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Abstract. In this paper, we define smart congruence and prove that smart
congruences on Semi Heyting Almost Distributive Lattice (SHADL) are de-
termined by filters and also show that smart congruences are congruence per-

mutable. We also define and characterize the weakly directly indecomposable
Semi Heyting Almost Distributive Lattice (SHADL) in terms of its Birkhoff
centre C(L).

1. Introduction

In [7], Sankappanavar introduced a new equational class SH of algebras, which
he called Semi-Heyting Algebras, as an abstraction of Heyting algebras. This vari-
ety includes Heyting algebras and share with them some rather strong properties.
For example, the variety of semi-Heyting algebras is arithmetical, semi-Heyting
algebras are pseudocomplemented distributive lattices and their congruences are
determined by filters. The concept of an Almost Distributive Lattice (ADL) was
introduced by U. M. Swamy and Rao G.C. [10] as a common abstraction to most
of the existing ring theoretic generalizations of a Boolean algebra on one hand and
the class of distributive lattices on the other. Rao G.C., Berhanu Assaye and M. V.
Ratna Mani [4], introduced the concept of a Heyting Almost Distributive Lattice
(HADL) as a generalization of a Heyting algebra. The concept of a Semi Heyting
Almost Distributive Lattice (SHADL) as a generalization of a Semi Heyting algebra
was introduced in our earlier paper [5]. In this paper, we define the concept of a
smart congruence and prove that the smart congruences on Semi Heyting Almost
Distributive Lattice (SHADL) are determined by filters and also we show that smart
congruences are permutable. We also define and characterize the weakly directly
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indecomposable Semi Heyting Almost Distributive Lattice (SHADL) in terms of
its Birkhoff centre C(L).

2. Preliminaries

In this section we give some important definitions and results that are
frequently used for ready reference.

Definition 2.1. [10] An algebra (L,∨,∧, 0) of type (2, 2, 0) is called ADL if
it satisfies the following axioms: for all x, y, z ∈ L

(1) x ∨ 0 = x
(2) 0 ∧ x = 0
(3) (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)
(4) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
(5) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
(6) (x ∨ y) ∧ y = y

Definition 2.2. [10] Let L be a non-empty set. Fix x0 ∈ L. For any x, y ∈ L,
define x∧ y = y, x∨ y = x if x ̸= x0, x0 ∧ y = x0 and x0 ∨ y = y. Then (L,∨,∧, x0)
is an ADL and it is called a discrete ADL. Alternately, discrete ADL is defined as
an ADL (L,∨,∧, 0) in which every x( ̸= 0) is maximal.

Let (L,∨,∧, 0) be an ADL. For any x, y ∈ L, define x 6 y if and only if
x = x ∧ y, or equivalently x ∨ y = y, then 6 is a partial ordering on L.

Through out this section L stands for an ADL (L,∨,∧, 0) unless other-
wise specified. In the following theorem some important fundamental properties of
an ADL are given.

Theorem 2.1. [8] For any a, b, c ∈ L, we have the following

(1) a ∨ b = a ⇔ a ∧ b = b
(2) a ∨ b = b ⇔ a ∧ b = a
(3) a ∧ b = b ∧ a = a whenever a 6 b
(4) ∧ is associative in L
(5) a ∧ b ∧ c = b ∧ a ∧ c
(6) (a ∨ b) ∧ c = (b ∨ a) ∧ c
(7) a ∧ b 6 b and a 6 a ∨ b
(8) a ∧ a = a and a ∨ a = a
(9) a ∧ 0 = 0 and 0 ∨ a = a
(10) if a 6 c and b 6 c, then a ∧ b = b ∧ a and a ∨ b = b ∨ a.

