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Nonexistence of positive solutions for a system of
higher-order nonlinear boundary value problems

Sabbavarapu Nageswara Rao

Abstract. We determine intervals for two eigenvalues for which there exists
no positive solution of a system of nonlinear higher-order ordinary differential
equations

(−1)mu(2m) = λf(t, u(t), v(t)) = 0, t ∈ [a, b],

(−1)nv(2n) = µg(t, u(t), v(t)) = 0, t ∈ [a, b],

subject to the two-point boundary conditions

u(2i)(a) = u(2i)(b) = 0, 0 6 i 6 m− 1,

v(2j)(a) = v(2j)(b) = 0, 0 6 j 6 n− 1,

where λ, µ > 0, m, n ∈N.

1. Introduction

Boundary value problem (BVPs) play a major role in many fields of engineer-
ing design and manufacturing. Major established industries such as automobile,
aerospace, chemical, pharmaceutical, petroleum, electronics and communications,
as well as emerging technologies such as nanotechnology and biotechnology rely on
the BVPs to simulate complex phenomena at different scales for design and man-
ufactures of high-technology products. In these applied settings, positive solutions
are meaningful [1, 5]. Due to their important role in both theory and applications,
the BVPs have generated a great deal of interest in recent years.

In the last decades, nonlocal boundary value problems for ordinary differential
or difference equations\system have become a rapidly growing area of research.
Several phenomena in engineering, physics, and life sciences can be modelled in
this way. These problems have been studied by many authors by using different
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methods, such as fixed point theorems in cones, the Leray-Schauder continuation
theorem, nonlinear alternatives of Leray-Schauder and coincidence degree theory.

In this paper, we consider the system of nonlinear higher-order ordinary differ-
ential equations

(1.1)
(−1)mu(2m) = λf(t, u(t), v(t)) = 0, t ∈ [a, b],

(−1)nv(2n) = µg(t, u(t), v(t)) = 0, t ∈ [a, b],

satisfying the two-point boundary conditions

(1.2)
u(2i)(a) = u(2i)(b) = 0, 0 6 i 6 m− 1,

v(2j)(a) = v(2j)(b) = 0, 0 6 j 6 n− 1,

where λ, µ > 0, m, n ∈ N.
The aim of this paper, we establish intervals for the eigenvalues λ and µ such

that there exists no positive solutions of problem (1.1)-(1.2). By a positive solution
of (1.1)-(1.2) we mean a pair of function (u, v) ∈ Cm([a, b]) × Cn([a, b]) satisfying
(1.1) and (1.2) with u(t) > 0, v(t) > 0 for all t ∈ [a, b] and (u, v) ̸= (0.0). The exis-
tence of positive solutions for the above problem was investigated in [24] by using
the Guo-Krasnosel’skii fixed point theorem. Some particular cases of the problem
from [24] have been studied in [9, 11, 18, 22, 23].

The following assumptions are made to establish our results:
(A1) The functions f, g ∈ C[[a, b]× [0,∞)× [0,∞), [0,∞)],
(A2) The limits

fs
0 = lim

u+v→0+
sup

t→[a,b]

f(t, u, v)

u+ v
, gs0 = lim

u+v→0+
sup

t→[a,b]

g(t, u, v)

u+ v
,

f i
0 = lim

u+v→0+
inf

t→[a,b]

f(t, u, v)

u+ v
, gi0 = lim

u+v→0+
inf

t→[a,b]

g(t, u, v)

u+ v
,

fs
∞ = lim

u+v→∞
sup

t→[a,b]

f(t, u, v)

u+ v
, gs∞ = lim

u+v→∞
sup

t→[a,b]

g(t, u, v)

u+ v
,

f i
∞ = lim

u+v→∞
inf

t→[a,b]

f(t, u, v)

u+ v
, gi∞ = lim

u+v→∞
inf

t→[a,b]

g(t, u, v)

u+ v
,

exist.

The rest of the paper is organized as follows. In Section 2, we present some
preliminaries and lemmas that will be used to prove our main results. In Section
3, we will consider the conditions of the nonexistence of a positive solution.

2. Preliminary results

In this section, we present some notations and lemmas that will be to prove
our results. Here we consider the Banach space C[a, b]×C[a, b] equipped with the
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standard norm

∥ (u, v) ∥=∥ u ∥ + ∥ v ∥= max
t∈[a,b]

| u(t) | + max
t∈[a,b]

| v(t) |, (u, v) ∈ C[a, b]× C[a, b].

