BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 5(2015), 153-158

Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

STRONG DOMINATION IN PERMUTATION

J. Chithra, S. P. Subbiah and V. Swaminathan

ABSTRACT. Adin and Roichman introduced the concept of permutation graphs and Peter Keevash, Po-Shen Loh and Benny Sudakov identified some permutation graphs with maximum number of edges. Charles J Colbourn, Lorna K.Stewart characterized the connected domination and Steiner Trees under the Permutation graphs. If i, j belong to a permutation π on p symbols $A = \{1, 2, p\}$ and i < j then the line of i crosses the line of j in the permutation if i appears after j in the image sequence $s(\pi)$ and if the no. of crossing lines of i is less than the no. of crossing lines of j then i strongly dominates j. A subset D of A, whose closed neighborhood is A in π is a dominating set of π . D is a strong dominating set of π if every i in A - D is strongly dominated by some j in D. In this paper the strong number of a permutation is investigated by means of crossing lines.

1. Permutation Graphs

DEFINITION 1.1. Let π be a permutation on a finite set $A = \{a_1, a_2, a_3, \dots, a_p\}$ given by $\pi = \begin{pmatrix} a_1 & a_2 & a_3 & \dots & a_p \\ a'_1 & a'_2 & a'_3 & \dots & a'_p \end{pmatrix}$ where $|a_{i+1} - a_i| = c, c > 0, 0 < i \le p-1$. The sequence of π is given by $s(\pi) = \{a'_1, a'_2, a'_3, \dots, a'_p\}$.

When elements of A are ordered in L_1 and the sequence of π are represented in L_2 , then a line joining a_i in L_1 and a_i in L_2 is represented by l_i . This is known as line representation of a_i in π .

EXAMPLE 1.1. Let $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$. Then the line l_1 crosses l_3 and l_5 ; l_2 crosses l_3 , l_4 and l_5 ; l_3 crosses l_1 and l_2 ; l_4

crosses l_2 and l_5 ; l_5 crosses l_1 , l_2 and l_4 .

153

¹⁹⁹¹ Mathematics Subject Classification. 05C35, 05C69, 20B30.

Key words and phrases. Permutation Graphs, Domination Number and Strong domination number of a Permutation.

DEFINITION 1.2. Let $a_i, a_j \in A$. Then the residue of a_i and a_j in π is denoted by $\operatorname{Res}(a_i, a_j)$ and is given by $(a_i - a_j)(\pi^{-1}(a_i) - \pi^{-1}(a_j))$.

DEFINITION 1.3. Let l_i and l_j denote the lines corresponding to the elements a_i and a_j respectively. Then l_i crosses l_j if Res $(a_i, a_j) < 0$. If l_i crosses l_j then $(a_i, a_j) \in E_{\pi}$.

DEFINITION 1.4. Let π be a permutation on a finite set $A = \{a_1, a_2, a_3, \dots, a_p\}$ given by $\pi = \begin{pmatrix} a_1 & a_2 & a_3 & \dots & a_p \\ a'_1 & a'_2 & a'_3 & \dots & a'_p \end{pmatrix}$ where $|a_{i+1} - a_i| = c, c > 0, 0 < i \leq p-1$. Then the π -Permutation Graph G_{π} is given by $G_{\pi} = (V_{\pi}, E_{\pi})$ where $V_{\pi} = \{a_1, a_2, \dots, a_p\}$ and $a_i a_j \in E_{\pi}$, if $\operatorname{Res}(a_i, a_j) < 0$.

LEMMA 1.1. Let π be a permutation on a finite set $A = \{a_1, a_2, a_3, ..., a_p\}$ given by $\pi = \begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_p \\ a'_1 & a'_2 & a'_3 & \cdots & a'_p \end{pmatrix}$ where $|a_{i+1} - a_i| = c, c > 0, 0 < i \leq p-1$. Then there exists a 1-1 correspondence between crossing of lines in π and elements of E_{π} .

PROOF. Let there be a_i , $a_j \in A$ such that l_i intersects l_j in π . Let us assume $a_i < a_j$. (i.e) $a_i - a_j < 0$. As l_i intersects l_j , then a_j appears before a_i in $s(\pi)$. (i.e) $(\pi^{-1}(a_i) - \pi^{-1}(a_j)) > 0$. Hence Res $(a_i, a_j) < 0$ which implies $a_i a_j \in E_{\pi}$.

