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Abstract. Let D be a vertex edge dominating set of G. If < V −D > is con-
nected, then D is called a complementary connected vertex edge dominating

set(ccved-set) of G. The complementary connected vertex edge domination
number γccve(G) of G is the minimum cardinality of a ccved-set of G. Bounds
for this variant of vertex edge domination in terms of various graph theoretic
parameters are obtained. The graphs attaining these bounds are characterized

in some cases. Also graphs having ccved-numbers as 1, p − 1, p − 2, p − 3 are
characterized. Complementary connected vertex edge domination numbers for
some of the standard graphs are given.

1. Introduction and Preliminaries.

In this paper all our graphs will be finite, undirected and without loops or
multiple edges having p vertices and q edges. Any undefined term in this paper,
may be found in Harary [1].

If in a graph G = (V,E), each vertex in V −D(D ⊂ V ) is adjacent to a vertex
in D, then D is said to be a dominating set of G. The minimum cardinality of
a dominating set of G is said to be a domination number of G and is denoted by
γ(G) [2]. If each edge in E − F is adjacent to an edge in F for some F ⊆ E, then
F is said to be an edge domianting set of G. The edge domination number γ′(G)
is the cardinality of a minimum edge dominating set of G [2].

A set D of vertices in a graph G is said to vertex edge dominate G, if for each
edge in G one of the end vertices is from D or one of the end vertices is adjacent to a
vertex in D. The smallest cardinality of any such vertex edge dominating set is said
to be vertex edge domination number of G and is denoted by γve(G) [3]. A vertex
edge dominating set D′ is said to be a minimal vertex edge dominating set of G if
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and only if there is no vertex edge dominating set D′′ of G such that D′′ ⊂ D′ [3].
If D is a vertex edge dominating set of G such that < D > is connected, then D is
said to be a connected vertex edge dominating set of G. The minimum cardinality
of a connected vertex edge dominating set of G is said to be the connected vertex
edge domination number of G and is denoted by γcve(G) [5]. If D is a vertex edge
dominating set of G such that < D > is a tree, thenD is said to be a complementary
tree vertex edge dominating set of G. The minimum cardinality of a complementary
tree vertex edge dominating set of G is said to be the complementary tree vertex
edge domination number of G and is denoted by γctve(G) [7]. If D is a vertex edge
dominating set such that V −D is not a vertex edge dominating set, then D is said
to be complementary nil vertex edge dominating set(cnved - set). The minimum
cardinality of the complementary nil vertex edge dominating set of G is said to be
complementary nil vertex edge domination number of G and is denoted by γcnve(G)
[8].

A graph G is said to be semi complete if and only if there is a path of length
two between any pair of vertices in G [4]. A graph G is said to be unicyclic if and
only if it has exactly one cycle. The friendship graph Fp is the graph obtained by
joining p copies of C3 to a common vertex. The clique number ω(G) of a graph G
is the maximum size of the clique in G.

In this paper, we define a new variant of vertex edge domination namely com-
plementary connected vertex edge domination whose definition is as follows.

Let D be a vertex edge dominating set of G. Then D is said to be complemen-
tary connected vertex edge dominating set if and only if < V −D > is connected.
The complementary connected vertex edge domination number γccve(G) of G is the
cardinality of a minimum vertex edge domination number of G. By a γccve(G)−set
we mean a minimum complementary connected vertex edge dominating set.

Throughout this paper complementary connected vertex edge domination set
is abbreviated as ccved - set. Here after, we assume that G is a connected graph.

2. Main Results.

Now, we give the characterization result for a proper subset D of V to be a
ccved-set.

Theorem 2.1. A subset D of V is a ccved - set for G if and only if the following
conditions hold:

(1) {xy ∈ E(G) : atleast one of x, y is in D} is an edge dominating set of G.
(2) D is not a vertex cut in G.

Proof. The proof is trivial. �
Theorem 2.2. A ccved - set D of G is minimal if and only if for each v in D

one of the following conditions holds:

(1) For all u in V −D adjacent to v, N(u)
∩
D = {v}.

(2) there is an edge v1v2 in E−F for which (N(v1)
∪
N(v2))

∩
D = {v},where

F = {xy ∈ E(G) : atleast one of x, y is in D}.
(3) < (V −D)

∪
{v} > is disconnected.
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Proof. Assume that D is a minimal ccved− set of G.
Suppose that there is a vertex v in D which does not satisfy any of the conditions.
By (i) and (ii) D − {v}(= D′) is a vertex edge dominating set for G. By (iii),
< V −D′ > is connected. This implies D′ is a ccved− set of G, contradicting our
assumption.

