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POLYNOMIALS SHARING A SMALL FUNCTION WITH FINITE

WEIGHT
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Abstract. We investigate the uniqueness of meromorphic functions when cer-
tain types of non-linear differential polynomial as introduced in [19] sharing a
small function with finite weight. The results of the paper improve, extend,

unify and generalize a number of recent results.

1. Introduction, Definitions and Results

In this paper by meromorphic functions we will always mean meromorphic func-
tions in the complex plane.

Let f and g be two non-constant meromorphic functions and let a be a finite
complex number. We say that f and g share a CM, provided that f − a and g − a
have the same zeros with the same multiplicities. Similarly, we say that f and g
share a IM, provided that f−a and g−a have the same zeros ignoring multiplicities.
In addition we say that f and g share ∞ CM, if 1/f and 1/g share 0 CM, and we
say that f and g share ∞ IM, if 1/f and 1/g share 0 IM.

Let m be a positive integer or infinity and a ∈ C∪{∞}. We denote by Em)(a; f)
the set of all a-points of f with multiplicities not exceeding m, where an a-point
is counted according to its multiplicity. Also we denote by Em)(a; f) the set of
distinct a-points of f(z) with multiplicities not greater than m. If α is a small
function we define that Em)(α, f) = Em)(α, g) (Em)(α, f) = Em)(α, g)) which

means Em)(0, f − α) = Em)(0, g − α) (Em)(0, f − α) = Em)(0, g − α)).
We adopt the standard notations of value distribution theory (see [6]). We

denote by T (r) the maximum of T (r, f) and T (r, g). The notation S(r) denotes
any quantity satisfying S(r) = o(T (r)) as r −→ ∞, outside of a possible exceptional
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166 A. BANERJEE AND S. DHAR

set of finite linear measure.
Throughout this paper, we need the following definition.

Θ(a, f) = 1− lim sup
r−→∞

N(r, a; f)

T (r, f)
,

where a is a value in the extended complex plane.
In 1997, Yang and Hua [20] made some important breakthrough by obtaining

some relationship between two meromorphic functions related to value sharing of
some specific type of non-linear differential polynomials namely differential mono-
mials. Below we are stating their result.

Theorem A. [20] Let f and g be two non-constant meromorphic functions, n ≥ 11
be a positive integer and a ∈ C − {0}. If fnf ′ and gng′ share a CM, then either
f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying

(c1c2)
n+1c2 = −1 or f ≡ tg for a constant t such that tn+1 = 1.

Further progresses in the direction of the above theorem are remarkable. Spe-
cially the introduction of the new notion of scaling between CM and IM, known as
weighted sharing of values by I. Lahiri {[7]-[8]} in 2001 influences the investigations
to a large extent. The veracity of the statement can easily be verified if one goes
through the references {see [1]-[4], [10]-[14], [16]}.

Below we are giving the definition of weighted sharing.

Definition 1. [7, 8] Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞}
we denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity
m is counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g),
we say that f , g share the value a with weight k.

The definition implies that if f , g share a value a with weight k then z0 is an
a-point of f with multiplicity m (≤ k) if and only if it is an a-point of g with
multiplicity m (≤ k) and z0 is an a-point of f with multiplicity m (> k) if and only
if it is an a-point of g with multiplicity n (> k), where m is not necessarily equal
to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k), then f , g share (a, p) for any integer p, 0 ≤ p < k.
Also we note that f , g share a value a IM or CM if and only if f , g share (a, 0)
or (a,∞) respectively. If α is a small function we define that f and g share (α, l)
which means f and g share α with weight l if f − α and g − α share (0, l).

In 2004, Lin and Yi [15] further improved the result of Fang and Hong [5] in the
following manner.

Theorem B. [15] Let f and g be two non-constant meromorphic functions satis-

fying Θ(∞, f) > 2
(n+1) , n(≥ 12) an integer. If fn(f − 1)f

′
and gn(g − 1)g

′
share

(1,∞), then f ≡ g.

Theorem C. [15] Let f and g be two non-constant meromorphic functions and

n(≥ 13) be an integer. If fn(f − 1)2f
′
and gn(g − 1)2g

′
share (1,∞), then f ≡ g.

