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A UNIQUE COMMON FIXED POINT THEOREM FOR
FOUR MAPS WITH RATIONAL INEQUALITY USING
α - ADMISSIBLE FUNCTIONS IN ORDERED PARTIAL

METRIC SPACES

K.P.R.Rao, Sk.Sadik, and S.Manro

Abstract. In this paper, we obtain a unique common fixed point theorem
for four self maps satisfying rational (ψ, ϕ, φ)-contractive condition using α-
admissible function in ordered partial metric spaces. Also we give an example
to illustrate our main theorem.

1. Introduction and Preliminaries

There are many generalizations of the concept of metric spaces in the literature.
One of them is a partial metric space introduced by Matthews [16] as a part of
study of denotational semantics of data flow networks. After that fixed and common
fixed point results in partial metric spaces were studied by many other authors, for
example,[1, 3, 4, 5, 7, 9, 10, 11, 13, 15, 17, 18].

Throughout this paper, R+ and N denote the set of all non-negative real
numbers and set of all positive integers respectively.
First we recall some basic definitions and lemmas which play crucial role in the
theory of partial metric spaces.

Definition 1.1. ([16]) A partial metric on a nonempty set X is a function
p : X ×X → R+ such that for all x, y, z ∈ X :

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),
(p2) p(x, x) 6 p(x, y), p(y, y) 6 p(x, y),
(p3) p(x, y) = p(y, x),
(p4) p(x, y) 6 p(x, z) + p(z, y)− p(z, z).

The pair (X, p) is called a partial metric space (PMS).

If p is a partial metric on X, then the function ps : X × X → R+ given by
ps(x, y) = 2p(x, y)− p(x, x)− p(y, y) is a metric on X. It is clear that
(i) p(x, y) = 0 ⇒ x = y,
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(ii) x ̸= y ⇒ p(x, y) > 0 and
(iii) p(x, x) may not be 0.

Example 1.1. (See [4, 16, 18]) Consider X = R+ with p(x, y) = max{x, y}.
Then (X, p) is a partial metric space. It is clear that p is not a usual metric. Note
that in this case ps(x, y) = |x− y|.

We now state some basic topological notions (such as convergence, complete-
ness, continuity) on partial metric spaces (see [4, 5, 9, 16, 18]).

Definition 1.2. (i) A sequence {xn} in the PMS (X, p) converges to the limit
x if and only if p(x, x) = lim

n→∞
p(x, xn).

(ii) A sequence {xn} in the PMS (X, p) is called a Cauchy sequence if
lim

n,m→∞
p(xn, xm) exists and is finite.

(iii) A PMS (X, p) is called complete if every Cauchy sequence {xn} in X converges
with respect to τp, to a point x ∈ X such that p(x, x) = lim

n,m→∞
p(xn, xm).

(iv) A mapping F : X → X is said to be continuous at x ∈ X if for every ϵ > 0
there exists δ > 0 such that F (Bp(x, δ)) ⊆ Bp(Fx, ϵ).

It is clear that if F is continuous at x ∈ X then {Fxn} converges to Fx
whenever the sequence {xn} ∈ X converges to x.

The following lemma is one of the basic results in PMS ([4, 5, 9, 16, 18]).

Lemma 1.1.

(i) A sequence {xn} is a Cauchy sequence in the PMS (X, p) if and only if it
is a Cauchy sequence in the metric space (X, ps).

(ii) A PMS (X, p) is complete if and only if the metric space (X, ps) is com-
plete. Moreover
lim

n,m→∞
ps(x, xn) = 0 ⇔ p(x, x) = lim

n→∞
p(x, xn) = lim

n,m→∞
p(xn, xm).

Next, we give a simple lemma which will be used in the proof of our main
result. For the proof we refer to [18].

Lemma 1.2. Assume xn → z as n→ ∞ in a PMS (X, p) such that p(z, z) = 0.
Then lim

n→∞
p(xn, y) = p(z, y) for every y ∈ X.