Definition 2.3. [8] A non-empty subset F of an ADL L is said to be an filter
of L if it satisfies the following:

(1) a, b ∈ F ⇒ a ∧ b ∈ F
(2) a ∈ F, x ∈ L ⇒ x ∨ a ∈ F

Theorem 2.2. [8] The set F (L) of all filters of L forms a distributive lattice
under set inclusion, in which the g.l.d and l.u.b of any filters F and G of L are
given respectively by F ∧G = F

∩
G and F ∨G = {x ∧ y/ x ∈ F and y ∈ G}
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Definition 2.4. [10] An equivalence relation θ on an ADL is called a congru-
ence relation on L if (a ∧ c, b ∧ d) ∈ θ and (a ∨ c, b ∨ d) ∈ θ for all (a, b), (c, d) ∈ θ

Theorem 2.3. (Con(L),⊆) is a lattice in which for any θ1, θ2 ∈ Con(L), the
g.l.b and l.u.b are respectively given by θ1 ∧ θ2 = θ1 ∩ θ2 and
θ1 ∨ θ2 = {(x, y) / there exists a finite sequence of elements
x = z0, z1, ..., zn−1 = y ∈ L such that (zi, zi+1) ∈ θ1 ∪ θ2 for each 0 6 i 6 n− 2}

Definition 2.5. [9] Let L be an ADL with maximal elements. Then the set
C(L) = {a ∈ L / there exists b ∈ L ∋ a ∧ b = 0 and a ∨ b is maximal} is called
Birkhoff centre of L.

Theorem 2.4. [9] Let L be an ADL with maximal elements. Then C(L) is a
relatively complemented ADL under operations induced by those of L.

Definition 2.6. [4] Let (L,∨,∧, 0,m) be an ADL with a maximal element
m. Suppose → is a binary operation on L satisfying the following conditions for
all x, y, z ∈ L.

(1) x → x = m
(2) (x → y) ∧ y = y
(3) x ∧ (x → y) = x ∧ y ∧m
(4) x → (y ∧ z) = (x → y) ∧ (x → z)
(5) (x ∨ y) → z = (x → z) ∧ (y → z)

Then (L,∨,∧,→, 0,m) is called a Heyting Almost Distributive lattice (HADL).

Definition 2.7. [7] An algebra (L,∨,∧,→, 0, 1) of type (2, 2, 2, 0, 0) is called
a Semi Heyting algebra if it satisfies the following:

(1) (L,∨,∧, 0, 1) is a lattice with 0, 1
(2) x ∧ (x → y) = x ∧ y
(3) x ∧ (y → z) = x ∧ (x ∧ y → x ∧ z)
(4) x → x = 1 for all x, y, z ∈ L

Theorem 2.5. [6] Let (L,∨,∧,→, 0,m) be an SHADL. For x ∈ L, define
x∗ = (x → 0) ∧m. Then ∗ is a pseudocomplementation on L.

3. Smart Congruences

We begin with the following definition of SHADL given in [5].

Definition 3.1. [5] Let (L,∨,∧, 0,m) be an ADL with a maximal element m.
Suppose there exists a binary operation → on L satisfying the following conditions:

(1) (x → x) ∧m = m
(2) x ∧ (x → y) = x ∧ y ∧m
(3) x ∧ (y → z) = x ∧ (x ∧ y → x ∧ z)
(4) (x → y) ∧m = x ∧m → y ∧m for all x, y, z ∈ L

Then (L,∨,∧,→, 0,m) is a Semi Heyting ADL (SHADL).
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In the rest of this section L denotes a SHADL and F (L) denotes the
lattice of filters of L.
The following theorem which is taken from [5] will be used frequently in this paper.

Theorem 3.1. [5] For any a, b, c, d, x ∈ L we have the following

(1) m → a = a ∧m
(2) a ∧ b ∧m 6 a → b
(3) (a → b) ∧m 6 (a → a ∧ b) ∧m
(4) a ∧m 6 [a → (b → a ∧ b)] ∧m
(5) (a → b) ∧ c = (a ∧ c → b ∧ c) ∧ c
(6) [(a ∧ b) → (c ∧ d)] ∧ x = [(b ∧ a) → (d ∧ c)] ∧ x
(7) a ∧m 6 [(a → b) → b] ∧m.

In this Section we define smart congruence and prove that the Smart
Congruences on SHADL are determined by Filters.

Definition 3.2. A Congruence θ on an ADL L is called a Smart Congruence
if (x ∧m, y ∧m) ∈ θ ⇒ (x, y) ∈ θ.

We denote the set of all Smart Congruences on L by Con0(L) and we
can clearly observe that Con0(L) is a sublattice of Con(L) and also Con0(L) is
distributive.

Definition 3.3. Let F ∈ F (L). Define a binary relation θ(F ) on L by
(x, y) ∈ θ(F ) iff x ∧ f = y ∧ f for some f ∈ F

Lemma 3.1. θ(F ) ∈ Con0(L) and m/θ(F ) = F.