In 2005, Xiong, Lin and Mori [19] considered the following slightly different type
of non-linear differential polynomial than that was considered earlier. Suppose h is
a non-constant meromorphic function and ψ1(h) = hn+1(gm + a) + α, where a is
a constant and α ̸≡ 0,∞ is a small function. Xiong, Lin and Mori [19] proved the
following theorem.
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Theorem D. [19] Let f and g be two transcendental meromorphic functions. Let
m, n, k are positive integers such that (k − 1)n > 14 + 3m + k(10 + m) and

Ek)(0, ψ
′

1(f)) = Ek)(0, ψ
′

1(g)), then
(i) if m ≥ 2, then f(z) = g(z);
(ii) if m = 1, then either f(z) ≡= g(z), or f and g satisfy the algebraic equation
R(f, g) ≡ 0, where R(ω1, ω2) = (n+ 1)(ωn+2

1 − ωn+2
2 )− (n+ 2)(ωn+1

1 − ωn+1
2 ).

In 2007, Shen-Li [18] improved and supplemented Theorem D. In 2008, C. Meng
[17], improved and supplemented Theorem D by the notion of weighted sharing.
Meng obtained the following results.

Theorem E. [17] Let f and g be two transcendental meromorphic functions. Let

ψ
′

1(f) and ψ
′

1(g) share (0, l). If

(i) l = 2 and n > m+ 10; or if
(ii) l = 1 and n > 3m

2 + 12; or if
(iii) l = 0 and n > 4m+ 22,

then the conclusion of Theorem D holds.

Throughout the paper we define two non-zero polynomials P1(z) and P (z) as
follows:

P1(z) =
am

n+m+ 1
zm +

am−1

n+m
zm−1 + . . .+

a0
n+ 1

, (1.1)

and

P (z) = amz
m + am−1z

m−1 + . . .+ a1z + a0, (1.2)

where m ≥ 1 is an integer and a0, a1,. . . , am are complex constants.
If P (z) is non-constant and am ̸= 0, a0 ̸= 0, let t be the number of distinct roots

of the equation P (z) = 0. We define s by

s =
4m

t
− (m− 1). (1.3)

Clearly t ≤ m.
Next we recall the following result of Zhang-Chen-Lin [22] as it has some rele-

vance with the above discussion.

Theorem F. [22] Let f and g be two non-constant meromorphic functions. Let n
and m be two positive integers such that n > max{m+10, 3m+3} and P (z) be such

that a0(̸= 0), a1, ... , am(̸= 0) are complex constants. If fnP (f)f
′
and gnP (g)g

′

share (1,∞) then either f(z) = tg(z) for a constant t such that td = 1, where d =
gcd(n+m+1, ..., n+m+1− i, ..., n+1), am−i ̸= 0 for some i ∈ {0, 1, 2, ...,m} or f

and g satisfy the algebraic equation R(f, g) ≡ 0, where R(ω1, ω2) = ωn+1
1 (

amωm
1

n+m+1 +
am−1ω

m−1
1

n+m + . . .+ a0

n+1 )− ωn+1
2 (

amωm
2

n+m+1 +
am−1ω

m−1
2

n+m + . . .+ a0

n+1 ).

In 2011, Zhang-Xu [23] generalisedTheorem F for small functions. In this paper
we will obtain a single result which will unify, improve, extend and generalize all
the results stated so far.

Let m∗ be a non non-negative integer defined as follows:

m∗ =

{
m, if am ̸= 0
0, if a0 ̸= 0 and ai = 0, 1 ≤ i ≤ m .
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For a non-constant meromorphic function h we define ψ(h) as

ψ(h) = [hn+1{ am
n+m+ 1

hm +
am−1

n+m
hm−1 + . . .+

a0
n+ 1

}] + α

Theorem 1. Let f and g be two non-constant meromorphic functions, and α(z)( ̸≡
0,∞) be a small function with respect to f and g. Also we suppose that ψ

′
(f) and

ψ
′
(g) share (0, 2), where n > max{m∗ + 10, s}, is an integer. Then the following

conclusions hold.

