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Abstract. In this paper we present some results of fixed point theory in a
recently introduced generalization of the metric space, that is, complex valued
metric space where the metric assumes values in the set of complex number.

The notion of inequality here is the rational type order inequality in a partial
ordering of the complex numbers. The results are illustrated with examples.
The work is a part of the rapid extension of metric fixed point theory to more

generalized structures beyond the boundary of metric spaces.

1. Introduction and Preliminaries

Metric fixed point theory is widely recognized to have been originated in the
work of S. Banach in 1922 [4] where he proved the famous contraction mapping
principle. Banach’s contraction mapping principle has very few parallels in modern
science in terms of the influence it has exerted in the developments of different
branches of mathematics and of physical science in general. Over the years metric
fixed point theory has developed in different directions. A comprehensive account
of this development is provided in the handbook entitled by Kirk and Sims [23].

Also there are large efforts for generalizing metric spaces by changing the form
and interpretation of the metric function. Ghaler [15] introduced 2-metric spaces
where a real number is assigned to any three points of the space. Probabilistic
metric spaces were introduced by Schweizer et al ( [26], [27] ) in which any pair of
points is assigned to a suitable distribution function making possible a probabilistic
sense of distance. Fuzzy metric spaces were introduced in more than one ways by
various means of fuzzification as, for example, in [16] by assigning any pair of points
to a suitable fuzzy set and spelling out the triangular inequality by using a t-norm.
Another example is in the work of Kaleva et al [21] where any pair of points is
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assigned to a fuzzy number. G-metric space [25] is another generalization in which
every triplet of points is assigned to a non-negative real number but in a different
way than in 2-metric spaces. There are also other extensions of the metric which
are not mentioned above. It can be seen that in recent times efforts of extending the
concept of metric space has continued in a rapid manner. Simultaneously, metric
fixed point theory has been extended rapidly in these spaces over the recent years.

Complex valued metric spaces are generalization of metric space where the
metric function takes values from the set of complex numbers, thus opening the
scope of the concepts from complex analysis for incorporation in the metric space
structure. The space was originally introduced by Azam et al [2]. Fixed point
theory has been studied in this space in a suitable number of papers, some of which
we mention in ([7], [28] - [30]). We begin with a description of complex valued
metric space.

Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial order -
on C as follows:

z1 - z2 if and only if Re(z1) 6 Re(z2) and Im(z1) 6 Im(z2).

It follows that z1 - z2 if one of the following conditions is satisfied:

(i) Re(z1) = Re(z2), Im(z1) < Im(z2)

(ii) Re(z1) < Re(z2), Im(z1) = Im(z2)

(iii) Re(z1) < Re(z2), Im(z1) < Im(z2)

(iv) Re(z1) = Re(z2), Im(z1) = Im(z2).

In particular, we will write z1 � z2 if z1 ̸= z2 and one of (i), (ii), and (iii) is satisfied
and we will write z1 ≺ z2 if only (iii) is satisfied. Note that

z1 - z2, z2 ≺ z3 =⇒ z1 ≺ z3.

Definition 1.1 ([2]). Let X be a nonempty set. Suppose that the mapping
d : X ×X → C satisfies:

(i) 0 - d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y

(ii) d(x, y) = d(y, x), for all x, y ∈ X

(iii) d(x, y) - d(x, z) + d(z, y), for all x, y, z ∈ X.

Then d is called a complex valued metric on X and (X, d) is called a complex
valued metric space.

Definition 1.2 ([2]). Let (X, d) be a complex valued metric space, {xn} be
a sequence in X and x ∈ X.
(i) If for every c ∈ C with 0 ≺ c there is n0 ∈ N such that for all n > n0,
d(xn, x) ≺ c, then {xn} said to be convergent and {xn} converges to x. We denote
this by lim

n−→∞
xn = x, or xn −→ x as n −→ ∞.

(ii) If for every c ∈ C with 0 ≺ c there is n0 ∈ N such that for all n, m > n0,
d(xn, xm) ≺ c, then {xn} is said to be a Cauchy sequence.
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(iii) If every Cauchy sequence in X is convergent, then (X, d) is a complete complex
valued metric space.