Proof. Assume that L is a SHADL.
Clearly θ(F ) is reflexive and symmetric.
Let x, y, z ∈ L such that (x, y) ∈ θ(F ) ⇒ x ∧ f1 = y ∧ f1 for some f1 ∈ F
(y, z) ∈ θ(F ) ⇒ y ∧ f2 = z ∧ f2 for some f2 ∈ F
Then x∧f1∧f2 = y∧f1∧f2 = f1∧y∧f2 = f1∧z∧f2 = z∧f1∧f2 and f1∧f2 ∈ F
and hence (x, z) ∈ θ(F )
Therefore θ(F ) is transitive. Thus θ(F ) is an equivalence relation.
Now, let (x, y) ∈ θ(F ), (r, t) ∈ θ(F ). Then x ∧ f1 = y ∧ f1 and r ∧ f2 = t ∧ f2 for
some f1, f2 ∈ F .
Now, f1 ∧ f2 ∈ F and x ∧ r ∧ f1 ∧ f2 = r ∧ x ∧ f1 ∧ f2 = r ∧ y ∧ f1 ∧ f2
= y ∧ f1 ∧ r ∧ f2 = y ∧ f1 ∧ t ∧ f2 = y ∧ t ∧ f1 ∧ f2.
Thus (x ∧ r, y ∧ t) ∈ θ(F ).
Now, (x ∨ r) ∧ f1 ∧ f2 = (x ∧ f1 ∧ f2) ∨ (r ∧ f1 ∧ f2) = (y ∧ f1 ∧ f2) ∨ (t ∧ f1 ∧ f2)
= (y ∨ t) ∧ f1 ∧ f2 and hence (x ∨ r, y ∨ t) ∈ θ(F ).
Now, (x → r)∧f1∧f2 = f1∧f2∧(x → r)∧f2 = f1∧f2∧(f1∧f2∧x → f1∧f2∧r)∧f2
= f1 ∧ f2 ∧ (x∧ f1 ∧ f2 → r∧ f1 ∧ f2)∧ f2 = f1 ∧ f2 ∧ (y∧ f1 ∧ f2 → t∧ f1 ∧ f2)∧ f2
= f1∧f2∧ (f1∧f2∧y → f1∧f2∧ t)∧f2 = f1∧f2∧ (y → t)∧f2 = (y → t)∧f1∧f2.
Thus (x → r, y → t) ∈ θ(F ). Therefore θ(F ) ∈ Con(L).
Now, if (x ∧m, y ∧m) ∈ θ(F ) ⇒ (x, y) ∈ θ(F ). Therefore θ(F ) ∈ Con0(L).
Now we prove that m/θ(F ) = F
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Let x ∈ m/θ(F ). Then (x,m) ∈ θ(F ). So that x ∧ f = m ∧ f for some f ∈ F .
That is x ∧ f = f and hence x ∨ f = x. Thus x ∈ F
On the other hand, if x ∈ F, then x ∧ x = m ∧ x and hence x ∈ m/θ(F ).
Therefore m/θ(F ) = F �

Lemma 3.2. If F ∈ F (L) and a, b ∈ L, then (a, b) ∈ θ(F ) iff
(a → b) ∧ (b → a) ∧m ∈ F.

Proof. Let (a ∧m, b ∧m) ∈ θ(F ). Then
(a ∧m → b ∧m, b ∧m → b ∧m) ∈ θ(F )
⇒ ((a → b) ∧m, (b → b) ∧m) ∈ θ(F )
⇒ ((a → b) ∧m,m) ∈ θ(F ). Similarly, ((b → a) ∧m,m) ∈ θ(F ).
Therefore ((a → b) ∧ (b → a) ∧m,m) ∈ θ(F )
⇒ (a → b) ∧ (b → a) ∧m ∈ m/θ(F ) = F .
Thus (a → b) ∧ (b → a) ∧m ∈ F.
Conversely, suppose (a → b) ∧ (b → a) ∧m ∈ F
⇒ (a → b) ∧ (b → a) ∧m ∈ m/θ(F )
⇒ ((a → b) ∧ (b → a) ∧m,m) ∈ θ(F )
⇒ (a ∧ (a → b) ∧ (b → a) ∧m, a ∧m) ∈ θ(F )
⇒ (a ∧ b ∧ (b → a) ∧m, a ∧m) ∈ θ(F )
⇒ (a ∧ b ∧m, a ∧m) ∈ θ(F ). Similarly, we get (a ∧ b ∧m, b ∧m) ∈ θ(F ).
Hence (a ∧m, b ∧m) ∈ θ(F ) ⇒ (a, b) ∈ θ(F ). �

Theorem 3.2. Con0(L) ∼= F (L).