Let Gn(t, s) be the Green’s function of a homogeneous boundary value problem:

(−1)nw(2n)(t) = 0, t ∈ [a, b]

w(2i)(a) = w(2i)(b) = 0, 0 6 i 6 n− 1.

By induction, the Green’s function Gn(t, s) can be expressed as (see [1])

(2.1) Gi(t, s) =

∫ b

a

G(t, u)Gi−1(u, s)du, 2 6 i 6 n,

where

(2.2) G1(t, s) = G(t, s) =

{
(t−a)(b−s)

b−a , a 6 t 6 s 6 b,
(s−a)(b−t)

b−a , a 6 s 6 t 6 b.

It is clear that

(2.3) Gn(t, s) > 0, (t, s) ∈ (a, b)× (a, b).

Lemma 2.1. [23] For any (t, s) ∈ [a, b]× [a, b],

(2.4) Gn(t, s) 6
(b− a

6

)n−1 (s− a)(b− s)

b− a
.

Proof. For (t, s) ∈ [a, b]× [a, b], it is clear from (2.2) that

(2.5) G(t, s) 6 (s− a)(b− s)

b− a
.

i.e (2.4) is true for n = 1. Assume that (2.4) holds for n = k(k > 1). Then, for
(t, s) ∈ [a, b]× [a, b], it follows from (2.1), (2.3) and (2.5) that

Gk+1(t, s) =

∫ b

a

G(t, u)Gk(u, s)du

6
∫ b

a

(u− a)(b− u)

b− a

(b− a

6

)k−1 (s− a)(b− s)

b− a
du

=
(b− a

6

)k (s− a)(b− s)

b− a
.

Thus (2.4) is true for n = k + 1. �

Lemma 2.2. Let δ ∈ (a, a+b
2 ), then for all (t, s) ∈ [δ, b− δ]× [a, b], we have

(2.6) Gn(t, s) > θn(δ)
(s− a)(b− s)

b− a
>
( 6

b− a

)n−1

θn(δ) max
t∈[a,b]

Gn(t, s),

where 0 < θn(δ) < 1 is a constant given by

θn(δ) = (δ − a)n

(
4δ3 − 6bδ2 + 6abδ − 3ab2 + b3

6(b− a)

)n−1



16 S. N. RAO

Proof. For (t, s) ∈ [δ, b− δ]× [a, b], from (2.2) we find

(2.7)

G(t, s) =

{
(t−a)(b−s)

b−a , t 6 s
(s−a)(b−t)

b−a , s 6 t

>
{

(δ−a)(b−s)
b−a , t 6 s

(s−a)(b−(b−δ))
b−a , s 6 t

> (δ − a)(s− a)(b− s)

b− a
.

Hence (2.6) is true for n = 1. Suppose now that (2.6) holds for n = k(k > 1). Then,
using (2.1), (2.3) and (2.7), we get for (t, s) ∈ [δ, b− δ]× [a, b]

Gk+1(t, s) =

∫ b

a

G(t, u)Gk(u, s)du

>
∫ b−δ

b

G(t, u)Gk(u, s)du

>
∫ b−δ

δ

(δ − a)(u− a)(b− u)

b− a
θk(δ)

(s− a)(b− s)

b− a
du

= θk+1(δ)
(s− a)(b− s)

b− a
.

So, (2.6) is true for n = k + 1.
In Lemma 2.2, let

γm =
( 6

b− a

)m−1

θm

(3a+ b

4

)
=

(
11b3 + 27a3 − 51ab2 + 45a2b

)m−1

26m−4(b− a)m−2
,

γm =
( 6

b− a

)n−1

θn

(3a+ b

4

)
=

(
11b3 + 27a3 − 51ab2 + 45a2b

)n−1

26n−4(b− a)n−2
,

γ = min{γm, γn}.

According to Lemma 2.1 and Lemma 2.2, one obviously has 0 < γ < 1.

It is well know that the system (1.1)-(1.2) is equivalent to the equation
u(t) = λ

∫ b

a
Gm(t, s)f(s, u(s), v(s))ds, a 6 t 6 b,

v(t) = µ
∫ b

a
Gn(t, s)g(s, u(s), v(s))ds, a 6 t 6 b.

For λ, µ > 0, we define the operators Qλ, Qµ : C[a, b]× C[a, b] → C[a, b] as

Qλ(u, v)(t) = λ

∫ b

a

Gm(t, s)f(s, u(s), v(s))ds, a 6 t 6 b,

Qµ(u, v)(t) = µ

∫ b

a

Gn(t, s)g(s, u(s), v(s))ds, a 6 t 6 b,
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and an operator Q : C[a, b]× C[a, b] → C[a, b]× C[a, b] as

(2.8) Q(u, v) =
(
Qλ(u, v), Qµ(u, v)

)
, (u, v) ∈ C[a, b]× C[a, b].