Definition 1.3. ([1]) Let (X, p) be a partial metric space and F, g : X →
X.Then the pair (F, g) is said to be partial compatible if the following conditions
hold:
(i) p(x, x) = 0 ⇒ p(gx, gx) = 0 whenever x ∈ X,
(ii) lim

n→∞
p(Fgxn, gFxn) = 0 whenever there exists a sequence {xn} in X such that

Fxn → t and gxn → t for some t ∈ X.

We observe that the above definition is not sufficient. Hence we added p(t, t) =
0 in (ii) and we call the pair (F, g) as partial(∗) compatible pair.

Definition 1.4. ([8]) Let X be a non-empty set and f, S : X → X.The pair
(f, S) is said to be weakly compatible if fSu = Sfu whenever fu = Su for u ∈ X.
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Samet et al. [2] introduced the notion of α- admissible mappings as follows:

Definition 1.5. ([2]) Let X be a non empty set, T : X → X and
α : X ×X → R+ be mappings. Then T is called α- admissible if for all x, y ∈ X,
we have α(x, y) > 1 implies α(Tx, Ty) > 1.

Some interesting examples of such mappings are given in ([2]). Actually they
proved the following:

Theorem 1.1 ([2]). Let (X, d) be a complete metric space.Suppose that α :
X ×X → R+ and ϕ : R+ → R+, where ϕ is non-decreasing and

∑
ϕn(t) <∞ for

each t > 0. Suppose that T : X → X satisfies α(x, y)d(Tx, Ty) 6 ϕ(d(x, y)) for all
x, y ∈ X.
Assume the following:
(i) T is α-admissible,
(ii) there exits x0 ∈ X such that α(x0, Tx0) > 1,
(iii) either T is continuous or if {xn} is a sequence in X with α(xn, xn+1) > 1

for all n ∈ N and xn → x as n→ ∞, then α(xn, x) > 1 for all n ∈ N .
Then T has a fixed point in X. Further, if for any x, y ∈ X, there exists z ∈ X
such that α(x, z) > 1 and α(y, z) > 1 then T has a unique fixed point in X.

Recently, Karapinar et al. [6] defined the notion of triangular α- admissible
mappings as follows:

Definition 1.6. ([6]) Let X be a non empty set, T : X → X and α : X×X →
R+. Then T is called triangular α- admissible if

(i) x, y ∈ X, α(x, y) > 1 ⇒ α(Tx, Ty) > 1,
(ii) x, y, z ∈ X, α(x, z) > 1 and α(z, y) > 1 ⇒ α(x, y) > 1.

Later Shahi et al. [14] and Abdeljawad [19] defined the following:

Definition 1.7. ([14]) Let X be a non empty set, α : X × X → R+ and
f, g : X → X . Then f is said to be α- admissible with respect to g if α(gx, gy) > 1
implies α(fx, fy) > 1 for all x, y ∈ X.

Definition 1.8. ([19]) Let X be a non empty set, α : X × X → R+ and
f, g : X → X . Then the pair (f, g) is said to be α-admissible if α(x, y) > 1
implies α(fx, gy) > 1 and α(gx, fy) > 1 for all x, y ∈ X.

Using these definitions, we introduce the following:

Definition 1.9. Let X be a non empty set, α : X ×X → R+ and f, g, S, T :
X → X. The pair (f, g) is said to be α- admissible w.r.to the pair (S, T ) if
α(Sx, Ty) > 1 implies α(fx, gy) > 1 and α(Tx, Sy) > 1 implies α(gx, fy) > 1
for all x, y ∈ X.

Definition 1.10. (f, g) is called triangular α- admissible w.r.to (S, T ) if

(i) (f, g) is α- admissible w.r.t. (S, T ) and
(ii) α(x, y) > 1 and α(y, z) > 1 ⇒ α(x, z) > 1 for all x, y, z ∈ X.
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Recently, Abbas et al. [12] introduced the new concepts in a partially ordered
set as follows

Definition 1.11. ([12]) Let (X,≼) be a partially ordered set and f, g : X →
X. Then
(i) f is said to be a dominating map if x ≼ fx.
(ii) f is said to be a weak annihilator of g if fgx ≼ x.