Conversely, suppose that D is a ccved − set and for each v in G, one of the
three conditions holds. Suppose D is not minimal ccved − set. Then, D − {v} is
a ccved − set. This implies, for all u in V − D adjacent to v, N(u)

∩
D ̸= {v},a

contradiction to (i). If D−{v} is a ccved−set, then, there is no edge v1v2 in E−F
for which (N(v1)

∪
N(v2))

∩
D = {v}. This implies a contradiction to (ii). Also,

since D− {v} is a ccved− set, < V − (D− {v}) > is connected, a contradiction to
(iii). �

Proposition 2.1. For a graph G, 1 6 γccve(G) 6 p− 1.

Proof. The proof follows from the fact that for a complete graph K2 both
the bounds hold. �

Note:
For characterizing the graphs having γccve(G) = 1, we define a family F of

graphs as follows.
A graph G of order p > 4, δ(G) > 2 is in F if and only if there is a vertex v in

G satisfying the following properties:

(1) Each edge in G lies on a n - cycle through v for some n 6 4.
(2) Any pair of vertices lie on a cycle through v.

Theorem 2.3. For a graph G with p > 4, δ(G) > 2, γccve(G) = 1 if and only
if G ∈ F .

Proof. Assume that γccve(G) = 1. Then, there is a v in G vertex edge
dominating the edges in G and G− v is connected.
Let v1v2 be an edge in G.

Case:1: v1 = v or v2 = v.
W.l.g assume that v1 = v. By our assumption deg(v2) > 2. So, there
is v3 in G such that v2v3 is an edge in G. If v3 is not adjacent to v or
to a vertex adjacent to v, then there is an edge which is not vertex edge
dominated by v, a contradiction to our assumption. Then in either case
vv2 lies on an n - cycle for some n 6 4.

Case:2: v1 ̸= v, v2 ̸= v.
By the construction in Case:1, we get v1v2 lies on an n - cycle for some
n 6 4.

So, in any case (1) holds.
Let v1, v2 be a pair of vertices in G.

Case:1: v1v2 is an edge in G.
By (1), v1, v2 lie on a cycle.

Case:2: v1v2 is not an edge in G.
For G is connected and {v} is a ccved - set of G, through v there exists
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v1 − v2 path of length atmost 4. For deg(v1), deg(v2) > 2, there exists
v3, v4 such that v1v3, v2v4 are edges in G. If v3 = v4, then we are through.
Suppose not. By (1), each of v1v3, v2v4 lie on a cycle through v. Since
G− {v} is connected, v1, v2 lie on a cycle through v.

Hence (2) holds.
Converse is clear. �

Corollary 2.1. For any complete bipartite graph Km,n(m,n > 2) , γccve(Km,n) =
1.

Proof. The proof follows from the fact that in Km,n(m,n > 2) any edge( pair
of vertices) lie on a cycle of length 4.

Also observe that γccve(Km,n) = 1 for m+ n 6 3. �

Theorem 2.4. γccve(G) = p− 1 if and only if G = K2.

Proof. Suppose that γccve(G) = p− 1.
If diam(G) > 2, then V − {v1, v2} is a ccved - set of G for an arbitrary edge

v1v2 in G. This implies that γccve(G) 6 p − 2, which is a contradiction to our
assumption. Hence diam(G) = 1.

⇒ G ∼= Kp for some p > 2.

If p > 2, then γccve(G) = 1 ̸= p− 1, a contradiction to our assumption. Hence
G = K2.

The converse is clear. �

Theorem 2.5. For a graph G, γccve(G) = p−2 if and only if G = P3 or K3 or P4.

Proof. Assume that γccve(G) = p− 2.
Suppose that diam(G) > 4. Let < v1v2v3...vkvk+1 > be a diammetral path in

G. Clearly k > 4. Since < {v2, v3, v4} > is connected, V −{v1, v5, v6, ..., vkvk+1} is
a ccved - set of cardinality p− 3 a contradiction. So, diam(G) 6 3.

Suppose diam(G) = 3. Then there is a diammetral path of length 3, say
< v1v2v3v4 >. Assume that there is a v5 in V − {v1, v2, v3, v4} adjacent to one of
the vertices in {v1, v2, v3, v4}. If v5 is adjacent with v4 or v1, then V −{v2, v3, v4} is
a ccved - set, a contradiction. If v5 is adjacent to v2 or v3 , then V −{v1, v2, v5}, V −
{v3, v4, v5} is a ccved - set respectively, a contradiction. Hence G =< v1v2v3v4 >=
P4.