It is clear that the existence of a positive solution to the system (1.1)-(1.2) is
equivalent to the existence of a fixed point of Q in C[a, b]× C[a, b].

We define a cone κ in C[a, b]× C[a, b] by

κ =
{
(u, v) : C[a, b]× C[a, b] : u(t) > 0, v(t) > 0,

min
t∈ [ 3a+b

4 , a+3b
4 ]

(u(t) + v(t)) > γ ∥ (u, v) ∥
}
.

�

Lemma 2.3. Q : κ → κ is completely continuous.

Proof. Since the proof of the completely continuous is standard, we need only
to prove Q(κ) = κ.

In fact, for any (t, s) ∈ [ 3a+b
4 , a+3b

4 ]× [a, b], we have

Qλ(u, v)(t) +Qµ(u, v)(t)

= λ

∫ b

a

Gm(t, s)f(s, u(s), v(s))ds+ µ

∫ b

a

Gn(t, s)g(s, u(s), v(s))ds

> λθm

(3a+ b

4

)( 6

b− a

)m−1

max
t∈[a,b]

∫ b

a

Gm(t, s)f(s, u(s), v(s))ds

+ µθn

(3a+ b

4

)( 6

b− a

)n−1

max
t∈[a,b]

∫ b

a

Gn(t, s)g(s, u(s), v(s))ds

= γm ∥ Qλ(u, v) ∥ +γn ∥ Qµ(u, v) ∥> γ ∥ Q(u, v) ∥,
hence,

min
t∈[ 3a+b

4 , a+3b
4 ]

[Qλ(u, v)(t) +Qµ(u, v)(t)] > γ ∥ Q(u, v) ∥ .

Therefore, Q(κ) ⊂ κ. �

3. Main Results

In this section, we give some sufficient conditions for the nonexistence of positive
solution to the BVP (1.1)-(1.2).

Theorem 3.1. Assume that (A1) − (A2) hold. If fs
0 , f

s
∞, gs0, g

s
∞ < ∞, then

there exists positive constants λ0, µ0 such that for every λ ∈ (0, λ0) and µ ∈ (0, µ0),
the boundary value problem (1.1)-(1.2) has no positive solution.

Proof. Since fs
0 , f

s
∞ < ∞, we deduce that there exist M

′

1,M
′′

1 , r1, r
′

1 > 0, r1 <

r
′

1 such that

f(t, u, v) 6 M
′

1(u+ v), ∀ u, v > 0, u+ v ∈ [0, r1]

f(t, u, v) 6 M
′′

1 (u+ v), ∀ u, v > 0, u+ v ∈ [r
′

1,∞).
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We consider M1 = max
{
M

′

1,M
′′

1 ,maxr16u+v6r
′
1

f(t,u,v)
u+v

}
> 0. Then, we obtain

f(t, u, v) 6 M1(u + v), ∀ u, v > 0. Since gs0, g
s
∞ < ∞, we deduce that there exist

M
′

2,M
′′

2 , r2, r
′

2 > 0, r2 < r
′

2 such that

g(t, u, v) 6 M
′

2(u+ v), ∀ u, v > 0, u+ v ∈ [0, r2]

g(t, u, v) 6 M
′′

2 (u+ v), ∀ u, v > 0, u+ v ∈ [r
′

2,∞).

We consider M2 = max
{
M

′

2,M
′′

2 ,maxr26u+v6r
′
2

g(t,u,v)
u+v

}
> 0. Then, we obtain

g(t, u, v) 6 M2(u+ v), ∀ u, v > 0. We define λ0 = 1
2M1B

and µ0 = 1
2M2D

, where

B =

(
b− a

6

)m−1 ∫ b

a

(s− a)(b− s)

b− a
ds and

D =

(
b− a

6

)n−1 ∫ b

a

(s− a)(b− s)

b− a
ds.

We shall show that for every λ ∈ (0, λ0) and µ ∈ (0, µ0), the problem (1.1)-(1.2)
has no positive solution.