Definition 1.12. Let ψ : R+ → R+. The function ψ is called an altering
distance function if it is non-decreasing, continuous and ψ(t) = 0 ⇔ t = 0.

2. Main Result

Now we prove our main result.

Theorem 2.1. Let (X, p,≼) be a partially ordered complete partial metric space
and α : X × X → R+ be a function. Let f, g, S and T be self mappings on X
satisfying:

(2.1.1) f and g are dominating maps and f and g are weak annihilators of T and
S respectively,

(2.1.2) f(X) ⊆ T (X), g(X) ⊆ S(X),
(2.1.3) α(Sx, Ty) ψ(p(fx, gy)) 6 ϕ(M(x, y))− φ(M(x, y)) for all comparable el-

ements x, y ∈ X, where

M(x, y) = max

{
p(Ty, gy)[1 + p(fx, Sx)]

1 + p(Sx, Ty)
, p(Sx, Ty)

}
and ψ, ϕ, φ : R+ → R+ are such that ψ is an altering distance function
and ϕ and φ are upper and lower semi continuous respectively, ϕ(0) =
0, φ(0) = 0 and satisfying the following condition:

ψ(t)− ϕ(t) + φ(t) > 0 for t > 0........(A),

(2.1.4) the pair (f, g) is triangular α-admissible w.r.to the pair (S, T ),
(2.1.5) α(Sx1, fx1) > 1 and α(fx1, Sx1) > 1 for some x1 ∈ X,

(2.1.6)(a) S is continuous,the pair (f, S) is partial(∗) compatible and the pair (g, T )
is weakly compatible and if there exists a sequence {yn} in X such that
α(yn, yn+1) > 1, α(yn+1, yn) > 1 for all n ∈ N and yn → z for some
z ∈ X, then we have α(Sy2n, y2n−1) > 1, α(z, y2n−1) > 1, α(z, z) > 1 and
α(z, Tz) > 1,

(or)
(2.1.6)(b) T is continuous,the pair (g, T ) is partial(∗) compatible and the pair (f, S)

is weakly compatible and if there exists a sequence {yn} in X such that
α(yn, yn+1) > 1, α(yn+1, yn) > 1 for all n ∈ N and yn → z for some
z ∈ X, then we have α(y2n, T y2n−1) > 1, α(y2n, z) > 1, α(z, z) > 1 and
α(Sz, z) > 1,

(2.1.7) if for a non-decreasing sequence {xn} in X with xn ≼ yn,∀n ∈ N and
yn → u implies xn ≼ u,∀n ∈ N .

Then f, g, S and T have a common fixed point in X .
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(2.1.8) Further if we assume that α(u, v) > 1 whenever u and v are common fixed
points of f, g, S and T and the set of common fixed points of f, g, S and T
is well ordered then f, g, S and T have unique common fixed point in X.

Proof. From (2.1.5), we have α(Sx1, fx1) > 1 for some x1 ∈ X. From (2.1.2),
there exist sequences {xn} and {yn} as follows:
y2n+1 = fx2n+1 = Tx2n+2, y2n+2 = gx2n+2 = Sx2n+3, n = 0, 1, 2, · · · .

Now

α(Sx1, fx1) > 1 ⇒ α(Sx1, Tx2) > 1, from definition of {yn}
⇒ α(fx1, gx2) > 1, from (2.1.4), i.e α(y1, y2) > 1
⇒ α(Tx2, Sx3) > 1, from definition of {yn}
⇒ α(gx2, fx3) > 1, from (2.1.4), i.e α(y2, y3) > 1
⇒ α(Sx3, Tx4) > 1, from definition of {yn}
⇒ α(fx3, gx4) > 1, from (2.1.4), i.e α(y3, y4) > 1.

