p

)
xs+p+1,

contained in the neighbourhood polynomial of G.
Case 2. The neigbourhoods set of G contains some vertices from {v1, v2, ..., vs}

and some vertices from {u1, u2, ..., us} and the vertex u and there are(
s

1

)
+

(
s

2

)
+

(
s

3

)
+ ...+

(
s

s− 1

)
= 2s − 2

ways to select this neighbourhood set of size s + 1. Therefore, the neighbourhood
polynomial of G contains the polynomial (2s − 2)xs+1.

Case 3. The neighbourhood set contains all the vertices of the set

{u1, u2, ..., up}

. So to extend this neighbourhood set to neighbourhood set of size p+ 1 there are(
s+ 1

1

)
ways and to extend to neighbourhood set of size p+ 2 there are

(
s+ 1

2

)
ways. In general to extend the neighbourhood set {u1, u2, ..., up} to neighbourhood
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set of G of size p+ i there are

(
s+ 1

i

)
ways.

Therefore,

xp +

(
s+ 1

1

)
xp+1 +

(
s+ 1

2

)
xs+2 + ...+

(
s+ 1

s

)
xs+p,

contained in the neighbourhood polynomial of G.
Case 4. The neighbourhood set of G contains some vertices from the set

{v1, v2, ..., vs} and some vertices from the set {u1, u2, ..., us} and the vertex u and
some vertices from the set {us + 1, us + 2, ..., up}. Similarly as the previous cases
we get that the polynomial

(2s − 2)

(
p− s

1

)
xs+2 + 2s − 2)

(
p− s

2

)
xs+3 + ...+ 2s − 2)

(
p− s

p− s

)
xp+1

is contained in the neighbourhood polynomial of G. Now by calculation the poly-
nomials in all the cases, we get:

D(G, x) = (2s − 2)xs+1(1 + x)p−s + xs+1(1 + x)p + xp(1 + x)s+1 − xs+p+1.

s

sssss
s s s

s sssss

u

u1u2up

v1v2vs

us+1 us

Figure 6. Wounded spider

�
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