Let λ ∈ (0, λ0) and µ ∈ (0, µ0). We suppose that (1.1)-(1.2) has a positive
solution (u(t), v(t)), t ∈ [a, b]. Then, we have

u(t) = Qλ(u, v)(t) = λ

∫ b

a

Gm(t, s)f(s, u(s), v(s))ds

6 λ
(b− a

6

)m−1
∫ b

a

(s− a)(b− s)

b− a
f(s, u(s), v(s))ds

6 λ
(b− a

6

)m−1
∫ b

a

(s− a)(b− s)

b− a
M1(u(s) + v(s))ds

6 λM1

(b− a

6

)m−1
∫ b

a

(s− a)(b− s)

b− a
(∥ u ∥ + ∥ v ∥)ds

= λM1B ∥ (u, v) ∥, ∀ t ∈ [a, b].

Therefore, we conclude

∥ u ∥6 λM1B ∥ (u, v) ∥< λ0M1B ∥ (u, v) ∥= 1

2
∥ (u, v) ∥ .
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In a similar manner,

v(t) = Qµ(u, v)(t) = µ

∫ b

a

Gn(t, s)f(s, u(s), v(s))ds

6 µ
(b− a

6

)n−1
∫ b

a

(s− a)(b− s)

b− a
f(s, u(s), v(s))ds

6 µ
(b− a

6

)n−1
∫ b

a

(s− a)(b− s)

b− a
M2(u(s) + v(s))ds

6 µM2

(b− a

6

)n−1
∫ b

a

(s− a)(b− s)

b− a
(∥ u ∥ + ∥ v ∥)ds

= µM2D ∥ (u, v) ∥, ∀ t ∈ [a, b].

Therefore, we conclude

∥ v ∥6 µM2D ∥ (u, v) ∥< µ0M2D ∥ (u, v) ∥= 1

2
∥ (u, v) ∥ .

Hence, ∥ (u, v) ∥=∥ u ∥ + ∥ v ∥< 1
2 ∥ (u, v) ∥ +1

2 ∥ (u, v) ∥=∥ (u, v) ∥, which
is a contradiction. So, the boundary value problem (1.1)-(1.2) has no positive
solution. �

Theorem 3.2. Assume that (A1)− (A2) hold.

(i) If f i
0, f

i
∞ > 0, then there exists a positive constant λ̃0 such that for every λ > λ̃0

and µ > 0, the boundary value problem (1.1)-(1.2) has no positive solution.
(ii) If gi0, g

i
∞ > 0, then there exists a positive constant µ̃0 such that for every µ > µ̃0

and λ > 0, the boundary value problem (1.1)-(1.2) has no positive solution.

(iii)If f i
0, f

i
∞, gi0, g

i
∞ > 0, then there exist positive constants

˜̃
λ0 and ˜̃µ0 such that for

every λ >
˜̃
λ0 and µ > ˜̃µ0, the boundary value problem (1.1)-(1.2) has no positive

solution.

Proof. (i) Since f i
0, f

i
∞ > 0, we deduce that there exist m

′

1,m
′′

1 , r3, r
′

3 >

0, r3 < r
′

3 such that

f(t, u, v) > m1
1(u+ v), ∀ u, v > 0, u+ v ∈ [0, r3]

f(t, u, v) > m11
1 (u+ v), ∀ u, v > 0, u+ v ∈ [r

′

3,∞).

We introduce m1 = min
{
m

′

1,m
′′

1 ,minr36u+v6r
′
3

f(t,u,v)
u+v

}
> 0. Then, we obtain

f(t, u, v) > m1(u+ v), ∀ u, v > 0. We define λ̃0 = 1
γm1A

> 0, where

A =
11b3 − 11a3 + 33a2b− 33ab2

96(b− a)
θm

(3a+ b

4

)
.

We shall show that for every λ > λ̃0 and µ > 0 the problem (1.1)-(1.2) has no
positive solution.



20 S. N. RAO

Let λ > λ̃0 and µ > 0. We suppose that (1.1)-(1.2) has a positive solution
(u(t), v(t)), t ∈ [a, b]. Then, we obtain

u(t) = Qλ(u, v)(t) = λ

∫ b

a

Gm(t, s)f(s, u(s), v(s))ds

> λθm

(3a+ b

4

)∫ a+3b
4

3a+b
4

(s− a)(b− s)

b− a
f(s, u(s), v(s))ds

> λθm

(3a+ b

4

)∫ a+3b
4

3a+b
4

(s− a)(b− s)

b− a
m1(u(s) + v(s))ds

> λm1θm

(3a+ b

4

)∫ a+3b
4

3a+b
4

(s− a)(b− s)

b− a
γ ∥ (u, v) ∥ ds

=
11b3 − 11a3 + 33a2b− 33ab2

96(b− a)
θm

(3a+ b

4

)
λγm1 ∥ (u, v) ∥

= λγm1A ∥ (u, v) ∥ .