Proof. Let α : Con0(L) → F (L) defined by α(θ) = m/θ
It is enough if we show that α is onto and θ1 ⊆ θ2 ⇐⇒ α(θ1) ⊆ α(θ2)
Let F ∈ F (L). Then θ(F ) = {(x, y) ∈ L× L/x ∧ f = y ∧ f for somef ∈ F}.
So that θ(F ) ∈ Con0(L) and α(θ(F )) = m/θ(F ) = F. Thus α is onto.
Let θ1, θ2 ∈ Con0(L). Suppose α(θ1) ⊆ α(θ2) and (x, y) ∈ θ1.
Then (x ∧m, y ∧m) ∈ θ1 ⇒ (x ∧m → y ∧m, y ∧m → y ∧m) ∈ θ1
⇒ ((x → y) ∧m, (y → y) ∧m) ∈ θ1
⇒ ((x → y) ∧m,m) ∈ θ1
⇒ (x → y) ∧m ∈ m/θ1 ⊆ m/θ2
⇒ ((x → y) ∧m,m) ∈ θ2
⇒ (x ∧ (x → y) ∧m,x ∧m) ∈ θ2
⇒ (x ∧ y ∧m,x ∧m) ∈ θ2.
Similarly, (x ∧ y ∧m, y ∧m) ∈ θ2.
Thus (x ∧m, y ∧m) ∈ θ2. Since θ2 ∈ Con0(L), we get (x, y) ∈ θ2.
Thus θ1 ⊆ θ2. It can be routinely verified that θ1 ⊆ θ2 ⇒ α(θ1) ⊆ α(θ2).
Therefore Con0(L) ∼= F (L.) �

Before going to the next theorem we need the following.

Lemma 3.3. Let L be a SHADL and b, c ∈ L. Then
[(c → c) → b] ∧ [(b → c) → c] ∧ (c ∨ b) ∧m = b ∧m.
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Proof. Let b, c ∈ L. Then [(c → c) → b] ∧ [(b → c) → c] ∧ (c ∨ b) ∧m
= [m → b] ∧ [(b → c) → c] ∧ (c ∨ b) ∧m = b ∧m ∧ [(b → c) → c] ∧ (c ∨ b) ∧m
= b ∧ (c ∨ b) ∧m = b ∧m �

Theorem 3.3. Con0(L) is a permutable sublattice of Con(L).

Proof. Let θ1, θ2 ∈ Con0(L) and (a, b) ∈ θ1 o θ2. Then there exists c ∈ L
such that (a, c) ∈ θ1 and (c, b) ∈ θ2.
Since (a, c) ∈ θ1, we get (c, a) ∈ θ1. From this we get that the paries
((c → c) → b, (a → c) → b), ((b → c) → c, (b → c) → a) and
((c ∨ b) ∧m, (a ∨ b) ∧m) belong to θ1.
Hence (((c → c) → b) ∧ ((b → c) → c) ∧ (c ∨ b) ∧m, ((a → c) → b)
∧ ((b → c) → a) ∧ (a ∨ b) ∧m) ∈ θ1.
Thus by above Lemma, we get that
(b ∧m, ((a → c) → b) ∧ ((b → c) → a) ∧ (a ∨ b) ∧m) ∈ θ1.
That is (b, ((a → c) → b) ∧ ((b → c) → a) ∧ (a ∨ b)) ∈ θ1.
Similarly, since (c, b) ∈ θ2, we get
(((a → c) → b) ∧ ((b → c) → a) ∧ (a ∨ b), a) ∈ θ2.
Hence (b, a) ∈ θ1 o θ2 or (a, b) ∈ θ2 o θ1.
Therefore θ1 o θ2 ⊆ θ2 o θ1. By, symmetry we also get that θ2 o θ1 ⊆ θ1 o θ2.
Thus θ1 o θ2 = θ2 o θ1. Therefore Con0(L) is congruence permutable. �

In the following theorem we give a set of conditions for Con0(L) to be congru-
ence permutable when L is an ADL.