(I) When am ̸= 0, a0 ̸= 0 and at least one of am−i, i = 1, 2, . . . ,m−1 ̸= 0 then
one of the following two conditions holds:
(I1) f(z) ≡ tg(z) for a constant t such that td = 1, where d = gcd(n +

m + 1, n +m, . . . , n +m + 1 − i, . . . , n + 1), am−i ̸= 0 for some i =
0, 1, 2, . . . ,m;

(I2) f and g satisfy the algebraic equation R(f, g) ≡ 0, where R(ω1, ω2) =
ωn+1
1 (amω

m
1 + am−1ω

m−1
1 + . . . + a0) − ωn+1

2 (amω
m
2 + am−1ω

m−1
2 +

. . .+ a0)

(II) When am ̸= 0, a0 ̸= 0 and all of am−i’s, i = 1, 2, . . . ,m− 1 are zero then
(II1) if m = 1, Θ(∞, f) + Θ(∞, g) > 4/(n+ 1); or
(II2) if m ≥ 2

we have for some constant t, satisfying td ≡ 1, f ≡ tg, where d =
gcd(m,n+ 1).

(III) When | am | + | a0 |̸= 0, but | am | . | a0 |= 0 and all of am−i’s,
i = 1, 2, . . . ,m− 1 are zero then one of the following two conditions holds:

(III1) f(z) ≡ tg(z) where t is a constant satisfying tn+m∗+1 = 1.

(III2) a2m∗ [fn+m∗+1]
′
[gn+m∗+1]

′ ≡ α2. In particular when α(z) = d =
constant, we get f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are

constants satisfying
a2m∗(c1c2)

n+m∗+1((n+m∗ + 1)c)2 = −d2.

Theorem 2. Let f and g be two non-constant meromorphic functions, and α(z)( ̸≡
0,∞) be a small function with respect to f and g. Also we suppose that ψ

′
(f) and

ψ
′
(g) share (0, l), where n > max{m∗ + 10, s}, is an integer. Then the following

conclusions hold. If

(a) l = 1 and n > max{ 3m∗

2 + 12, s};
(b) l = 0 and n > max{4m∗ + 22, s},

then the conclusions of Theorem 1 holds.

We now explain following definitions and notations which are used in the paper.

Definition 2. [12] Let p be a positive integer and a ∈ C ∪ {∞}.
(i) N(r, a; f |≥ p) (N(r, a; f |≥ p))denotes the counting function (reduced

counting function) of those a-points of f whose multiplicities are not less
than p.

(ii) N(r, a; f |≤ p) (N(r, a; f |≤ p))denotes the counting function (reduced
counting function) of those a-points of f whose multiplicities are not greater
than p.
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Definition 3. {11, cf.[21]} For a ∈ C ∪ {∞} and a positive integer p we denote
by Np(r, a; f) the sum N(r, a; f) + N(r, a; f |≥ 2) + . . . N(r, a; f |≥ p). Clearly

N1(r, a; f) = N(r, a; f).

2. Lemmas

Let F and G be two non-constant meromorphic functions defined in C. We
denote by H the function as follows:

H =

(
F ′′

F ′ − 2F ′

F − 1

)
−

(
G′′

G′ − 2G′

G− 1

)
. (2.1)

Lemma 1. [12] Let f be a non-constant meromorphic function and let an(z)( ̸≡ 0),
an−1(z), ... , a0(z) be meromorphic functions such that T (r, ai(z)) = S(r, f) for
i = 0, 1, 2, ..., n. Then

T (r, anf
n + an−1f

n−1 + ...+ a1f + a0) = nT (r, f) + S(r, f).

Lemma 2. [24] Let f be a non-constant meromorphic function, and p, k be positive
integers. Then

Np

(
r, 0; f (k)

)
≤ T

(
r, f (k)

)
− T (r, f) +Np+k(r, 0; f) + S(r, f), (2.2)

Np

(
r, 0; f (k)

)
≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f). (2.3)

Lemma 3. [9] If N(r, 0; f (k) | f ̸= 0) denotes the counting function of those zeros
of f (k) which are not the zeros of f , where a zero of f (k) is counted according to its
multiplicity then

N(r, 0; f (k) | f ̸= 0) ≤ kN(r,∞; f) +N(r, 0; f |< k) + kN(r, 0; f |≥ k) + S(r, f).

