BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE
ISSN (p) 2303-4874, ISSN (o) 2303-4955
www.imvibl.org /JOURNALS / BULLETIN
Vol. 5(2015), 171-180
Former
BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA
ISSN 0354-5792 (o), ISSN 1986-521X (p)

On Divisibility of Almost Distributive Lattices

N. Rafi, Ravi Kumar Bandaru and G.C. Rao

ABSTRACT. In this paper, the concepts of *—divisibility, *—prime elements,
x—irreducible elements are introduced in an Almost Distributive Lattice(ADL)
and studied extensively their properties. A definition has been introduced on
a congruence relation in terms of multiplier ideals and derived a set of equiva-
lent conditions for the corresponding quotient ADL which becomes a Boolean
algebra. Finally, characterized the *—prime and *—irreducible elements with
the corresponding multiplier ideals.

1. Introduction

The concept of an Almost Distributive Lattice (ADL) was introduced by U.
M. Swamy and G. C. Rao [8] as a common abstraction to most of the existing
ring theoretic generalizations of a Boolean algebra on one hand and the class of
distributive lattices on the other. In [6], G.C.Rao and M.S.Rao introduced the
concept of annulets in an ADL and characterized both generalized stone ADL
and normal ADL in terms of their annulets. The concept of Quasi-complemented
ADL was introduced by G.C. Rao et. al. in [4] and they proved that a uniquely
quasi-complemented ADL is a pseudo-complemented ADL. And also, the authors
derived that an ADL is quasi-complemented ADL if and only if every prime ideal
of an ADL is maximal. In [7], M.S. Rao introduced the concept of divisibility in
distributive lattices in terms of annihilator ideals. He established that a relation
between *—prime and *—irreducible elements and corresponding ideals formed by
their multiplies. In this paper, we extend the concepts of divisibility, *—prime
elements, x—irreducible elements in to an Almost Distributive Lattice and also
studied their important properties. We defined a congruence relation 6 on an
ADL and established a set of a equivalent conditions for quotient ADL L/ which
becomes a Boolean algebra. Characterized *—prime and x—irreducible elements in
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terms of prime and maximal ideals respectively. Finally, it is proved that every
x—irreducible element of an ADL is a x—prime element.

2. Preliminaries

In this section, some important definitions and results are provided for better
understanding in which those are frequently used.

DEFINITION 2.1. ([8]) An Almost Distributive Lattice with zero or simply ADL
is an algebra (L, V, A,0) of type (2,2,0) satisfying:
L.(zVyAhz=(xANz)V(yAz)
2.2AN(yVz)=(xAy)V(zAz)
3. (xVy rny=y
4. (xVy) Nz =z
S5.2V(xAy)=x
6.0Nz=0
7.2Vv0=x, forallzy zé¢€L.

Every non-empty set X can be regarded as an ADL as follows. Let zy € X.
Define the binary operations V, A on X by

if if
x\/y:{xl T % g x/\y:{yl T # xg

y if z=uxp ro if = xg.

Then (X, V,A,xo) is an ADL (where z¢ is the zero) and is called a discrete ADL.
If (L,V,A,0) is an ADL, for any a,b € L, define a < b if and only if a = a A b (or
equivalently, a V b = b), then < is a partial ordering on L.

THEOREM 2.1 ([8]). If (L,V,A,0) is an ADL, for any a,b,c € L, we have the
following:
)avVb=a<aAb=1b
)J.aVb=bsaAb=a
). A is associative in L
)-aANbAc=bAaANc
). (avb)Ac=(bVa)Ac
)y aANb=0<bAa=0
)oaV (bAe)=(aVb)A(aVec)
).aN(aVd)=a, (anb)Vb=bandaV (bANa)=a
)a<aVbandaANb<b
0).ahNa=aandaVa=a
1).0Va=a andaNn0=0
2). Ifa<c, b<cthenaNb=bAa andaVb=bVa
3).avb=(aVb)Va.