Suppose that diam(G) = 2, by the above construcion we get that G = P3.
Suppose that diam(G) = 1. Then G = kn for n > 2. Except for n =

3, γccve(G) ̸= 3. Hence G = K3.
The converse part is clear. �

Corollary 2.2. For a semi complete graph G, γccve(G) = p− 2 if and only if
G = K3.

Proof. Since K3 is the only semi complete graph among the class of graphs
having γccve(G) = p− 2, the proof follows. �
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Note: For a tree T , γctve(T ) = γccve(T ).
Now, we give the necessary and sufficient condition for a ccved - set to be a

ctved - set.

Theorem 2.6. A ccved - set D of G is a ctved - set if and only if each cycle
in G has a vertex from D.

Proof. The proof is trivial. �
Theorem 2.7. For any spanning subgraph H of G, γccve(G) 6 γccve(H).

Theorem 2.8. For any connected (p, q) graph G,

3

2
(p+ k − 1)− q 6 γccve(G).

where k is the number of edge disjoint cycles in < V − (γccve(G)− set) >.

Proof. D be a γccve(G)− set. Then < V −D > has p−γccve(G) vertices and
atleast p− γccve(G)− 1 + k edges. Let t be the number of edges having one end in
D and another in V −D. Hence,

2[q − (p− γccve(G)− 1 + k)] =
∑
v∈D

deg(v) + t

> γccve(G)δ(G) + t

> γccve(G) + p− γccve(G)− 1 + k

= p+ k − 1.

This implies,
2q − 2p+ 2γccve(G)− 2k + 2 > p+ k − 1

Hence the result follows. �
Theorem 2.9. Let G be a (p, q) graph,then

γccve(G) 6 2(p+ k − 1)− 2q

∆(G)
.

where k is the number of cycles in < V − (γccve(G)− set) >.

Proof. By the construction in the above theorem,

2[q − (p− γccve(G)− 1 + k)] =
∑
v∈D

deg(v) + t

6 ∆(G)γccve(G) + 2(∆(G)− 1)(p− γccve(G)− 1 + k).

This implies,
2q 6 −∆(G)γccve(G) + 2∆(G)(p+ k − 1)

Hence the result follows. �
Theorem 2.10. Let G be a (p, q) graph which has (ω(G)+1)−regular spanning

subgraph, then
γccve(G) 6 p− ω(G).

where ω(G) is the clique number of G.
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Proof. Let S be the set of vertices such that < S > is complete and |S| =
ω(G). By the hypothesis it follows that, V − S is a ccved − set of G. Hence the
result follows.
Note: Since for a (p, q) graph G, (V − S)

∪
{v}v∈S is a ccved− set of G

γccve(G) 6 |V − S|
6 |(V − S)|+ |{v}|
6 p− ω(G) + 1.

Here < S > is complete and |S| = ω(G). �
Theorem 2.11. For a semi complete graph G with p > 3,

1 6 γccve(G) 6 p− 2.

Proof. Since in a semi complete graph each edge lies on a triangle and also
every complete graph with atleast three vertices is semi complete, by the above
note the inequality follows. �

Note:

(1) For a semi complete graph G having four vertices, γccve(G) = p− 3 if and
only if G is a union of two triangles having a common edge.

(2) There is no semi complete graph with three, five vertices having, γccve(G) =
p− 3.

Theorem 2.12. G be a semi complete graph with p > 5, then γccve(G) = p− 3
if and only if G is isomorphic to

Proof. Assume that γccve(G) = p− 3. This implies that there is a ccved - set
D ⊂ V of cardinality p− 3 and < V −D > is isomorphic to

Case:1: < V −D > = P3(< v1v2v3 >).
Since G is semi complete v1v2,v2v3 lie on two different triangles, say <
v1v2v4 >,< v2v3v5 >.
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Subcase:a: v4 = v5.
So, both the triangles have a common edge v2v4(say). Since p > 5,
choose a vertex adjacent to v4 say, v5. For, G is semi complete v4v5
lies on a triangle < v4v5v6 >. If v6 ∈ {v1, v2, v3}, then D − {v5} is
a ccved - set of cardinality less than p − 3, a contradiction to our
assumption. If then the result is clear. Suppose not. We can find

v1

v2

v3

v4

v5

v6

G =

a vertex say v7 adjacent to either v5 or v6. W.l.g assume that v7 is
adjacent to v5. Since G is semi complete v4v7 is an edge in G. If then

v1

v2

v3

v4
v5

v6

v7

G =

the result is clear. Suppose not. If there is a vertex v8 in G, then by
the semi completeness of G, v4v8 is an edge in G. This implies that
V − {v1, v2, v3, v4} is a ccved- set in G of cardinality 4(= p − 4), a
contradiction. Hence V = {v1, v2, ..., v7}.
Since none of v5, v6, v7 can be adjacent to one of v1, v2, v3, the result
holds.