Lemma 4. [20] Let f and g be two non-constant meromorphic functions, n ≥ 6 be

an integer. If fnf
′
gng

′
= 1 then f(z) = c1e

cz, g(z) = c2e
−cz where c, c1 and c2

are constants satisfying (c1c2)
n+1c2 = −1.

Lemma 5. Let f , g be two non-constant meromorphic functions and n be a positive
integer such that n > 6. If a2m∗(fn+m∗+1)

′
(gn+m∗+1)

′ ≡ d2, then f = c1e
cz,

g = c2e
−cz, where c1, c2 and c are constants such that a2m∗(c1c2)

n+m∗+1((n+m∗+
1)c)2 = −d2.

Proof. From the given condition we can write

fn+m∗
f ′gn+m∗

g′ ≡
(

d

am∗(n+m∗ + 1)2

)2

= k2, (2.4)

where k = d/(am∗(n + m∗ + 1)2). We put f1 = f

k
1

n+m∗+1
, g1 = g

k
1

n+m∗+1
. Then

(2.4) reduces to

fn+m∗

1 f
′

1g
n+m∗

1 g
′

1 = 1.

Using Lemma 4 we have f = c1e
cz, g = c2e

−cz, where c1, c2 and c are constants
such that a2m∗(c1c2)

n+m∗+1((n+m∗ + 1)c)2 = −d2. �
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Lemma 6. [8] If F , G share (1, 2) then one of the following cases holds.

(i) max{ T (r, F ), T (r,G)} ≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)

+S(r, F ) + S(r,G)

(ii) F ≡ G
(iii) FG ≡ 1.

Lemma 7. [1] Let F , G be two non-constant meromorphic functions such that they
share (1, 1) and H ̸≡ 0. Then

T (r, F ) ≤ N2(r, 0;F ) +N2(r,∞;F ) +N2(r, 0;G) +N2(r,∞;G)

+
1

2
N(r, 0;F ) +

1

2
N(r,∞;F ) + S(r, F ) + S(r,G).

Lemma 8. [1] Let F , G be two non-constant meromorphic functions such that they
share (1, 0) and H ̸≡ 0. Then

T (r, F ) ≤ N2(r, 0;F ) +N2(r,∞;F ) +N2(r, 0;G) +N2(r,∞;G) + 2N(r, 0;F )

+2N(r,∞;F ) +N(r, 0;G) +N(r,∞;G) + S(r, F ) + S(r,G).

Lemma 9. Let f , g be two non-constant meromorphic functions and F = [fn+1P1(f)]
′

−α ,

G = [gn+1P1(g)]
′

−α , where α(z)(̸≡ 0,∞) be a small function with respect to f and g,

n is a positive integer such that n > m∗ + 5. If H ≡ 0 then either [fn+1P1(f)]
′ ≡

[gn+1P1(g)]
′
or [fn+1P1(f)]

′
[gn+1P1(g)]

′ ≡ α2.

Proof. Since H ≡ 0, on integration we get

1

F − 1
≡ bG+ a− b

G− 1
, (2.5)

where a, b are constants and a ̸= 0. We now consider the following cases.
Case 1. Let b ̸= 0 and a ̸= b.
If b = −1, then from (2.5) we have

F ≡ −a
G− a− 1

.

Therefore
N(r, a+ 1;G) = N(r,∞;F ) = N(r,∞; f).

So in view of Lemma 2 and the second fundamental theorem we get

(n+m∗ + 1) T (r, g)

≤ T (r,G) +N2(r, 0; g
n+1P1(g))−N(r, 0;G)

≤ N(r,∞;G) +N(r, 0;G) +N(r, a+ 1;G) +N2(r, 0; g
n+1P (g))

− N(r, 0;G) + S(r, g)

≤ N(r,∞; g) +N2(r, 0; g
n+1P (g)) +N(r,∞; f) + S(r, g)

≤ T (r, f) + (m∗ + 3) T (r, g) + S(r, f) + S(r, g).