It can be observed that an ADL L satisfies almost all the properties of a dis-
tributive lattice except the right distributivity of V over A, commutativity of V,
commutativity of A. Any one of these properties make an ADL L a distributive
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lattice. That is

THEOREM 2.2 ([8]). Let (L,V,A,0) be an ADL with 0. Then the following are
equivalent:
1). (L,V,A,0) is a distributive lattice
2).avVb=bVa, for alla,be L
3).aANb=bAa, for alla,be L
4). (anb)Ve=(aVe)A(bVec), for all a,b,c € L.

As usual, an element m € L is called maximal if it is a maximal element in the
partially ordered set (L, <). That is, for any a € L, m < a = m = a.

THEOREM 2.3 ([8]). Let L be an ADL and m € L. Then the following are
equivalent:
1). m is mazimal with respect to <
2. mVa=m, foralla € L
3. mAa=a, foralla € L
4). a V- m is mazimal, for all a € L.

As in distributive lattices ([1], [2]), a non-empty sub set I of an ADL L is
called an ideal of L if avVb e I and aAx € [ for any a,b € I and x € L. Also, a
non-empty subset F' of L is said to be a filter of L if a Ab € F and x Va € F for
a,be Fand z € L.

The set I(L) of all ideals of L is a bounded distributive lattice with least element
{0} and greatest element L under set inclusion in which, for any I, J € I(L), INJ is
the infimum of I and J while the supremum is given by IVJ := {aVb|a € I,b € J}.
A proper ideal P of L is called a prime ideal if, for any x,y € L, x Ay € P =
x € Pory € P. A proper ideal M of L is said to be maximal if it is not
properly contained in any proper ideal of L. It can be observed that every maximal
ideal of L is a prime ideal. Every proper ideal of L is contained in a maximal
ideal. For any subset S of L the smallest ideal containing S is given by (S] :=

n

{{(Vsi)Nz]|s; €S,xeLandne N}y If S={s}, wewrite (s] instead of (5].

=1
n

Similarly, for any S C L, [S) :={zV (A i) | s € S,z € Landn € N}. If S = {s},
i=1
we write [s) instead of [S).

THEOREM 2.4. [8] For any x, y in L the following are equivalent:
1). (z] € (y]
2. yhez=x
3).yVae=y
4). [y) € [2).

For any z,y € L, it can be verified that (z]V (y] = (zVy] and (z] A (y] = (x Ay].
Hence the set PI(L) of all principal ideals of L is a sublattice of the distributive
lattice I(L) of ideals of L.
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DEFINITION 2.2 ([6]). For any A C L, the annihilator of A is defined as
A*={zeL|anxz=0forall a € A}

If A= {a}, then we denote ({a})* by (a)*.

THEOREM 2.5 ([6]). For any a,b € L, we have the following:
(a] C (a)™

a < b implies (b)* C (a)*

(a)* C (b)* if and only if (b)** C (a)**

(aVb)* = (a)" N (b)"

(a AD)* = (a)** N (b)**.

DEFINITION 2.3 ([3]). An equivalence relation § on an ADL L is called a
congruence relation on L if (a A¢,bAd),(aV c,bV d) €6, for all (a,b),(c,d) € 0

NN AN N S
D U W N =
O — o —

DEFINITION 2.4 ([3]). For any congruence relation ¢ on an ADL L and a € L,
we define [a]lg = {b € L | (a,b) € 6} and it is called the congruence class containing
a.

THEOREM 2.6 ([3]). An equivalence relation 6 on an ADL L is a congruence
relation if and only if for any (a,b) € 0, x € L, (aVx,bVz),(xVa,xzVb), (aAz,bA
x),(x Aa,z Ab) are all in 0

An element a € L is called dense [4] if (a)* = (0]. The set D of all dense elements
forms a filter provided D # ). A lattice L with 0 is called quasi-complemented [4]
if for each x € L, there exists y € L such that x Ay =0 and = V y is dense.

3. Divisibility in an ADL

In [7], M.S. Rao introduced the concepts of divisibility, *—prime, x—irreducible
elements in distributive lattices in terms of annihilator ideals and proved their
properties. In this section, we extend these concepts to an Almost Distributive
Lattice, analogously and established a set of a equivalent conditions for quotient
ADL L/6 to become a Boolean algebra. We characterized *—prime elements and
x—irreducible elements in terms of prime ideals and maximal ideals respectively.
In addition to this, it is proved that every s—irreducible element of an ADL is a
x—prime element. Though many results look similar, the proofs are not similar
because we do not have the properties like commutativity of V, commutativity of
A and the right distributivity of V over A in an ADL.