Lemma 1.1. Let (X, d) be a complex valued metric space and {xn} a sequence
in X. Then {xn} converges to x if and only if d(xn, x) −→ 0 as n −→ ∞.

Note 1.1 We can also replace the limit in lemma 1.1 by the equivalent limiting
condition |d(xn, x)| −→ 0 as n −→ ∞.

Lemma 1.2. Let (X, d) be a complex valued metric space and {xn} a sequence
in X. Then {xn} is a Cauchy sequence if and only if d(xn, xm) −→ 0 as n,m −→
∞.

Note 1.2 We can also replace the limit in lemma 1.2 by the equivalent limiting
condition |d(xn, xm)| −→ 0 as n, m −→ ∞.

Definition 1.3. Let (X, d) be a complex valued metric space, T : X −→ X
and x ∈ X. Then the function T is continuous at x if for any sequence {xn} in X,

xn −→ x =⇒ Txn −→ Tx.

In [14], Dass and Gupta generalized Banach contraction principle using a ra-
tional type contraction.

Theorem 1.1 ([14]). Let (X, d) be a complete metric space and T : X → X a
mapping such that there exist α, β > 0 with α+ β < 1 satisfying

(1.1) d(Tx, Ty) 6 α
d(y, Ty)[1 + d(x, Tx)]

1 + d(x, y)
+ βd(x, y), for all x, y ∈ X.

Then T has a unique fixed point.

In [8], Cabrera, Harjani and Sadarangani proved the above theorem in the
context of partially ordered metric spaces.

Definition 1.4. Let (X, ≼) be a partially ordered set and T : X −→ X.
The mapping T is said to be nondecreasing if for all x1, x2 ∈ X, x1 ≼ x2 implies
Tx1 ≼ Tx2 and nonincreasing if for all x1, x2 ∈ X, x1 ≼ x2 implies Tx1 ≽ Tx2.

Theorem 1.2 ([8]). Let (X,≼) be a partially ordered set and suppose that
there exists a metric d in X such that (X, d) is a complete metric space. Let
T : X → X be a continuous and nondecreasing mapping such that (1.1) is satisfied
for all x, y ∈ X with x ≼ y. If there exists x0 ∈ X such that x0 ≼ Tx0 then T has
a fixed point.

Theorem 1.3 ([8]). Let (X,≼) be a partially ordered set and suppose that there
exists a metric d in X such that (X, d) is a complete metric space. Assume that
if {xn} is a nondecreasing sequence in X such that xn → x, then xn ≼ x, for all
n ∈ N . Let T : X → X be a nondecreasing mapping such that (1.1) is satisfied for
all x, y ∈ X with x ≼ y. If there exists x0 ∈ X such that x0 ≼ Tx0 then T has a
fixed point.
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Fixed point theorems for contractive type conditions satisfying rational inequal-
ities in metric spaces have been developed in a number of works ([9], [10], [17],
[19], [20], [24]).

Rational inequalities cannot be considered in cone metric spaces [18], but can
be constructed in complex valued metric spaces. We discuss this elaborately in
remark 2.3.

The concept of almost contractions were introduced by Berinde ([5],[6]).

Definition 1.5 ([5]). Let (X, d) be a metric space. A mapping T : X −→ X
is called an almost contraction if there exist k ∈ (0, 1) and some L > 0 such that
for all x, y ∈ X,

d(Tx, Ty) 6 kd(x, y) + Ld(y, Tx).

It was shown in [5] that any strict contraction, the Kannan [22] and Zam-
firescu [31] mappings, as well as a large class of quasi-contractions, are all almost
contractions. Almost contractions and its generalizations were further considered
in several works like ([1], [3], [11], [12], [13]).

The purpose of this paper is to study fixed points of a class of mappings sat-
isfying a rational type almost contraction in the frame-work of a complex valued
ordered metric space. Our results are supported with examples.