Conversely let $a_i a_j \in E_{\pi}$. (i.e) Res $(a_i, a_j) < 0$. By assumption $a_i - a_j < 0$. Hence $(\pi^{-1}(a_i) - \pi^{-1}(a_j)) > 0$ (i.e) a_j appears before a_i in $s(\pi)$. Hence l_i intersects l_j . \Box

LEMMA 1.2. Let π be a permutation on a finite set $A = \{a_1, a_2, a_3, ..., a_p\}$, where $|a_{i+1} - a_i| = c, c > 0, 0 < i \leq p - 1$. Then $Res(a_i, a_j) = Res(a_j, a_i)$.

PROOF. Let $a_i - a_j = \text{mk}, m \neq 0$. Let $\pi^{-1}(a_i) = a_r$ and $\pi^{-1}(a_j) = a_s$. Then $a_r - a_s = \text{nk}, n \neq 0$. Res $(a_i, a_j) = (a_i - a_j)(\pi^{-1}(a_i) - \pi^{-1}(a_j)) = \text{mk nk} = \text{mn } k^2$. Res $(a_j, a_i) = (a_j - a_i)(\pi^{-1}(a_j) - \pi^{-1}(a_i)) = (-n)\text{k } (-m)\text{k} = \text{mn } k^2$. Hence Res $(a_i, a_j) = \text{Res } (a_j, a_i)$.

DEFINITION 1.5. [1] A graph G is a permutation graph if there exists π such that $G_{\pi} \cong G$. (i.e) a graph is a permutation graph if it is realisable by a permutation π . Otherwise it is not a permutation graph.

EXAMPLE 1.2. Let $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$. Then $G_{\pi} = (V_{\pi}, E_{\pi})$ where $V_{\pi} = \{1, 2, 3, 4, 5\}$ and $E_{\pi} = \{(1, 3), (1, 5), (2, 3), (2, 4), (2, 5), (4, 5)\}$.

154

Note 1: [3] C_n , $n \ge 5$ are not realisable by means of permutations.

DEFINITION 1.6. The neighbourhood of a_i in π is a set of all elements of π whose lines cross the line of a_i and is denoted by $N_{\pi}(a_i)$, equal to $\{a_r \in \pi/l_i \text{ crosses } l_r \text{ in } \pi\}$ and $d(a_i) = |N_{\pi}(a_i)|$ is the number of lines that cross l_i in π .

DEFINITION 1.7. $N_{\pi}(S)$, neighbourhood of a subset S of V in $\pi = \bigcup_{a_i \in S} N_{\pi}(a_i)$ = set of all elements of π whose lines cross the lines of all $a_i \in S$.

The closed neighbourhood of a subset S of V in π is $N_{\pi}[S] = N_{\pi}(S) \cup S$.

The neighbourhood of a_i in S is a set of all elements of S whose lines cross the line of a_i and is denoted by $N_S(a_i)$, equal to $\{a_r \in S/l_i \text{ crosses } l_r \text{ in } S\}$

DEFINITION 1.8. Let A be a subset of V. Then $\langle A \rangle = \bigcup_{a_i \in A} N_A(a_i) = \{a_i \in A/l_i \text{ crosses } l_j, a_j \in A\}$. If $\langle A \rangle = \phi$ then we say that A has trivial crossing. (i.e) for a_r, a_s in A, l_r, l_s do not cross in π .

EXAMPLE 1.3. Let $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$. Here $V = \{1, 2, 3, 4, 5\}$, $N_{\pi}(1) = \{3, 5\}$; $N_{\pi}(2) = \{3, 4, 5\}$; $N_{\pi}(3) = \{1, 2\}$; $N_{\pi}(4) = \{2, 5\}$; $N_{\pi}(5) = \{1, 2, 4\}$. Let $S = \{4, 5\}$. Then $N_{\pi}(S) = \{1, 2, 4, 5\}$. $N_{S}(4) = \{5\}$ and $\langle S \rangle = \{4, 5\}$ Let $A = \{1, 2\}$. Then $\langle A \rangle = \phi$ and $N_{\pi}[A] = V$.