Theorem 3.4. Let L = (L,∨,∧,m) be an ADL with a maximal element and
→ be a binary operation such that the following conditions hold:

(1) m → x = x ∧m
(2) x ∧m 6 ((x → y) → y) ∧m
(3) (x → y) ∧m = x ∧m → y ∧m.

Then Con0(L) is permutable.

Proof. From (2), we have x ∧ [(x → y) → y] ∧m = x ∧m.
Taking m in place of x, we get m ∧ [(m → y) → y] ∧m = m
⇒ [(m → y) → y] ∧m = m
⇒ [y ∧m → y] ∧m = m
⇒ (y → y) ∧m = m.
Hence, from the above theorem, it follows that Con0(L) is congruence permutable.

�

4. Weakly Directly Indecomposable SHADLs

In this section we define and characterize weakly directly indecom-
posable Semi Heyting ADLs. Throughout this section L stands for a SHADL. We
denote the center of L by C(L). Recall that C(L) is a relatively complemented
ADL. We begin with the following definition.

Definition 4.1. Let T (L) = {a ∈ L/a = 0 or a is a maximal element of L}.
Then T (L) is a sub ADL of C(L).
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Let L be a SHADL and for a ∈ L, write La = ([ 0, a ∧ m],∨,∧,→a

0, a∧m) where c →a d = (c → d)∧a∧m for c, d ∈ [0, a∧m]. Then we have proved
in [6] that La is a Semi Heyting algebra .

Lemma 4.1. Let L be an SHADL and a ∈ L. If L = La then a is a maximal
element in L.

Now, we prove the following.

Lemma 4.2. Let a ∈ L. Then the function fa : L → La defined by
fa(x) = x ∧ a ∧m is a homomorphism onto La.

Proof. Define fa : L → La by fa(x) = x ∧ a ∧m. Clearly we can verify that
fa(x ∧ y) = fa(x) ∧ fa(y), fa(x ∨ y) = fa(x) ∨ fa(y), for x, y ∈ L.
Now, consider fa(x → y) = (x → y) ∧ a ∧m = (x ∧ a ∧m → y ∧ a ∧m) ∧ a ∧m
= x ∧ a ∧m →a y ∧ a ∧m = fa(x) →a fa(y).
Therefore fa is a homomorphism and clearly fa is onto. �

Definition 4.2. Let L and L′ be two SHADLs. A homomorphism f : L → L′

is said to be weak isomorphism if f is onto and f(x) = f(y) ⇒ x ∧m = y ∧m

Definition 4.3. An algebra A is said to be weakly directly indecomposable if
it is not weak isomorphic to the direct product of two non-trivial algebras of same
type as A.

Lemma 4.3. Let L and L′ be two SHADLs. If ϕ : L → L′ is a weak isomor-
phism, then t is maximal in L iff ϕ(t) is maximal in L′.

Proof. Suppose t is maximal in L. Let y ∈ L′, then y = ϕ(x) for some x ∈ L.
Then, ϕ(t) ∧ y = ϕ(t) ∧ ϕ(x) = ϕ(t ∧ x) = ϕ(x) = y
Therefore ϕ(t) is maximal in L′.
Conversely, suppose that ϕ(t) is maximal in L′.
Let x ∈ L, then ϕ(x) ∈ L′. Now, ϕ(t) ∧ ϕ(x) = ϕ(x)
⇒ ϕ(t ∧ x) = ϕ(x) ⇒ t ∧ x ∧m = x ∧m ⇒ t ∧ x ∧m ∧ x = x ∧m ∧ x ⇒ t ∧ x = x
Therefore t is maximal in L �

Theorem 4.1. Let L be an SHADL. Then the following are equivalent:

(1) L is weakly directly indecomposable.
(2) C(L) = T (L)
(3) (a∨a∗)∧m < m for all elements a ∈ L−T (L). Where a∗ = (a → 0)∧m.

