STRONG DOMINATION IN PERMUTATION

J. Chithra, S. P. Subbiah and V. Swaminathan

Abstract

Adin and Roichman introduced the concept of permutation graphs and Peter Keevash, Po-Shen Loh and Benny Sudakov identified some permutation graphs with maximum number of edges. Charles J Colbourn, Lorna K.Stewart characterized the connected domination and Steiner Trees under the Permutation graphs. If i, j belong to a permutation π on p symbols $A=\{1,2,, p\}$ and $i<j$ then the line of i crosses the line of j in the permutation if i appears after j in the image sequence $s(\pi)$ and if the no. of crossing lines of i is less than the no. of crossing lines of j then i strongly dominates j. A subset D of A, whose closed neighborhood is A in π is a dominating set of π. D is a strong dominating set of π if every i in $A-D$ is strongly dominated by some j in D. In this paper the strong number of a permutation is investigated by means of crossing lines.

1. Permutation Graphs

Definition 1.1. Let π be a permutation on a finite set $\mathrm{A}=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{p}\right\}$ given by $\pi=\left(\begin{array}{rrrrr}a_{1} & a_{2} & a_{3} & \ldots & a_{p} \\ a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime} & \ldots & a_{p}^{\prime}\end{array}\right)$ where $\left|a_{i+1}-a_{i}\right|=c, c>0,0<i \leqslant p-1$. The sequence of π is given by $s(\pi)=\left\{a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}, \ldots, a_{p}^{\prime}\right\}$.

When elements of A are ordered in L_{1} and the sequence of π are represented in L_{2}, then a line joining a_{i} in L_{1} and a_{i} in L_{2} is represented by l_{i}. This is known as line representation of a_{i} in π.

Example 1.1. Let $\pi=\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2\end{array}\right)$.
Then the line l_{1} crosses l_{3} and $l_{5} ; l_{2}$ crosses l_{3}, l_{4} and $l_{5} ; l_{3}$ crosses l_{1} and $l_{2} ; l_{4}$ crosses l_{2} and $l_{5} ; l_{5}$ crosses l_{1}, l_{2} and l_{4}.

[^0]Definition 1.2. Let $a_{i}, a_{j} \in A$. Then the residue of a_{i} and a_{j} in π is denoted by $\operatorname{Res}\left(a_{i}, a_{j}\right)$ and is given by $\left(a_{i}-a_{j}\right)\left(\pi^{-1}\left(a_{i}\right)-\pi^{-1}\left(a_{j}\right)\right)$.

Definition 1.3. Let l_{i} and l_{j} denote the lines corresponding to the elements a_{i} and a_{j} respectively. Then l_{i} crosses l_{j} if Res $\left(a_{i}, a_{j}\right)<0$. If l_{i} crosses l_{j} then $\left(a_{i}, a_{j}\right) \in E_{\pi}$.

DEFINITION 1.4. Let π be a permutation on a finite set $A=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{p}\right\}$ given by $\pi=\left(\begin{array}{ccccc}a_{1} & a_{2} & a_{3} & \ldots & a_{p} \\ a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime} & \ldots & a_{p}^{\prime}\end{array}\right)$ where $\left|a_{i+1}-a_{i}\right|=c, c>0,0<i \leqslant$ $p-1$. Then the π-Permutation Graph G_{π} is given by $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ where $V_{\pi}=$ $\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ and $a_{i} a_{j} \in E_{\pi}$, if $\operatorname{Res}\left(a_{i}, a_{j}\right)<0$.

Lemma 1.1. Let π be a permutation on a finite set $A=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{p}\right\}$ given by $\pi=\left(\begin{array}{ccccc}a_{1} & a_{2} & a_{3} & \ldots & a_{p} \\ a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime} & \ldots & a_{p}^{\prime}\end{array}\right)$ where $\left|a_{i+1}-a_{i}\right|=c, c>0,0<i \leqslant p-1$. Then there exists a 1-1 correspondence between crossing of lines in π and elements of E_{π}.

Proof. Let there be $a_{i}, a_{j} \in A$ such that l_{i} intersects l_{j} in π. Let us assume $a_{i}<a_{j}$. (i.e) $a_{i}-a_{j}<0$.
As l_{i} intersects l_{j}, then a_{j} appears before a_{i} in $s(\pi)$. (i.e) $\left(\pi^{-1}\left(a_{i}\right)-\pi^{-1}\left(a_{j}\right)\right)>0$. Hence Res $\left(a_{i}, a_{j}\right)<0$ which implies $a_{i} a_{j} \in E_{\pi}$.
Conversely let $a_{i} a_{j} \in E_{\pi}$. (i.e) Res $\left(a_{i}, a_{j}\right)<0$. By assumption $a_{i}-a_{j}<0$. Hence $\left(\pi^{-1}\left(a_{i}\right)-\pi^{-1}\left(a_{j}\right)\right)>0$ (i.e) a_{j} appears before a_{i} in $s(\pi)$. Hence l_{i} intersects l_{j}.