2. Main Results

Theorem 2.1. Let (X, ≼) be a partially ordered set and suppose that there
exists a complex valued metric d on X such that (X, d) is complete complex valued
metric space. Let T : X −→ X be a continuous and nondecreasing mapping.
Suppose there exist nonnegative real numbers α, β, γ, δ, λ, µ and L with α + 2β +
2γ + δ + µ < 1 such that for all x, y ∈ X with x ≼ y,

(2.1)

d(Tx, Ty) - α d(x, y) + β [d(x, Tx) + d(y, Ty)] + γ [d(y, Tx) + d(x, Ty)]

+ δ
d(y, Ty) [1 + d(x, Tx)]

1 + d(x, y)
+ λ

d(y, Tx) [1 + d(x, Ty)]

1 + d(x, y)

+ µ
d(x, y) [1 + d(x, Tx) + d(y, Tx)]

1 + d(x, y)
+ L d(y, Tx).

If there exists x0 ∈ X with x0 ≼ Tx0, then T has a fixed point.

Proof. If x0 = Tx0, then we have the result. Suppose that x0 ≺ Tx0. Then
we construct a sequence {xn} in X such that

xn+1 = Txn, for every n > 0.(2.2)

Since T is a nondecreasing mapping, we obtain by induction that

(2.3) x0 ≺ Tx0 = x1 ≼ Tx1 = x2 ≼ . . . ≼ Txn−1 = xn ≼ Txn = xn+1 ≼ . . .

If there exists some N > 1 such that xN+1 = xN , then from (2.2), xN+1 = TxN =
xN , that is, xN is a fixed point of T and the proof is finished. So, we suppose that
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xn+1 ̸= xn, for all n > 1. Since xn ≺ xn+1, for all n > 1, applying (2.1) we have

d(Txn, Txn+1) - α d(xn, xn+1) + β [d(xn, xn+1) + d(xn+1, xn+2)]

+γ [d(xn+1, xn+1) + d(xn, xn+2)]

+δ
d(xn+1, xn+2) [1 + d(xn, xn+1)]

1 + d(xn, xn+1)
+ λ

d(xn+1, xn+1) [1 + d(xn, xn+2)]

1 + d(xn, xn+1)

+µ
d(xn, xn+1)

1 + d(xn, xn+1)
[1 + d(xn, xn+1) + d(xn+1, xn+1)] + L d(xn+1, xn+1),

that is,

d(xn+1, xn+2) - α d(xn, xn+1) + β [d(xn, xn+1) + d(xn+1, xn+2)]

+ γ d(xn, xn+2) + δ d(xn+1, xn+2) + µ d(xn, xn+1)

- α d(xn, xn+1) + β [d(xn, xn+1) + d(xn+1, xn+2)]

+ γ [d(xn, xn+1) + d(xn+1, xn+2)] + δ d(xn+1, xn+2) + µ d(xn, xn+1),

which implies that

(2.4) d(xn+1, xn+2) -
α+ β + γ + µ

1− β − γ − δ
d(xn, xn+1).

Now, α+2β+2γ+δ+µ < 1 implies that
α+ β + γ + µ

1− β − γ − δ
< 1. Put

α+ β + γ + µ

1− β − γ − δ
=

k. Then by repeated application (2.4), we have

(2.5) d(xn+1, xn+2) - k d(xn, xn+1) - k2 d(xn−1, xn) - ... - kn+1 d(x0, x1).

For any m > n,

d(xm, xn) - d(xn, xn+1) + d(xn+1, xn+2) + ...+ d(xm−1, xm)

- [kn + kn+1 + kn+2 + ... + km−1] d(x0, x1)

- kn

1− k
d(x0, x1) −→ 0 as n −→ ∞,

which implies that, {xn} is a Cauchy sequence. From the completeness of X, there
exists z ∈ X such that

(2.6) xn −→ z as n −→ ∞.

The continuity of T implies that Tz = limn−→∞ Txn = limn−→∞ xn+1 = z, that
is, z is a fixed point of T . �

In our next theorem we relax the continuity assumption of the mapping T
in Theorem 2.1 by imposing the following order condition of the complex valued
metric space X:

If {xn} is a non-decreasing sequence in X such that xn −→ x, then xn ≼ x, for
all n ∈ N.