2. Domination of a Permutation

DEFINITION 2.1. Let $\pi = \begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_p \\ a'_1 & a'_2 & a'_3 & \cdots & a'_p \end{pmatrix}$. Then a_i is said to dominate a_j if l_i and l_j cross each other in π (may also be trivial). (If it is trivial, then a_i dominates a_i and a_j dominates a_j itself.)

DEFINITION 2.2. The subset D of V= $\{a_1, a_2, \ldots, a_p\}$ in π is said to be a dominating set of π if $N_{\pi}[D] = V$. V = $\{a_1, a_2, \ldots, a_p\}$ is always a dominating set.

DEFINITION 2.3. The subset D of $\{a_1, a_2, \ldots, a_p\}$ is said to be a minimal dominating set of π , MDS (π) , if $D - \{a_j\}$ is not a dominating set of π for all $a_j \in D$. That is D is 1-minimal.

DEFINITION 2.4. [2] The domination number of a permutation π is the minimum cardinality of a set of all MDS(π) and is denoted by $\gamma(\pi)$. EXAMPLE 2.1. Let $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$. Then $G_{\pi} = (V_{\pi}, E_{\pi})$ where $V_{\pi} = \{1, 2, 3, 4\}$ and $E_{\pi} = \{(1, 2), (1, 3), (1, 4)\}.$

Here $D_1 = \{1\}$ and $D_2 = \{2, 3, 4\}$. Both D_1 and D_2 are minimal dominating sets of π .

THEOREM 2.1. [3] The domination number of a permutation π is $\gamma(\pi) = \gamma(G_{\pi})$, the minimum cardinality of the minimal dominating sets of G_{π} .

3. Strong Domination Number of a Permutation

DEFINITION 3.1. Let $\operatorname{Res}(a_i, a_j) < 0$ and let $d(a_i) \ge d(a_j)$ then we say a_i strongly dominates a_j and a_j weakly dominates a_i .

DEFINITION 3.2. A subset D of V(π) is said to be a strong dominating set of π if $N_{\pi}[D] = V(\pi)$ and $d(a_i) \ge d(a_j)$ such that for atleast one $a_i \in D$, $a_j \in V(\pi) - D$, Res $(a_i, a_j) < 0$.

DEFINITION 3.3. The subset D of $V(\pi)$ is said to be a minimal strong dominating set D, $MSDS(\pi)$, if $D - \{a_j\}$ is not a strong dominating set of π for all $a_j \in D$.

DEFINITION 3.4. The strong domination number of π , is denoted by $\gamma_s(\pi)$ which is the minimum cardinality of all minimal strong dominating sets of π .

THEOREM 3.1. The strong domination number of a permutation π is $\gamma_s(\pi) = \gamma_s(G_{\pi})$, the minimum cardinality of the minimal strong dominating sets (MSDS) of G_{π} .

PROOF. Let π be a permutation on a finite set $V = \{a_1, a_2, a_3, ..., a_p\}$ given by $\pi = \begin{pmatrix} a_1 & a_2 & a_3 & \dots & a_p \\ a'_1 & a'_2 & a'_3 & \dots & a'_p \end{pmatrix}$. Let $G_{\pi} = (V_{\pi}, E_{\pi})$ where $V_{\pi} = V$ and $a_i a_j \in E_{\pi}$, if $Res(a_i, a_j) < 0$. Let $a_i \in V$ such that $d(a_i) = \max \{d(a_j)/a_j \in V\}$. Then $D = \{a_i\}$ and let $T = N_{\pi}(a_i)$. Let $V_1 = V - (D \cup T)$. If there exists only one such a_i and if $V_1 = \phi$, then D is $MSDS(\pi)$. If $V_1 \neq \phi$, and $< V_1 >= \phi$ then $D_1 = D \cup V_1$ is a $MSDS(\pi)$. If $V_1 \neq \phi$, and $< V_1 >= \phi$ then choose $a_r \in V - D$ such that $d(a_r) = \max \{d(a_i)/a_i \in V_1\}$. If $d(a_r) > d(a_i) \forall a_i \in N_{\pi}(a_r)$ then $D_1 = D \cup \{a_r\}$ and $T_1 = N_{\pi}(a_r)$ and $V_2 = V_1 - (D_1 \cup T_1)$

156

Otherwise choose $a_t \in N_{\pi}(a_r)$ such that $d(a_t) = max\{d(a_i)/a_i \in N_{\pi}(a_r)\}$. Now $D_1 = D \cup \{a_t\}$ and $T_1 = N_{\pi}(a_t)$ and $V_2 = V_1 - (D_1 \cup T_1)$. If $V_2 = \phi$, then D_1 is MSDS(π).