Subcase:b: v4 ̸= v5.
Since p > 5, choose a vertex v6 from V − {v1, v2, ..., v5}. If v6 is
adjacent to one of v1, v2, v3, then D−{v5}, D−{v4, v5}, D−{v4} is
a ccved - set of G respectively, a contradiction to γccve(G) = p − 3.
Since G is semi complete, v6 is adjacent with v4 and v5. Then,
D − {v4} or D − {v5} is a ccved - set of G, a contradiction. So,
v4 = v5.

Case:2: < V −D > ̸= P3.
Then < V −D > = K3. By the construction as in the case:1, the result
follows.

The converse part is clear.
�

Corollary 2.3. G be a semi complete graph. Then γccve(G) = p − 3 if and
only if 4 6 p 6 7, p ̸= 5.
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Corollary 2.4. For a semi complete graph G with γccve(G) = p− 3,

3 6 γccve(G) + ∆(G) 6 10.

Proof. For a semi complete graph G, ∆(G) > 2 and γccve(G) > 1. Also by
Theorem 2.12 , for a semi complete graph G with γccve(G) = p − 3, ∆(G) 6 6.
Hence the result follows. �

Note: The bounds are sharp as the lower and upper bounds are attained in the
case of K3,W9 respectively.

Theorem 2.13. G be a semi complete graph with p > 4. Then, γccve(G) = 1
if and only if G ∈ F .

Proof. Since for a semi complete graph δ(G) > 2, by Theorem 2.3 the proof
follows. �

Theorem 2.14. Let G be a (p, q) graph with δ(G) > 3, g(G) ̸= 3,then

γccveG 6 p−∆(G).

Proof. Suppose that deg(v) = ∆(G) for some v ∈ V . Then, (V −N [v]) is a
ccved− set of G. Hence the result. �

Theorem 2.15. For a (p, q) graph G with δ(G) > 3, g(G) > 4,

γccve(G) 6 p− k − 3

where k is the diameter of G.

Proof. Let u and v be two vertices with d(u, v) = k = diam(G). Let <
u = v1v2...vk−1vkvk+1 = v > be a diammetral path in G. Since each edge in
G is vertex edge dominated by a vertex in V − {v1, v2, ..., vk+1, u1, uk+1}(where
uivi(1 6 i 6 k + 1), ui /∈ {v1, v2, ..., vk+1}) and < {v1, v2, ..., vk+1, u1, uk+1} > is
connected, the former is a ccved− set in G. Hence,

γccve(G) 6 |V − {v1, v2, ..., vk+1, u1, uk+1}|
6 p− ((k + 1) + 2)

= p− k − 3.

We make use of the following result in proving the next result. �

Theorem 1.[7] If both G and G are connected with p > 6, then

4 6 d+ d 6 p+ 1

where d is the diameter of G.

Corollary 2.5. Suppose both G,G are connected with δ(G), δ(G) > 3 and
p > 6, then

γccve(G) + γccve(G) 6 2p− 10.

Proof. By Theorem 1.[6], the proof follows. �
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Theorem 2.16. For a (p, q) graph G with δ(G) > 3, g(G) > 7,

γccve(G) 6 p− 2

3
k − 2

where k is the diameter of G.

Proof. Let u and v be two vertices with d(u, v) = k = diam(G). Let
< u = v1v2...vk−1vkvk+1 = v > be a diammetral path in G. Since each edge in G
is vertex edge dominated by a vertex in V −{v1, v2, ..., vk+1, u1, u4, u7, ..., uk+1(k =
3m), uk(k = 3m+1), uk−1(k = 3m+2)}(where uivi(1 6 i 6 k+1), ui /∈ {v1, v2, ..., vk+1})
and {v1, v2, ..., vk+1, u1, u4, u7, ..., uk+1(k = 3m), uk(k = 3m+1), uk−1(k = 3m+2)}
is connected, the former is a ccved− set in G. Hence,

γccve(G) 6 |V − {v1, v2, ..., vk+1, u1, u4, u7, ..., uk+1(or)uk(or)uk−1}|

6 p− (k + 1)− (
k

3
+ 1)

= p− 4

3
k − 2.