Continuing in this way, we have

(2.1) α(yn, yn+1) > 1, ∀ n ∈ N .

Similarly, by using α(fx1, Sx1) > 1, we can show that

(2.2) α(yn+1, yn) > 1, ∀ n ∈ N
From (2.1.4), using triangular property, we have

(2.3) α(ym, yn) > 1 for m < n.

From(2.1.1), we have

x2n+1 ≼ fx2n+1 = Tx2n+2 ≼ fTx2n+2 ≼ x2n+2 ,

x2n+2 ≼ gx2n+2 = Sx2n+3 ≼ gSx2n+3 ≼ x2n+3.

Thus

(2.4) xn ≼ xn+1, ∀n ∈ N
Case (i): Suppose y2m = y2m+1 for some m. Assume that y2m+1 ̸= y2m+2. i.e.
p(y2m+1, y2m+2) > 0. Now α(Sx2m+1, Tx2m+2) = α(y2m, y2m+1) > 1, from (2.1).
From (2.1.3) and (2.4), we have

(2.5)
ψ(p(y2m+1, y2m+2)) = ψ(p(fx2m+1, gx2m+2)),

6 α(Sx2m+1, Tx2m+2)ψ(p(fx2m+1, gx2m+2)),
6 ϕ(M(x2m+1, x2m+2))− φ(M(x2m+1, x2m+2))

where

M(x2m+1, x2m+2) = max
{

p(y2m+1,y2m+2)[1+p(y2m,y2m+1)]
1+p(y2m,y2m+1)

, p(y2m, y2m+1)
}
.

But from (p2) we have
p(y2m, y2m+1) = p(y2m+1, y2m+1) 6 p(y2m+1, y2m+2). Hence M(x2m+1, x2m+2) =
p(y2m+1, y2m+2). Now (2.5) becomes

ψ(p(y2m+1, y2m+2)) 6 ϕ(p(y2m+1, y2m+2))− φ(p(y2m+1, y2m+2)).

It is a contradiction to (A). Hence y2m+1 = y2m+2. Continuing in this way we can
conclude that yn = yn+k for all positive
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integers k. Thus {yn} is a Cauchy sequence in X.

Case (ii): Suppose that yn ̸= yn+1 for all n ∈ N . Now from (2.1) follows
α(Sx2n+1, Tx2n+2) = α(y2n, y2n+1) > 1. As in Case (i), we have

ψ(p(y2n+1, y2n+2)) 6 ϕ(M(x2n+1, x2n+2))− φ(M(x2n+1, x2n+2))

where

M(x2n+1, x2n+2) = max {p(y2n, y2n+1), p(y2n+1, y2n+2)}.

If M(x2n+1, x2n+2) = p(y2n+1, y2n+2), then

ψ(p(y2n+1, y2n+2)) 6 ϕ(p(y2n+1, y2n+2))− φ(p(y2n+1, y2n+2)).

It is a contradiction to (A). Hence

(2.6) ψ(p(y2n+1, y2n+2)) 6 ϕ(p(y2n, y2n+1))− φ(p(y2n, y2n+1))

< ψ(p(y2n, y2n+1)), from(A).

Since ψ is increasing, we have p(y2n+1, y2n+2) 6 p(y2n, y2n+1). Similarly using
(2.2), we can show that p(y2n, y2n+1) 6 p(y2n−1, y2n). Thus {p(yn, yn+1)} is a
decreasing sequence of non-negative real numbers and hence converges to some real
number r > 0. Hence

lim
n→∞

p(yn, yn+1) = r.

Suppose r > 0. Letting n → ∞ in (2.6), we get ψ(r) 6 ϕ(r) − φ(r). It is a
contradiction to (A). Hence r = 0. Thus

(2.7) lim
n→∞

p(yn, yn+1) = 0

From (p2), we have

(2.8) lim
n→∞

p(yn, yn) = 0

By the definition of ps, (2.7) and (2.8), we have

(2.9) lim
n→∞

ps(yn, yn+1) = 0

Now we prove that {y2n} is a Cauchy sequence in (X, ps).
On contrary, suppose that {y2n} is not a Cauchy sequence. Then there exist

ϵ > 0 and monotone increasing sequences of natural numbers {y2mk
} and {y2nk

}
such that nk > mk,

(2.10) ps(y2mk
, y2nk

) > ϵ

(2.11) ps(y2mk
, y2nk−2) < ϵ.