If $V_2 \neq \phi$, and $\langle V_2 \rangle_{\pi} = \phi$ then $D_2 = D_1 \cup V_1$ is a $MSDS(\pi)$.

If $V_2 \neq \phi$, and $\langle V_2 \rangle_{\pi} \neq \phi$, then proceed as before to obtain a MSDS. If there are more than one a_i such $d(a_i)$ is max then by applying the same procedure to all $a_{r_1}, a_{r_2}, \cdots, a_{r_m}$ where $0 \leq r_1, r_2, \cdots, r_m \leq n$ all $MSDS(\pi)$ are obtained. V is finite and no. of subsets of E_{π} is finite. Hence within 2^n approaches all minimal strong dominating sets including minimum strong dominating set are produced. The minimum cardinality of the sets in all $MSDS(\pi)$ is the strong domination number of π which is $\gamma_s(\pi)$. So calculation of $\gamma_s(\pi)$ is of polynomial time. Hence by Lemma 2. 1, $\gamma_s(\pi) = \gamma_s(G_{\pi})$.

EXAMPLE 3.1. Let $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 7 & 1 & 8 & 3 & 6 & 4 \end{pmatrix}$. Here $D_1 = \{4, 5\}$ and $D_2 = \{1, 4, 7\}$.

Here $D_1 = \{4, 5\}$ and $D_2 = \{1, 4, 7\}$. Both D_1 and D_2 are minimal strong dominating sets. $\gamma_s(\pi) = \gamma_s(G_\pi) = 2$.

Note 2: If either $\pi(a_1) = a_p$ or $\pi(a_p) = a_1$, then l_1 crosses all l_i , $1 < i \leq p$, or l_p crosses all l_j , $1 \leq i < p$. In both cases G_{π} has at least one full degree vertex. Hence $\gamma_s(\pi) = \gamma_s(G_{\pi}) = 1$.

Note 3: An example for a permutation graph for which $\gamma_s(\pi) = \gamma_s(G_{\pi}) = i(G_{\pi})$ is C_4 and $K_{2,r}$, r-finite.

4. Conclusion

The permutation graphs in terms of crossing of lines and the sequence of permutations were defined and methods of arriving at a dominating set in permutations were discussed by us. The procedure was extended to find a strong dominating set in a permutation graph in this paper. Similarly independent dominating set, minimal independent dominating set and independent domination number of a permutation, $i(\pi)$, can be defined. Hence the domination number, strong domination number and independent domination number of the permutations realising a some standard graphs were found by means of crossing of lines.

References

- [1] Frank Harary, Graph Theory, Narosa Publishing House, Calcutta, 2001
- [2] Teresa W. Haynes, Stephen T. Hedetneimi, Peter J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, INC., New York 1998
- [3] J. Chithra, S. P. Subbiah and V. Swaminathan, Domination in Permutation Graph, Intenational Journal of Computing Algorithm, Vol. 3(2014), 549-553 (special issue, February 2014).
- [4] P. Keevash, P.-S. Loh and B. Sudakov, Bounding the number of edges in permutation graphs, *Electronic J. Comb.*, 13(2006), Research Paper 44.
- [5] M. J.Atallah, G. K. Manacher and J. Urrutia, Finding a minimum independent dominating set in a permutation graph, *Discret Applied Mathematics*, 21(3)(1988), 177-183.

Received by editors 16.07.2014; Revised version 14.08.2015; Available online 01.09.2015.

Department of Mathematics, Lady Doak College, Madurai - 625 002, Tamilnadu, India

E-mail address: chithraed@rediffmail.com

Department of Mathematics, Mannar Thirumalai Naicker College, Madurai - 625 004, Tamilnadu, India

E-mail address: jasminemtnc@gmail.com

Ramanujan Research Centre, Saraswathi Narayanan College, Madurai - 625 022, Tamilnadu, India

E-mail address: sulanesri@yahoo.com