Lemma 1.2. Let π be a permutation on a finite set $A=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{p}\right\}$, where $\left|a_{i+1}-a_{i}\right|=c, c>0,0<i \leqslant p-1$. Then $\operatorname{Res}\left(a_{i}, a_{j}\right)=\operatorname{Res}\left(a_{j}, a_{i}\right)$.

Proof. Let $a_{i}-a_{j}=\mathrm{mk}, m \neq 0$.
Let $\pi^{-1}\left(a_{i}\right)=a_{r}$ and $\pi^{-1}\left(a_{j}\right)=a_{s}$.
Then $a_{r}-a_{s}=\mathrm{nk}, n \neq 0$.
$\operatorname{Res}\left(a_{i}, a_{j}\right)=\left(a_{i}-a_{j}\right)\left(\pi^{-1}\left(a_{i}\right)-\pi^{-1}\left(a_{j}\right)\right)=\mathrm{mk} \mathrm{nk}=\mathrm{mn} k^{2}$.
$\operatorname{Res}\left(a_{j}, a_{i}\right)=\left(a_{j}-a_{i}\right)\left(\pi^{-1}\left(a_{j}\right)-\pi^{-1}\left(a_{i}\right)\right)=(-\mathrm{n}) \mathrm{k}(-\mathrm{m}) \mathrm{k}=\mathrm{mn} k^{2}$.
Hence Res $\left(a_{i}, a_{j}\right)=\operatorname{Res}\left(a_{j}, a_{i}\right)$.

Definition 1.5. [1] A graph G is a permutation graph if there exists π such that $G_{\pi} \cong G$. (i.e) a graph is a permutation graph if it is realisable by a permutation π. Otherwise it is not a permutation graph.

Example 1.2. Let $\pi=\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2\end{array}\right)$. Then $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ where $V_{\pi}=$ $\{1,2,3,4,5\}$ and $E_{\pi}=\{(1,3),(1,5),(2,3),(2,4),(2,5),(4,5)\}$.

Note 1: $[3] C_{n}, n \geqslant 5$ are not realisable by means of permutations.
Definition 1.6. The neighbourhood of a_{i} in π is a set of all elements of π whose lines cross the line of a_{i} and is denoted by $N_{\pi}\left(a_{i}\right)$, equal to $\left\{a_{r} \in \pi / l_{i}\right.$ crosses l_{r} in $\left.\pi\right\}$ and $d\left(a_{i}\right)=\left|N_{\pi}\left(a_{i}\right)\right|$ is the number of lines that cross l_{i} in π.

Definition 1.7. $N_{\pi}(S)$,neighbourhood of a subset S of V in $\pi=\cup_{a_{i} \in S} N_{\pi}\left(a_{i}\right)$ $=$ set of all elements of π whose lines cross the lines of all $a_{i} \in S$.
The closed neighbourhood of a subset S of V in π is $N_{\pi}[S]=N_{\pi}(S) \cup S$.
The neighbourhood of a_{i} in S is a set of all elements of S whose lines cross the line of a_{i} and is denoted by $N_{S}\left(a_{i}\right)$, equal to $\left\{a_{r} \in S / l_{i}\right.$ crosses l_{r} in $\left.S\right\}$

Definition 1.8. Let A be a subset of V . Then $<A>=\cup_{a_{i} \in A} N_{A}\left(a_{i}\right)=$ $\left\{a_{i} \in A / l_{i}\right.$ crosses $\left.l_{j}, a_{j} \in A\right\}$. If $<A>=\phi$ then we say that A has trivial crossing. (i.e) for a_{r}, a_{s} in A, l_{r}, l_{s} do not cross in π.

Example 1.3. Let $\pi=\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2\end{array}\right)$. Here $\mathrm{V}=\{1,2,3,4,5\}, \quad N_{\pi}(1)=$ $\{3,5\} ; N_{\pi}(2)=\{3,4,5\} ; N_{\pi}(3)=\{1,2\} ; N_{\pi}(4)=\{2,5\} ; N_{\pi}(5)=\{1,2,4\}$. Let $\mathrm{S}=\{4,5\}$. Then $N_{\pi}(S)=\{1,2,4,5\} . N_{S}(4)=\{5\}$ and $<S>=\{4,5\}$ Let $\mathrm{A}=\{1,2\}$. Then $<A>=\phi$ and $N_{\pi}[A]=V$.

2. Domination of a Permutation

DEFINITION 2.1. Let $\pi=\left(\begin{array}{ccccc}a_{1} & a_{2} & a_{3} & \ldots & a_{p} \\ a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime} & \ldots & a_{p}^{\prime}\end{array}\right)$. Then a_{i} is said to dominate a_{j} if l_{i} and l_{j} cross each other in π (may also be trivial). (If it is trivial, then a_{i} dominates a_{i} and a_{j} dominates a_{j} itself.)