Now from (2.10) and (2.11), we obtain

ϵ 6 ps(y2mk
, y2nk

) 6 ps(y2mk
, y2nk−2) + ps(y2nk−2, y2nk−1) + ps(y2nk−1, y2nk

)
< ϵ+ ps(y2nk−2, y2nk−1) + ps(y2nk−1, y2nk

).

Letting k → ∞ and using (2.9), we get

(2.12) lim
k→∞

ps(y2mk
, y2nk

) = ϵ.
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Hence, from the definition of ps and (2.8), we have

(2.13) lim
k→∞

p(y2mk
, y2nk

) =
ϵ

2
.

Letting k → ∞ and then using (2.12) and (2.9), in

|ps(y2mk+1, y2nk
)− ps(y2mk

, y2nk
)| 6 ps(y2mk

, y2mk+1),

|ps(y2mk
, y2nk−1)− ps(y2mk

, y2nk
)| 6 ps(y2nk−1, y2nk

)

we obtain upon using definition of ps and (2.8) that

(2.14) lim
k→∞

p(y2mk+1, y2nk
) =

ϵ

2
,

(2.15) lim
k→∞

p(y2mk
, y2nk−1) =

ϵ

2
.

Also α(Sx2mk+1, Tx2nk
) = α(y2mk

, y2nk−1) > 1, from (2.3). Hence from (2.1.3)
and (2.4), we have

(2.16)
ψ(p(y2mk+1, y2nk

)) = ψ(p(fx2mk+1, gx2nk
))

6 α(Sx2mk+1, Tx2nk
) ψ(p(fx2mk+1, gx2nk

))
6 ϕ(M(x2mk+1, x2nk

))− φ(M(x2mk+1, x2nk
))

where

M(x2mk+1, x2nk
) = max

{
p(y2nk−1,y2nk

)[1+p(y2mk
,y2mk−1)]

1+p(y2mk
,y2nk−1)

, p(y2mk
, y2nk−1)

}
→ ϵ

2 as k → ∞, from (2.15), (2.7)

Letting k → ∞ in (2.16) and using (2.14) we obtain

ψ(
ϵ

2
) 6 ϕ(

ϵ

2
)− φ(

ϵ

2
).

It is a contradiction to (A). Hence {y2n} is a Cauchy sequence in (X, ps).
Letting n→ ∞, m→ ∞ and using (2.9) in

|ps(y2n+1, y2m+1)− ps(y2m, y2n)| 6 ps(y2n+1, y2n) + ps(y2m, y2m+1),

we obtain lim
n→∞

ps(y2n+1, y2m+1) = 0. Hence {y2n+1} is a Cauchy sequence in

(X, ps). Thus {yn} is a Cauchy sequence in (X, ps). Hence we have

lim
n→∞

ps(yn, ym) = 0

and hence from definition of ps and (2.8), we have

(2.17) lim
n→∞

p(yn, ym) = 0

Thus {yn} is a Cauchy sequence in (X, p). Since (X, p) is a complete partial metric
space, there exists z ∈ X such that p(z, z) = lim

n→∞
p(yn, ym).

From (2.17),

(2.18) p(z, z) = 0.
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Hence

(2.19)
p(z, z) = lim

n→∞
p(fx2n+1, z) = lim

n→∞
p(gx2n+2, z)

= lim
n→∞

p(Sx2n+1, z) = lim
n→∞

p(Tx2n+2, z) = 0.

Suppose (2.1.6)(a) holds. Since the pair (f, S) is partial(∗) compatible,from
(2.18), we have p(Sz, Sz) = 0.
and

(2.20) lim
n→∞

p(fSx2n+1, Sfx2n+1) = 0.