Therefore, we deduce

∥ u ∥> u(t) > λγm1A ∥ (u, v) ∥> λ̃0γm1A ∥ (u, v) ∥=∥ (u, v) ∥ .

and so,∥ (u, v) ∥=∥ u ∥ + ∥ v ∥>∥ u ∥>∥ (u, v) ∥, which is a contradiction. There-
fore, the boundary value problem (1.1)-(1.2) has no positive solution.

(ii) Since gi0, g
i
∞ > 0, we deduce that there exist m

′

2,m
′′

2 , r4, r
′

4 > 0, r4 < r
′

4

such that

g(t, u, v) > m
′

2(u+ v), ∀ u, v > 0, u+ v ∈ [0, r4]

g(t, u, v) > m
′′

2 (u+ v), ∀ u, v > 0, u+ v ∈ [r
′

4,∞).

We introduce m2 = min
{
m

′

2,m
′′

2 ,minr46u+v6r
′
4

g(t,u,v)
u+v

}
> 0. Then, we obtain

g(t, u, v) > m2(u+ v), ∀ u, v > 0. We define µ̃0 = 1
γm2C

> 0, where

C =
11b3 − 11a3 + 33a2b− 33ab2

96(b− a)
θn

(3a+ b

4

)
.

We shall show that for every µ > µ̃0 and λ > 0 the problem (1.1)-(1.2) has no
positive solution.
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Let µ > µ̃0 and λ > 0. We suppose that (1.1)-(1.2) has a positive solution
(u(t), v(t)), t ∈ [a, b]. Then, we obtain

v(t) = Qµ(u, v)(t) = µ

∫ b

a

Gn(t, s)g(s, u(s), v(s))ds

> µθn

(3a+ b

4

)∫ a+3b
4

3a+b
4

(s− a)(b− s)

b− a
g(s, u(s), v(s))ds

> µθn

(3a+ b

4

)∫ a+3b
4

3a+b
4

(s− a)(b− s)

b− a
m2(u(s) + v(s))ds

> µm2θn

(3a+ b

4

)∫ a+3b
4

3a+b
4

(s− a)(b− s)

b− a
γ ∥ (u, v) ∥ ds

=
11b3 − 11a3 + 33a2b− 33ab2

96(b− a)
θn

(3a+ b

4

)
µγm2 ∥ (u, v) ∥

= µγm2C ∥ (u, v) ∥ .

Therefore, we deduce

∥ v ∥> v(t) > µγm2C ∥ (u, v) ∥> µ̃0γm2C ∥ (u, v) ∥=∥ (u, v) ∥ .

and so,∥ (u, v) ∥=∥ u ∥ + ∥ v ∥>∥ v ∥>∥ (u, v) ∥, which is a contradiction. There-
fore, the boundary value problem (1.1)-(1.2) has no positive solution.

(iii) Because f i
0, f

i
∞, gi0, g

i
∞ > 0, we deduce as above, that there exist m1,m2 >

0 such that

f(t, u, v) > m1(u+ v), g(t, u, v) > m2(u+ v), ∀ u, v > 0.

We define

˜̃
λ0 =

1

2γm1A

(
=

λ̃0

2

)
and ˜̃µ0 =

1

2γm2C

(
=

µ̃0

2

)
.

Then for every λ >
˜̃
λ0 and µ > ˜̃µ0, the problem (1.1)-(1.2) has no positive solution.

Indeed, let λ >
˜̃
λ0 and µ > ˜̃µ0. We suppose that (1.1)-(1.2) has a positive

solution (u(t), v(t)), t ∈ [a, b]. Then in a similar manner as above, we deduce

∥ u ∥> λγm1A ∥ (u, v) ∥, ∥ v ∥> µγm2C ∥ (u, v) ∥,
and so,

∥ (u, v) ∥ =∥ u ∥ + ∥ v ∥
> λγm1A ∥ (u, v) ∥ +µγm2C ∥ (u, v) ∥

>
˜̃
λ0γm1A ∥ (u, v) ∥ + ˜̃µ0γm2C ∥ (u, v) ∥

=
1

2
∥ (u, v) ∥ +

1

2
∥ (u, v) ∥=∥ (u, v) ∥

which is a contradiction. Therefore, the boundary value problem (1.1)-(1.2) has no
positive solution. �
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