Now, we begin with following definition.

DEFINITION 3.1. Let L be an ADL and for any a,b € L. An element «a is said
to be a x—divisor of b or a divides b if (b)* = (a A ¢)* for some ¢ € L. In this case,
we write it as (a/b)..

We prove the following result.

LEMMA 3.1. Let L be an ADL. Then for any a,b € L, we have (a)* = (b)*
implies that (a Ax)* = (bAz)* and (aV z)* = (bV 2)*, for any x € L.
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PROOF. Suppose that (a)* = (b)*. Let « be any element of L. Now, ¢ € (a A
x)*@t/\a/\sz@t/\me() =)< thzANb=0<tec (bAx)*. Therefore
(anz)* = (bAx)*. And now, (aVz)* = (a)*N(z)* = (b)* N (z)* = (bVx)*. Hence
(aVz) = (bVa) O

Now, we have the following properties of x—divisibility.

LEMMA 3.2. Let L be an ADL with maximal elements. Then for any three
elements a,b,c € L, we have the following:
(a/0).
If m is a maximal element of L then (m/a).
(a/a).
a<c=(c/a)..
(@ = (0= (0/9). and (/).
(a/b)« and (b/c). = (a/c)-
(a/b)x = (a/bAx), forallz € L
(a/b)s = (aANx/bA )y and (aV x/bV )4 for all x € L.

NSNS N

PROOF. (1), (2) and (3) are obviously true.
(4). Suppose a < c¢. Then a = a A c. That implies (a)* = (a A
(5). Suppose (a)* = (b)*. Then we have (a)* = (b)* = (b
Similarly, we get (a/b)..
(6). Let (a/b). and (b/c).. Then (b)* = (a A z)* and (¢)* = (b A y)*, for some
z,y € L.Nowd € () =(bAy)* ©dAbAy=0&=dArye b)*=(aNha) &
dAyNaNhz=0<de (aNzAy)*. Therefore (¢)* = (a Az Ay)*. Hence (a/c)..
(7). Let (a/b)s. Then (b)* = (a Ar)*, for some r € L. Now, for any = € L, we get
easily that (b A x)* = (a Ar A x)*. Therefore (a/b A x)..
(8). Assume that (a/b).. Then (b)* = (a A s)*, for some s € L. Now, for any
x € L, we get easily that (b A x)* = (a A s A x)*. Therefore (a A z/b A x)*. Now,
vz = BN =(@rs)*N@)* = ((ans) V) = (zV(aAs))* =
((xva)A(xVs) = ((aVa)A(zVs))*. Therefore (aVx/bV x).. O

¢)*. Therefore (¢/a)..
A b)*. Hence (b/a)..

DEFINITION 3.2. For any element a of an ADL L, we define (a)* as the set of
all multipliers of a. That is (a)* = {z € L | (a/x).}.

LEMMA 3.3. Let L be an ADL with mazimal elements. Then for any a,b € L,
we have the following:

(0)+ = {0}

= L, where m is any mazimal element of L.