Theorem 2.2. Let (X, ≼) be a partially ordered set and suppose that there
exists a complex valued metric d on X such that (X, d) is complete complex valued
metric space. Assume that if {xn} is a nondecreasing sequence in X such that
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xn −→ x, then xn ≼ x, for all n ∈ N. Let T : X −→ X be a nondecreasing
mapping such that for all x, y ∈ X with x ≼ y, (2.1) is satisfied, where the condition
on α, β, γ, δ, λ, µ and L are same as in theorem 2.1. If there exists x0 ∈ X with
x0 ≼ Tx0, then T has a fixed point.

Proof. We take the same sequence {xn} as in the proof of theorem 2.1. Argu-
ing like in the proof of theorem 2.1, we prove that {xn} is a nondecreasing sequence
which satisfies (2.6), that is, xn −→ z as n → ∞. Then, by the conditions of the
theorem xn ≼ z, for all n ∈ N. Applying (2.1), we have

d(xn+1, T z) =

d(Txn, T z) - α d(xn, z) + β [d(xn, xn+1) + d(z, Tz)] + γ [d(z, xn+1) + d(xn, T z)]

+ δ
d(z, Tz) [1 + d(xn, xn+1)]

1 + d(xn, z)
+ λ

d(z, xn+1) [1 + d(xn, T z)]

1 + d(xn, z)

+ µ
d(xn, z)

1 + d(xn, z)
[1 + d(xn, xn+1) + d(z, xn+1)] + L d(z, xn+1).

Taking the limit as n −→ ∞ in the above inequality and using (2.6), we have

d(z, Tz) - (β + γ + δ)d(z, Tz).

Since (β + γ + δ) < 1, it is a contradiction unless d(z, Tz) = 0, that is, Tz = z,
that is, z is a fixed point of T . �

Example 2.1. Let X = [a, b] where 1 < a < b. Partial order ′ ≼′ is defined as
x ≼ y iff x > y. Let the complex valued metric d be given as

d(x, y) = |x− y|
√
2 e

i
π

4 = |x− y|(1 + i), for x, y ∈ X.

Let T : X −→ X be defined as follows:

Tx = x+
1

x
− 1

b
.

Let 1 − 1

b2
6 α < 1 and β, γ, δ, λ, µ and L are arbitrary non-negetive real

numbers such that α + 2β + 2γ + δ + µ < 1. Here all the conditions of Theorems
2.1 and 2.2 are satisfied and it is seen that b is a fixed point of T .

Example 2.2. Let X = [1.5, 2] with usual prtial order ′ 6′. Let us consider
the complex valued metric d as defined in example 2.1.

Let T : X −→ X be defined as follows:

Tx =

{
1.81, if 1.5 6 x < 1.75,
x+ 1

x − 1
2 , if 1.75 6 x 6 2.

Let
3

4
6 α < 1, β = γ = δ = µ = λ = 0 and L > 3.

Here all the conditions of Theorem 2.2 are satisfied and x = 2 is a fixed point
of T .

Remark 2.1. In the above example the function T is not continuous and hence
it is not applicable to theorem 2.1.
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Remark 2.2. By restricting the metric values to real numbers, we have the
usual metric space in which case the results obtained in [8] which are also stated
here as theorems 1.4 and 1.5, are obtained by an application of our theorems.

Remark 2.3. Complex valued metric spaces have close similarities with cone
metric spaces in its structure, although conceptually they are very different. In
cone metric spaces the metric takes up values in linear spaces over the real field
where the linear space may be infinite dimensional, whereas in the case of complex
valued metric spaces the metric values are in the set of complex number which
is a one dimensional vector space over the complex field. The type of rational
inequality we consider here is not meaningful in a cone metric space. This is an
instance which implies why fixed point theory should be pursued independently in
a complex valued metric space.
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[13] L. Ćirić, M. Abbas, R. Saadati, N. Hussain, Common fixed points of almost generalized

contractive mappings in ordered metric spaces, Appl. Math. Comput. 217 (2011), 5784 -
5789.

[14] B. K. Dass, S. Gupta, An extension of Banach contraction principle through rational ex-
pressions, Inidan J. Pure Appl. Math. 6 (1975), 1455 - 1458.

[15] S. Gahler, Uber die unifromisieberkeit 2-metrischer Raume, Math. Nachr. 28 (1965), 235 -
244.

[16] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets System 64
(1994), 395 - 399.



80 B.S. CHOUDHURY, N. METIYA, AND P. KONAR
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