Without loss of generality, we suppose that there exists a set I with infinite measure
such that T (r, f) ≤ T (r, g) for r ∈ I.
So for r ∈ I we have

(n− 3) T (r, g) ≤ S(r, g),
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which is a contradiction.
If b ̸= −1, from (2.5) we obtain that

F − (1 +
1

b
) ≡ −a

b2[G+ a−b
b ]

.

So

N(r,
(b− a)

b
;G) = N(r,∞;F ) = N(r,∞; f).

Using Lemma 2 and by the same argument as used in the case when b = −1 we
can get a contradiction.
Case 2. Let b ̸= 0 and a = b.
If b = −1, then from (2.5) we have

FG ≡ α2,

that is
[fn+1P1(f)]

′
[gn+1P1(g)]

′
≡ α2.

If b ̸= −1, from (2.5) we have

1

F
≡ bG

(1 + b)G− 1
.

Therefore

N(r,
1

1 + b
;G) = N(r, 0;F ).

So in view of Lemma 2 and the second fundamental theorem we get

(n+m∗ + 1) T (r, g)

≤ T (r,G) +N2(r, 0; g
n+1P1(g))−N(r, 0;G) + S(r, g)

≤ N(r,∞;G) +N(r, 0;G) +N(r,
1

1 + b
;G) +N2(r, 0; g

n+1P1(g))

− N(r, 0;G) + S(r, g)

≤ (m∗ + 3)T (r, g) +N(r, 0;F ) + S(r, g)

≤ N(r,∞; f) + 2N(r, 0; f) + (m∗ + 3)T (r, g)

≤ (m∗ + 3){T (r, g) + T (r, f)}+ S(r, f) + S(r, g).

So for r ∈ I we have

{n−m∗ − 5} T (r, g) ≤ S(r, g),

which is a contradiction since n > m∗ + 5.
Case 3. Let b = 0. From (2.5) we obtain

F ≡ G+ a− 1

a
. (2.6)

If a ̸= 1 then from (2.6) we obtain

N(r, 1− a;G) = N(r, 0;F ).

We can similarly deduce a contradiction as in Case 2. Therefore a = 1 and from
(2.6) we obtain

F ≡ G.

i.e.,

[fn+1P1(f)]
′
≡ [gn+1P1(g)]

′
.
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�

Lemma 10. Let f and g be two non-constant meromorphic functions and α(z)( ̸≡
0,∞) be a small function of f and g. Let n be a positive integer such that n > s,
where s be defined by (1.3). Suppose that P (z) ̸= aiz

i, for i = 1, 2, . . . ,m be a
non-constant polynomial. Then

fnP (f)f
′
gnP (g)g

′
̸≡ α2,

Proof. First suppose that

fnP (f)f
′
gnP (g)g

′
≡ α2(z). (2.7)

Let di be the distinct zeros of P (z) = 0 with multiplicity pi, where i = 1, 2, . . . , t,

1 ≤ t ≤ m and
t∑

i=1

pi = m.

Now by the second fundamental theorem for f and g we get respectively

t2T (r, f) ≤ N(r, 0; f) +N(r,∞; f) +
t∑

i=1

N(r, di; f)−N0(r, 0; f
′
) + S(r, f), (2.8)

and

tT (r, g) ≤ N(r, 0; g) +N(r,∞; g) +
t∑

i=1

N(r, di; g)−N(r, 0; g
′
) + S(r, g), (2.9)

where N(r, 0; f
′
) denotes the reduced counting function of those zeros of f

′
which

are not the zeros f and f−di, i = 1, 2, . . . , t and N(r, 0; g
′
) can be similarly defined.