NN AN N SN N S S
© 00 ~J O U ix W N =
= e DO

dense element of L if and only if (d)* = L.
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PrOOF. (1). Let z € (0)*. Then (0/x),. That implies (z)* = (cA0)* = (0)* =
L. So that = € (z)*. Therefore x A z = 0. Hence x = 0. Thus (0)+ = {0}.
(2). Let m be any maximal element of an ADL L. Clearly we have z = m A z, for
all z € L. That implies (x)* = (m Az)*. Therefore z € (m)* and hence (m)*+ = L.
(3). Since (a)* = (a A a)*, we get (a/a).. Hence a € (a)*.
(4). Let z,y € (a)*. Then (a/z). and (a/y).. That implies (z)* = (r A a)* and
(y)* = (sAa)*, for some r,s € L. Now (xVy)* = ()*N(y)* = (rAa)*N(sAa)* =
((rAa)V(sAa))* = ((rVs)Aa)*. Therefore (a/x V y), and hence z Vy € (a)*.
Let z € (a)t and 7 € L. Then (a/x).. That implies (z)* = (s A a)*, for some
s € L. Clearly, we get that (x Ar)* = (s Aa Ar)*. Therefore (a/x A1), and hence
rAr € (a)t. Thus (a)* is an ideal of L.
(5). Let a € (b)*. Then (b/a).. That implies (a)* = (s A b)*, for some s € L.
Let # € (a)*. Then (a/z), and hence (z)* = (r A a)*, for some r € L. Therefore
(x)* = (r Aa)* = (r AsAb)*. Hence (b/z).. Thus z € (b)*.
(6). Suppose a < b. Let € (a)*. Then (a/x).. That 1mphes (x)* = (r A a) =
(r AaAb)* for some r € L. Therefore (b/x), and hence z € (b)*. Thus (a)* C (b)*.
(7). Suppose (a)* = (b)*. Let = € (a)*. Then (a/z).. This implies (z)* = (r/\a)
(r Ab)*, for some 7 € L. Therefore (b/x), and hence x € (b)*. Similarly, we verify

that (b)*+ C (a)*t.

(8). Clearly, we have (a A b)t C (a)t N (b)*. Let z € (a)t N (b)L. Then (a/x).
and (b/x).. Hence (z)* = (r A a)* and (z)* = (s A b)*, for some 1,5 € L. Now,
@) = (@) N@)* =rAa)*N(sAD)*™ = ((rAs)A(aAb))*™. That implies

)= (7“ AsAaA b) Thus ((a A b)/x).. Therefore x € (a A b)* and hence
a)* N (b)* = (and)*.

. Let m be any maximal element of L. Assume that d is a dense element of L.
en (d)* ={0} = (m)*. Now, d=mAd= (d) =(mAd)*= (m)"=(mAd)*.
erefore (d/m), and hence m € (d)*. Thus (d)* = L. Conversely assume that
(d)* = L. Then maximal element m € (d)*. That implies (d/m).. Therefore
(m)* = (d A ¢)*. Tmplies that {0} = (d A ¢)*. Therefore d A ¢ is maximal element
and hence d is maximal element. Thus (d)* = {0}. O

HE3E
U‘ U‘\-/\/

Let us denote the set of all ideals of the form (z)* for all # € L by Z+(L).
In general, Z+(L) is not a sublattice of Z(L) of all ideals of L. For, consider the
following distributive lattice L = {0, a,b, ¢, 1} whose Hasse diagram is given by:

1

N
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Then clearly (a)* = {0,a} and (b)* = {0,b}. Hence (a)* Vv (b)* = {0,a} v
{0,b} = {0,a,b,c}. But (aVb)* = (c)* = L(because c is a dense element). There-
fore (a)t Vv (b)* # (a v b)L. Thus Z1(L) is not a sublattice of Z(L).

We have the following theorem.

THEOREM 3.1. For any ADL L, the set T+(L) forms a complete distributive
lattice on its own.

PRrROOF. For any a,b € L, define as (a)* N (b)* = (a Ab)* and (a)*t U (b)*+ =
(a Vv b)*. Clearly, (a A b)* is the infimum of both (a)* and (b)* in Z+(L). We
have always (a)*, (b)* C (a Vv b)L. Suppose (a)* C (c)* and (b)* C (c)* for some
c € L. Then we get a,b € (c)*. Since (¢)* is an ideal, it gives a V b € (c)*.
Hence (a V b)1 C (¢)t. Thus (a Vv b)* is the supremum of both (a)+ and (b)*
in Z(L). Therefore Z*(L) is a lattice. We now prove the distributivity of these
ideals. For any (a)*, (b)*, (c)* € ZH(L), (o)t U{(B)* N(c)*} = ()t U (bAc)*t =
{aVv(bAc)}t = {(avb)A(ave)}t = (avb)tN(ave)t = {(a)FUd)In{(a)tU(c)*}.
Therefore (Z+(L),N, ) is a distributive lattice. Let a, b be two elements in L. Then
(a)t, (b)) € ZH(L). Define (a)t < (b)* & (a)* C (b)t. Clearly (Z+(L),<) is a
partially ordered set. Clearly {0} and L are the bounds for Z*(L). By lemma
3.3(8), we get that Z+(L) is bounded and complete distributive lattice. O

We have the following definition.