Since S is continuous at z, we have

(2.21) lim
n→∞

p(SSx2n+1, Sz) = p(Sz, Sz) = 0

and

(2.22) lim
n→∞

p(Sfx2n+1, Sz) = p(Sz, Sz) = 0.

Also p(fSx2n+1, Sz) 6 p(fSx2n+1, Sfx2n+1) + p(Sfx2n+1, Sz). Now by using
(2.20) and (2.22), we have lim

n→∞
p(fSx2n+1, Sz) 6 0. Hence

(2.23) lim
n→∞

p(fSx2n+1, Sz) = 0.

Now p(fSx2n+1, SSx2n+1) 6 p(fSx2n+1, Sz) + p(Sz, SSx2n+1).

lim
n→∞

p(fSx2n+1, SSx2n+1) 6 0 from (2.23) and (2.21).

Hence

(2.24) lim
n→∞

p(fSx2n+1, SSx2n+1) = 0.

Letting n→ ∞ and using (2.23), (2.19) and Lemma 1.2 in

|p(fSx2n+1, gx2n)− p(z, Sz)| 6 p(fSx2n+1, Sz) + p(z, gx2n),

we get

(2.25) lim
n→∞

p(fSx2n+1, gx2n) = p(Sz, z).

Letting n→ ∞ and using (2.21), (2.19) and Lemma 1.2 in

|p(SSx2n+1, Tx2n)− p(Sz, z)| 6 p(SSx2n+1, Sz) + p(z, Tx2n),

we get

(2.26) lim
n→∞

p(SSx2n+1, Tx2n) = p(Sz, z).

Clearly α(SSx2n+1, Tx2n) = α(Sy2n, y2n−1) > 1, from (2.1.6)(a). From (2.1.1),
we have x2n ≼ gx2n = Sx2n+1.
(2.27)
ψ(p(Sz, z)) = ψ( lim

n→∞
p(fSx2n+1, gx2n)), from(2.25) and Lemma 1.2

6 lim
n→∞

α(SSx2n+1, Tx2n) ψ(p(fSx2n+1, gx2n))

6 lim
n→∞

[ϕ(M(Sx2n+1, x2n))− φ(M(Sx2n+1, x2n))] , from(2.1.3)
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where

M(Sx2n+1, x2n) = max{p(Tx2n,gx2n)[1+p(SSx2n+1,fSx2n+1)]
1+p(SSx2n+1,Tx2n)

, p(SSx2n+1, Tx2n)}
→ p(Sz, z), from (2.7), (2.26).

Thus (2.27) becomes

ψ(p(Sz, z)) 6 ϕ(p(Sz, z))− φ(p(Sz, z)),

which in turn yields from (A) that Sz = z.
Also α(Sz, Tx2n) = α(z, y2n−1) > 1, from (2.1.6)(a).
Since x2n ≼ gx2n and gx2n → z,by (2.1.7), we have x2n ≼ z. Using the

continuity of ψ, (2.18) and Lemma 1.2 , we get

ψ(p(fz, z)) = lim
n→∞

ψ(p(fz, gx2n))

6 lim
n→∞

α(Sz, Tx2n) ψ(p(fz, gx2n))

6 lim
n→∞

[ϕ(M(z, x2n))− φ(M(z, x2n))] , from(2.1.3)

where
M(z, x2n) = max{p(Tx2n,gx2n)[1+p(z,fz)]

1+p(z,Tx2n)
, p(z, Tx2n)}

→ 0 from (2.7), (2.19).