Definition 2.2. The subset D of $\mathrm{V}=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ in π is said to be a dominating set of π if $N_{\pi}[D]=V . \mathrm{V}=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ is always a dominating set.

Definition 2.3. The subset D of $\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ is said to be a minimal dominating set of $\pi, \operatorname{MDS}(\pi)$, if $D-\left\{a_{j}\right\}$ is not a dominating set of π for all $a_{j} \in D$. That is D is 1-minimal.

Definition 2.4. [2] The domination number of a permutation π is the minimum cardinality of a set of all $\operatorname{MDS}(\pi)$ and is denoted by $\gamma(\pi)$.

Example 2.1. Let $\pi=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1\end{array}\right)$. Then $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ where $V_{\pi}=$ $\{1,2,3,4\}$ and $E_{\pi}=\{(1,2),(1,3),(1,4)\}$.

1
$G_{\pi}:$

Here $D_{1}=\{1\}$ and $D_{2}=\{2,3,4\}$. Both D_{1} and D_{2} are minimal dominating sets of π.

Theorem 2.1. [3] The domination number of a permutation π is $\gamma(\pi)=$ $\gamma\left(G_{\pi}\right)$, the minimum cardinality of the minimal dominating sets of G_{π}.

3. Strong Domination Number of a Permutation

Definition 3.1. Let $\operatorname{Res}\left(a_{i}, a_{j}\right)<0$ and let $d\left(a_{i}\right) \geqslant d\left(a_{j}\right)$ then we say a_{i} strongly dominates a_{j} and a_{j} weakly dominates a_{i}.

Definition 3.2. A subset D of $\mathrm{V}(\pi)$ is said to be a strong dominating set of π if $N_{\pi}[D]=V(\pi)$ and $d\left(a_{i}\right) \geqslant d\left(a_{j}\right)$ such that for atleast one $a_{i} \in D, a_{j} \in V(\pi)-D$, $\operatorname{Res}\left(a_{i}, a_{j}\right)<0$.

Definition 3.3. The subset D of $\mathrm{V}(\pi)$ is said to be a minimal strong dominating set $\mathrm{D}, \operatorname{MSDS}(\pi)$, if $D-\left\{a_{j}\right\}$ is not a strong dominating set of π for all $a_{j} \in D$.

Definition 3.4. The strong domination number of π, is denoted by $\gamma_{s}(\pi)$ which is the minimum cardinality of all minimal strong dominating sets of π.

Theorem 3.1. The strong domination number of a permutation π is $\gamma_{s}(\pi)=$ $\gamma_{s}\left(G_{\pi}\right)$, the minimum cardinality of the minimal strong dominating sets (MSDS) of G_{π}.

Proof. Let π be a permutation on a finite set $\mathrm{V}=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{p}\right\}$ given by $\pi=\left(\begin{array}{ccccc}a_{1} & a_{2} & a_{3} & \ldots & a_{p} \\ a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime} & \ldots & a_{p}^{\prime}\end{array}\right)$. Let $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ where $V_{\pi}=\mathrm{V}$ and $a_{i} a_{j} \in E_{\pi}$, if $\operatorname{Res}\left(a_{i}, a_{j}\right)<0$.
Let $a_{i} \in V$ such that $d\left(a_{i}\right)=\max \left\{d\left(a_{j}\right) / a_{j} \in V\right\}$.
Then $\mathrm{D}=\left\{a_{i}\right\}$ and let $\mathrm{T}=N_{\pi}\left(a_{i}\right)$.
Let $V_{1}=V-(D \cup T)$.
If there exists only one such a_{i} and if $V_{1}=\phi$, then D is $\operatorname{MSDS}(\pi)$.
If $V_{1} \neq \phi$, and $<V_{1}>=\phi$ then $D_{1}=D \cup V_{1}$ is a $\operatorname{MSDS}(\pi)$.
If $V_{1} \neq \phi$, and $<V_{1}>\neq \phi$ then choose $a_{r} \in V-D$ such that $d\left(a_{r}\right)=\max \left\{d\left(a_{i}\right) / a_{i} \in V_{1}\right\}$.
If $d\left(a_{r}\right)>d\left(a_{i}\right) \forall a_{i} \in N_{\pi}\left(a_{r}\right)$ then $D_{1}=D \cup\left\{a_{r}\right\}$ and $T_{1}=N_{\pi}\left(a_{r}\right)$ and $V_{2}=V_{1}-\left(D_{1} \cup T_{1}\right)$