DEFINITION 3.3. Let L be an ADL. For any a,b € L, define a relation 6 on L
as follows:
(a,b) € 6 if and only if (a)t = (b)*.

The following result can be verified easily.

LEMMA 3.4. Let L be an ADL. Then the relation 0 defined above is a congruence
on L.

Let 6 be any congruence relation on an ADL L. For any = € L, [z]g = {y €
L | (xz,y) € 0}. Write L/0 = {[z]p | « € L}. Define binary operations V, A on L/6
by [z]o A [yle = [z Ayle and [x]o V [ylo = [z V yle, then it can be verified easily
that (L/0,V,A) is an ADL. Let p be the natural homomorphism from L onto L/6
defined by p(x) = [z]e, for all € L.

We prove the following lemma.

LEMMA 3.5. Let 0 be any congruence relation on an ADL L. Then (0] is the
smallest congruence class and D is the unit congruence class of L/

PRrROOF. Clearly, (0] is the smallest congruence of L/6. Let x,y € D. Then
(r)* = (y)* = {0}. By lemma-3.3(7), we get that (z)* = (y)*. Therefore (z,y) € 6.
Thus D is a congruence class of L/6. Now, let a € D and = € L. Since D is a filter,
we get a V& € D. Hence [x]p V [alp = [a V z]g = D. Thus D is the unit congruence
class of L/6. O
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From [4], recall that an Almost Distributive Lattice L is called quasi - comple-
mented if for each x € L, there is an element y € L such that t Ay =0and z Vy
is a dense element.

Now, we establish a set of equivalent conditions for L/ to become a Boolean
algebra which leads to a characterization of quasi-complemented ADL.

THEOREM 3.2. Let L be an ADL. Then the following conditions are equivalent:
(1). L is a quasi-complemented ADL
(2). L/ is a Boolean algebra
(3). Z+(L) is a Boolean algebra

PROOF. (1) = (2): Assume that L is a quasi-complemented ADL. Let [z]g €
L/6. Since L is a quasi-complemented ADL and x € L, there exists 2’ € L such
that z Az’ =0 and z V 2’ is dense. Therefore [x]p N [2']g = [z A 2]g = [0]p and also
[z]o V [2']p = [x V 2']g = D. Hence L/6. is a Boolean algebra.

(2) = (3): Assume that L/6 is a Boolean algebra. Define a mapping ® : L/ —
T (L) by ®([z]s) = (x)~ for all [z]y € L/6. Clearly, ® is well defined. Let [x]g, [y]s €
L/, Suppose ®([z]g) = ®([y]s). Then (z)* = (y)*. This implies (z,y) € 0. Thus
[z]o = [y]o. Therefore ® is injective. Let (z)t € Z+(L), where z € L. Now for
this , p(x) = [z]s € L/0 such that ®([z]s) = (x)L. Therefore ® is surjective and
hence it is bijective. Let [z]g, [yl € L/0 where z,y € L. Then ®([z]p N [ylo) =
O([z Aylo) = (x A y)L = (@) N (y)*= = @([z]o) N 2([ylo)- Again O([z]o V [y]s) =
O([zVyl) = (xVy)t = (z)t U (y)t = &([x]s) U P([y]s). Thus L/6 is isomorphic
to Z+(L). Therefore Z+(L) is a Boolean algebra.
( ) (1): Assume that Z+(L) is a Boolean algebra. Let # € L. Then (z)* €
TI+(L). Since Z+(L) is a Boolean algebra, there exists (y)* € Z+(L) such that
(xAy)t =(@)*rN @yt =0)"*and (zVy)t=(z)tV(y)* =L Hencex Ay =0
and x V y is dense. Therefore L is quasi-complemented. O

Now, we have the following definition.

DEFINITION 3.4. A non-zero element a of an ADL L is called x—prime if (a/bA
¢), implies that (a/b). or (a/c).

We characterized the x—prime elements in the following result.

THEOREM 3.3. Let a be a non-dense element of an ADL L. Then a is a x—prime
element of L if and only if (a)* is a prime ideal of L.