�

Theorem 2.17. If D is a ccved - set such that no two edges in < V − D >
are ve - dominated by the same vertex in D, then

γccve(G) 6 2p− q − 2

2
.

Theorem 2.18. For a graph G,

γccve(G) + γcve(G) 6 p

Proof. Let D be a γccve(G) − set. By definition < V − D > is connected
and each edge in G is dominated by a vertex in V −D. So, V −D is a connected
ve− dominating set of G. This implies,

γcve(G) 6 |V −D|
= p− γccve(G).

Hence the result follows. �

Theorem 2.19. For any graph G, the following conditions are equivalent

(1) The set of all pendant vertices form a ccved− set.
(2) The set of all pendant edges in G form an edge dominating set for G.
(3) Each non pendant vertex is a support vertex or adjacent to a support

vertex.

Proof. Suppose that (1) holds.
Take S = {uv : u or v is a pendant vertex}. Let e(= v1v2) ∈ E − S. By our

supposition there is atleast one pendant vertex(say,v3) adjacent to one of the end
vertices of e. W.l.g assume that v1v3 ∈ E. Since v3 is a pendant vertex, v1v3 ∈ S.
Hence (2) holds.
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Suppose that (2) holds.
Let v1 be a non pendant vertex which is neither a support vertex nor adja-

cent to a support vertex. Then there is a non pendant vertex(say v2) in V −
{support vertices of G} adjacent to v1. This implies v1v2 is not dominated by S,
a contradiction to our assumption. Hence (3) holds.

Suppose that (3) holds.
Let v1v2 be an arbitrary non pendant edge in G. By (3), either v1 or v2 is a

support vertex in G. Then, there is a pendant vertex v3 such that v1v3 or v2v3 is
an edge in G. This implies v1v2 is ve− dominated by v3. Hence (1) holds. �

Corollary 2.6. If a graph G satisfies any of the conditions mentioned in
Theorem 2.19, then

γccve(G) 6 m.

where m is the number of pendant vertices in G.

Proof. By hypothesis, it follows that the set of all pendant vertices form a
ccved - set of G. Hence the result follows.

Furthermore, the bound is sharp as it is attained in the case of Cp◦K1, where
Cp ◦K1 is the corona of Cp and K1.

�

Corollary 2.7. γccve(Cp ◦K1) = p.

Proof. Since in Cp ◦ K1, each non pendant vertex is a support vertex, by
Theorem 2.19,

γccve(Cp ◦K1) 6 p.

Also for any ved - set D with |D| < p, < V −D > is disconnected. Hence the result
follows. �

Corollary 2.8. If a graph G satisfies any of the conditions mentioned in
Theorem 2.19, then

γ′(G) 6 m.

Furthermore, the bound is sharp as it is attained in the case of P5.

Proof. Since a graph satisfies any of the conditions mentioned in Theorem
2.19 has its pendant edges as its edge dominating set, hence the result follows.

Now we give the ccved− numbers of some standard graphs. �

Theorem 2.20. (1) For any cycle Cp with p > 4, γccve(G) = p− 3.
(2) For any complete graph Kp(p > 2), γccve(Kp) = 1.
(3) For any wheel graph Wp, γccve(Wp) = 1.
(4) For a friendship graph Fp, γccve(Fp) = 2p− 1.

Theorem 2.21. For a tree T having diameter atleast four, γcnve(T ) 6 γccve(T ).
Furthermore, equality holds if and only if diam(T ) = 4.

Proof. Since for a tree having diameter atleast four, every ccved-set is a
cnved-set the result follows. �
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Theorem 2.22. For a unicyclic graph G with internal vertices having degree
atleast three,

γccve(G) 6 p− n.

where n is the length of the cycle in G.
Furthermore, the bound is sharp as it is attained in the case of Cn◦K1.

Proof. By the hypothesis it is clear that each vertex in G is either a pendant
vertex or a vertex of degree 3. Also the set of all pendant edges in G form an edge
dominating set for G. Then by Theorem 2.19, the set of all pendant vertices form
a ccved - set for G. Hence the result follows. �

Theorem 2.23. For a unicyclic graph G, γccve(G) = p− n if and only if G is
isomorphic to one of the following :

v1

v2

v3

v4v5

v6

v7

v
n

v
n-1

u1

u3
u5

u7

un-1

v1

v2

v3

v4v5

v6

v7

v
n

v
n-1

u1

u3
u5

u7

un-1

un

n is odd n is even

Proof. The proof is trivial. �
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