Otherwise choose $a_{t} \in N_{\pi}\left(a_{r}\right)$ such that $d\left(a_{t}\right)=\max \left\{d\left(a_{i}\right) / a_{i} \in N_{\pi}\left(a_{r}\right)\right\}$.
Now $D_{1}=D \cup\left\{a_{t}\right\}$ and $T_{1}=N_{\pi}\left(a_{t}\right)$ and $V_{2}=V_{1}-\left(D_{1} \cup T_{1}\right)$.
If $V_{2}=\phi$, then D_{1} is $\operatorname{MSDS}(\pi)$.
If $V_{2} \neq \phi$, and $<V_{2}>_{\pi}=\phi$ then $D_{2}=D_{1} \cup V_{1}$ is a $\operatorname{MSDS}(\pi)$.
If $V_{2} \neq \phi$, and $<V_{2}>_{\pi} \neq \phi$, then proceed as before to obtain a MSDS.
If there are more than one a_{i} such $d\left(a_{i}\right)$ is max then by applying the same procedure to all $a_{r_{1}}, a_{r_{2}}, \cdots, a_{r_{m}}$ where $0 \leqslant r_{1}, r_{2}, \cdots, r_{m} \leqslant n$ all $\operatorname{MSDS}(\pi)$ are obtained.
V is finite and no. of subsets of E_{π} is finite. Hence within 2^{n} approaches all minimal strong dominating sets including minimum strong dominating set are produced. The minimum cardinality of the sets in all $\operatorname{MSDS}(\pi)$ is the strong domination number of π which is $\gamma_{s}(\pi)$. So calculation of $\gamma_{s}(\pi)$ is of polynomial time.
Hence by Lemma 2. 1, $\gamma_{s}(\pi)=\gamma_{s}\left(G_{\pi}\right)$.
Example 3.1. Let $\pi=\left(\begin{array}{rrrrrrrr}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 7 & 1 & 8 & 3 & 6 & 4\end{array}\right)$.
Here $D_{1}=\{4,5\}$ and $D_{2}=\{1,4,7\}$.
Both D_{1} and D_{2} are minimal strong dominating sets.
$\gamma_{s}(\pi)=\gamma_{s}\left(G_{\pi}\right)=2$.

5
Note 2: If either $\pi\left(a_{1}\right)=a_{p}$ or $\pi\left(a_{p}\right)=a_{1}$, then l_{1} crosses all $l_{i}, 1<i \leqslant p$, or l_{p} crosses all $l_{j}, 1 \leqslant i<p$. In both cases G_{π} has atleast one full degree vertex. Hence $\gamma_{s}(\pi)=\gamma_{s}\left(G_{\pi}\right)=1$.
Note 3: An example for a permutation graph for which $\gamma_{s}(\pi)=\gamma_{s}\left(G_{\pi}\right)=i\left(G_{\pi}\right)$ is C_{4} and $K_{2, r}$, r-finite.

4. Conclusion

The permutation graphs in terms of crossing of lines and the sequence of permutations were defined and methods of arriving at a dominating set in permutations
were discussed by us. The procedure was extended to find a strong dominating set in a permutation graph in this paper. Similarly independent dominating set, minimal independent dominating set and independent domination number of a permutation, $i(\pi)$, can be defined. Hence the domination number, strong domination number and independent domination number of the permutations realising a some standard graphs were found by means of crossing of lines.

References

[1] Frank Harary, Graph Theory, Narosa Publishing House, Calcutta, 2001
[2] Teresa W. Haynes, Stephen T. Hedetneimi, Peter J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker,INC., New York 1998
[3] J. Chithra, S. P. Subbiah and V. Swaminathan, Domination in Permutation Graph, Intenational Journal of Computing Algorithm, Vol. 3(2014), 549-553 (special issue, February 2014).
[4] P. Keevash, P.-S. Loh and B. Sudakov, Bounding the number of edges in permutation graphs, Electronic J. Comb., 13(2006), Research Paper 44.
[5] M. J.Atallah, G. K. Manacher and J. Urrutia, Finding a minimum independent dominating set in a permutation graph, Discret Applied Mathematics, 21(3)(1988), 177-183.

Received by editors 16.07.2014; Revised version 14.08.2015; Available online 01.09.2015. Department of Mathematics, Lady Doak College, Madurai - 625 002, Tamilnadu, India

E-mail address: chithraed@rediffmail.com
Department of Mathematics, Mannar Thirumalai Naicker College, Madurai - 625 004, Tamilnadu, India

E-mail address: jasminemtnc@gmail.com
Ramanujan Research Centre, Saraswathi Narayanan College, Madurai - 625022 , Tamilnadu, India

E-mail address: sulanesri@yahoo.com

[^0]: 1991 Mathematics Subject Classification. 05C35, 05C69, $20 B 30$.
 Key words and phrases. Permutation Graphs, Domination Number and Strong domination number of a Permutation.