Hence ψ(p(fz, z)) 6 ϕ(0) − φ(0) = 0. Thus ψ(p(fz, z)) = 0 so that fz = z.
Since f(X) ⊆ T (X), there exists w ∈ X such that z = fz = Tw. Also we have
z = fz = Tw ≼ fTw ≼ w, from (2.1.1).
From (2.1.6)(a), α(Sz, Tw) = α(z, z) > 1.
From (2.1.3), we have

ψ(p(z, gw)) = ψ(p(fz, gw))
6 α(Sz, Tw) ψ(p(fz, gw))
6 ϕ(M(z, w))− φ(M(z, w)),

where
M(z, w) = max{p(z,gw)[1+p(z,z)]

1+p(z,z) , p(z, z)}
= p(z, gw).

Thus
ψ(p(z, gw)) 6 ϕ(p(z, gw))− φ(p(z, gw))

which in turn yields from (A) that z = gw.
Since the pair(g, T ) is weakly compatible , we have gz = gTw = Tgw = Tz.
From (2.1.6)(a), we have α(Sz, Tz) = α(z, Tz) > 1.
From (2.1.3), we have

ψ(p(z, gz)) = ψ(p(fz, gz))
6 α(Sz, Tz) ψ(p(fz, gz))
6 ϕ(M(z, z))− φ(M(z, z)),

where
M(z, z) = max{p(Tz,gz)[1+p(z,z)]

1+p(z,Tz) , p(z, Tz)}
= p(z, gz), from(p2).

Thus
ψ(p(z, gz)) 6 ϕ(p(z, gz))− φ(p(z, gz))
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which in turn yields from (A) that z = gz = Tz. Thus z is a common fixed point
of f, g, S and T .

Suppose z′ is another common common fixed point of f, g, S and T .
From (2.1.8), we have α(Sz, Tz′) = α(z, z′) > 1 and z ≼ z′.
From(2.1.3), we have

ψ(p(z, z′)) = ψ(p(fz, gz′))
6 α(Sz, Tz′) ψ(p(fz, gz′))
6 ϕ(M(z, z′))− φ(M(z, z′)),

where

M(z, z′) = max{p(z′,z′)[1+p(z,z)]
1+p(z,z′) , p(z, z′)}

= p(z, z′), from(p2).

Thus

ψ(p(z, z′)) 6 ϕ(p(z, z′))− φ(p(z, z′)) < ψ(p(z, z′)), from(A)

which is a contradiction. Hence z = z′. Thus f, g, S and T have a unique common
fixed point.

Similarly we can prove Theorem 2.1 when (2.1.6)(b) holds. �

Now we give an example to support Theorem 2.1.

Example 2.1. Let X = R+, p(x, y) = max{x, y}, ∀ x, y ∈ X and define
x ≼ y if y 6 x . Define f, g, S, T : X → X by fx = x

2 , gx = x
4 , Sx = 8x and

Tx = 4x.

Define α : X ×X → R+ by α(x, y) =

 1, if x, y ∈ [0, 1],

0, otherwise.

Define ψ, ϕ, φ : R+ → R+ by
ψ(t) = 4t, ϕ(t) = 7t, φ(t) = 7

2 t, ∀ t ∈ R+.
Clearly ψ(t)− ϕ(t) + φ(t) > 0, ∀ t > 0.
We have fx = x

2 6 x⇒ x ≼ fx and gx = x
4 6 x⇒ x ≼ gx.

Also fTx = 2x > x⇒ fTx ≼ x and gSx = 2x > x⇒ gSx ≼ x.
If x > 1

8 and y ∈ X then α(Sx, Ty) = 0.

If x 6 1
8 and y > 1

4 then α(Sx, Ty) = 0.
In these cases,the condition (2.1.3) is clearly satisfied.
Suppose x 6 1

8 and y ∈ [0, 14 ] then α(Sx, Ty) = 1.
Also

α(Sx, Ty)ψ(p(fx, gy)) = (1)4max
{

x
2 ,

y
4

}
= max {2x, y} .
= 1

4p(Sx, Ty)
6 1

4M(x, y)
6 ϕ(M(x, y))− φ(M(x, y))

Thus (2.1.3) is satisfied.
One can easily verify the remaining conditions of Theorem 2.1. Clearly 0 is the
common fixed point of f, g, S and T .
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