PROOF. Assume that a is x—prime. Let 2,y € L such that 2 Ay € (a)*. Then
(a/zAy).. Since a is x—prime, we get either (a/x), or (a/y).. That implies x € (a)~*
or y € (a)*. Therefore (a)* is prime ideal of L. Conversely, assume that (a)* is a
prime ideal of L. Let 2,y € L with (a/z A y).. Then z Ay € (a)*. Since (a)* is
prime, we get either z € (a)* or y € (a). Hence (a/x). or (a/y).. Therefore a is
a x—prime element of L. (]

DEFINITION 3.5. A non-zero element a of an ADL L is called x—irreducible if
(a)* = (b A c¢)*, then either b€ D or ¢ € D.
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Now, we have the following lemma.
LEMMA 3.6. Every dense element of L is a x—irreducible element.

PROOF. Let d be a dense element of L. Then (d)* = (0]. Suppose (d)* = (bAc)*,
for some b,c € L. Then (b A ¢)* = (0]. Hence (b)* = (0] or (¢)* = (0]. Thus d is
*x—irreducible. 0

We prove the following theorem.

THEOREM 3.4. Let a be a non-dense element of an ADL L with maximal ele-
ments. Then the following conditions are equivalent:
(1). a is x—irreducible.
(2). i) (a)* is a mazimal among all proper ideals of the form (x)=*.
it) For any x € L, (a)* = (a A x)* implies (z)* = (0].

PROOF. Let m be any maximal element of an ADL L.

(1) = (2)(i): Assume that a is a x—irreducible element. Suppose (a)* C (b)+ # L
for some a non-zero element b of L. We have a € (a)* C (b)*. Then (b/a).. So
that there exists ¢ € L such that (a)* = (¢ A b)*. Since a is x—irreducible, we get
that either (b)* = (0] or (c)* = (0]. Since (b)* # L, by lemma-3.3(9), we get that
(b)* # (0]. Hence (¢)* = (0]. Now, (¢)* = (0] = (m)* = (bA¢)* = (bAmM)* =
(bAc)* = (b)* = (a)* = (b)* = (a)* = (b)*1. Therefore (a)* is maximal among all
ideals of the form (z)*.

(1) = (2)(ii): Suppose (a)* = (a A z)* for x € L. Since a is x—irreducible, we get
that either (a)* = (0] or (z)* = (0]. Since a is non-dense, we must have (z)* = (0].
(2) = (1): Assume the conditions (2)(i) and 2(ii). Suppose (a)* = (¢ A d)* for
some ¢,d € L. Hence (d/a).. So we get a € (d)* and hence (a)* C (d)*. Since
the ideal (a)* is maximal, we get that either (a)t = (d)* or (d)* = L. Suppose
(a)* = (d)*. Then we get d € (a)* = (a/d). = (d)* = (r Aa)* for some r € L =
(eANd)* = (cArAa)* = (a)* = (cArAa)* = (cAr)* = (0] by (2)(i) = (¢)* =(0].
Suppose (d)* = L. Let m be any maximal element of L. Then we have m € (d)*.
Hence (d/m).. Then there exists some s € L such that (m)* = (s A d)*. Thus
(s Ad)* = {0} and hence (d)* = (0]. Therefore a is a x—irreducible element. O

I |

We conclude this paper with the following result.

THEOREM 3.5. Let L be an ADL. Then every x—irreducible element of L is a
*—prime element.

PRrROOF. If a is a dense element of an ADL L, then we are through. Suppose a is
non-dense. Assume that a is a x—irreducible element of L. Then by above theorem,

(a)* is a maximal among all ideals of the form (r)*. Choose z,y € L such that
z ¢ (a)* and y ¢ (a)*. Hence (a)* C (a)* Vv (z] C (a)* V (2)* C (@)t U (z)* and
also (a)* C (a)* U (y)*. By the maximality of (a)*, we get that (a)* U (z)* = L
and (a)t U (y)t = L. Now, L = LN L = {(a)* U (2)*}n {(a)t U (y)*} =
(@ U{@ N @) = @Y U@ Agt oAy € (@b then (z Ayt C (a)t.
Hence (a)* = L. Which is a contradiction. Thus (a)* is a prime ideal. Therefore
by theorem 3.3, a is a x—prime element of L. O
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