Proof. (1) ⇒ (2) :
Suppose L is weakly directly indecomposable.
Let a ∈ C(L). Then there exists b ∈ L such that a ∧ b = 0, a ∨ b is a maximal
element of L. Define h : L → La ×Lb by h(x) = (fa(x), fb(x)). By Lemma 4.2, we
get that h is a homomorphism. Now, let (x, y) ∈ La × Lb.
Then x 6 a ∧m. So that x ∧ b 6 a ∧m ∧ b = a ∧ b = 0. Thus x ∧ b = 0. Similarly
y ∧ a = 0.
Now x ∨ y ∈ L and h(x ∨ y) = (fa(x ∨ y), fb(x ∨ y))
= ((x ∨ y) ∧ a ∧m, (x ∨ y) ∧ b ∧m)



44 G.C. RAO AND M.V.RATNAMANI

= ((x ∧ a ∧m) ∨ (y ∧ a ∧m), (x ∧ b ∧m) ∨ (y ∧ b ∧m))
= (x ∧ a ∧m, y ∧ b ∧m)
= (x, y).
Therefore h is a surjective homomorphism.
Finally, let x, y ∈ L and h(x) = h(y). Then (fa(x), fb(x)) = (fa(y), fb(y)).
So that x ∧ a ∧m = y ∧ a ∧m and x ∧ b ∧m = y ∧ b ∧m.
Since a ∨ b is a maximal element of L, we get that
x ∧m = (a ∨ b) ∧ x ∧m
= (a ∧ x ∧m) ∨ (b ∧ x ∧m)
= (x ∧ a ∧m) ∨ (x ∧ b ∧m)
= (y ∧ a ∧m) ∨ (y ∧ b ∧m)
= (a ∧ y ∧m) ∨ (b ∧ y ∧m)
= (a ∨ b) ∧ y ∧m
= y ∧m.
Therefore h is a weak isomorphism. Since L is weakly directly indecomposable, we
get that either La = L or Lb = L. Hence, we get that a is a maximal element of
L or b is a maximal element of L. Suppose b is a maximal element of L. Then
a ∧ b = 0 ⇒ b ∧ a = 0 ⇒ a = 0.
Thus a = 0 or a is a maximal element of L. Thus a ∈ T (L).
Hence C(L) = T (L).
(2) ⇒ (3) :
Suppose C(L) = T (L). Suppose a ∈ L − T (L). Clearly a ∧ a∗ = 0. Suppose
(a ∨ a∗) ∧m = m. Then, for any x ∈ L,
(a ∨ a∗) ∧ x = (a ∨ a∗) ∧m ∧ x
= m ∧ x
= x and
hence a ∨ a∗ is a maximal element of L. So that a ∈ C(L) = T (L). This is a
contradiction. Therefore (a ∨ a∗) ∧m < m.
Finally, we prove (3) ⇒ (1) :
Assume (3). Suppose L is not weakly directly indecomposable. Then there exist
two non-trivial SHADLs L1 and L2 and a weak isomorphism ϕ : L → L1 ×L2. Let
m1 and m2 denote the maximal elements of L1 and L2. Choose a, b ∈ L such that
ϕ(a) = (0,m2) and ϕ(b) = (m1, 0). Now
ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b)
= (0,m2) ∧ (m1, 0)
= (0, 0) and hence a ∧ b = 0. Again,
ϕ(a ∨ b) = ϕ(a) ∨ ϕ(b)
= (0,m2) ∨ (m1, 0)
= (m1,m2), a maximal element in L1 × L2.
Therefore a ∨ b is a maximal element in L by Lemma 4.3. Thus a ∈ C(L).
If a = 0, then ϕ(a) = (0, 0). Thus m2 = 0. A contradiction since L2 is nontrivial.
If a is a maximal element of L, then b = a ∧ b = 0. Thus ϕ(b) = (0, 0). Hence
m1 = 0. Which is again a contradiction since L1 is nontrivial.
Therefore a ∈ L− T (L).
Now, a ∧ b = 0 ⇒ b ∧m 6 a∗ ∧m
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⇒ (a ∧m) ∨ (b ∧m) 6 (a ∧m) ∨ (a∗ ∧m)
⇒ (a ∨ b) ∧m 6 (a ∨ a∗) ∧m
⇒ m 6 (a ∨ a∗) ∧m
⇒ (a ∨ a∗) ∧m = m.
This is a contradiction since a ∈ L − T (L). Therefore L is weakly directly inde-
composable. �
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