Let z0 be a zero of f with multiplicity p but α(z0) ̸= 0,∞. Clearly z0 must be a
pole of g with multiplicity q. Then from (2.7) we get np+ p− 1 = nq+mq+ q+1.
This gives

mq + 2 = (n+ 1)(p− q). (2.10)

From (2.10) we get p− q ≥ 1 and so q ≥ n−1
m . Now np+ p− 1 = nq +mq + q + 1

gives
p ≥ n+m−1

m . Thus we have

N(r, 0; f) ≤ m

n+m− 1
N(r, 0; f) ≤ m

n+m− 1
T (r, f). (2.11)

Let z1(α(z1) ̸= 0,∞) be a zero of f − di with multiplicity qi, i = 1, 2, . . . , t. Then
z1 must be a pole of g with multiplicity r(≥ 1). So from (2.7) we get qipi+ qi−1 =
(n+m+ 1)r + 1 ≥ n+m+ 2. This gives qi ≥ n+m+2

pi+1 for i = 1, 2, . . . , t and so we
get

N(r, di; f) ≤
pi + 1

n+m+ 3
N(r, di; f) ≤

pi + 1

n+m+ 3
T (r, f).

Clearly
t∑

i=1

N(r, di; f) ≤
m+ t

n+m+ 3
T (r, f). (2.12)

Similarly we have

N(r, 0; g) ≤ m

n+m− 1
T (r, g), (2.13)
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and
t∑

i=1

N(r, di; g) ≤
m+ t

n+m+ 3
T (r, g). (2.14)

Also it is clear from (2.13) and (2.14) that

N(r,∞; f) (2.15)

≤ N(r, 0; g) +
t∑

i=1

N(r, di; g) +N0(r, 0; g
′
) + S(r, f) + S(r, g)

≤
(

m

n+m− 1
+

m+ t

n+m+ 3

)
T (r, g) +N0(r, 0; g

′
) + S(r, f) + S(r, g).

Then by (2.8), (2.11), (2.12) and (2.15) we get

t T (r, f) (2.16)

≤
(

m

n+m− 1
+

m+ t

n+m+ 3

)
{T (r, f) + T (r, g)}+N0(r, 0; g

′
)

−N0(r, 0; f
′
) + S(r, f) + S(r, g).

Similarly we have

t T (r, g) (2.17)

≤
(

m

n+m− 1
+

m+ t

n+m+ 3

)
{T (r, f) + T (r, g)}+N0(r, 0; f

′
)

−N0(r, 0; g
′
) + S(r, f) + S(r, g).

So from (2.16) and (2.17) we get

t{T (r, f) + T (r, g)}

≤ 2

(
m

n+m− 1
+

m+ t

n+m+ 3

)
{T (r, f) + T (r, g)}+ S(r, f) + S(r, g),

i.e.,(
t− 2m

n+m− 1
− 2(m+ t)

n+m+ 3

)
{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g). (2.18)

Since (
t− 2m

n+m− 1
− 2(m+ t)

n+m+ 3

)
=

(n+m− 1)2t+ 2(n+m− 1)(t− 2m)− 8m

(n+m− 1)(n+m+ 3)
,

we note that when n+m− 1 > 4m
t , i.e., when n > 4m

t − (m− 1) = s, then clearly

t− 2m
n+m−1 −

2(m+t)
n+m+3 > 0 and so (2.18) leads to a contradiction. This completes the

proof. �

Lemma 11. Let f and g be two non-constant meromorphic (entire) functions and
n(≥ 2), m(≥ 1) be two distinct integers satisfying n+m ≥ d+ 6 (n+m ≥ d+ 2).
Then for two constants λ, µ, with |λ|+ |µ| ̸= 0,

fn+1 (µfm + λ) ≡ gn+1 (µgm + λ)
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implies the following.
(i) if λµ ̸= 0 and
(a) m = 1, Θ(∞, f) + Θ(∞, g) > 4/n+ 1;
or (b) m ≥ 2 and for some constant t, satisfying td ≡ 1,
we have f ≡ tg, where d = (m,n+ 1).
(ii) if λµ = 0, then f = tg, where t is a constant satisfying tn+m∗+1 = 1.

Proof. Let m = 1. In this case noting that d = 1 = (n + 2, n + 1), proceeding in
the same way as done in Lemma 6 of [10] we can show when Θ(∞, f) +Θ(∞, g) >
4/(n+ 1), we have f ≡ g.

Next suppose m ≥ 2. Let f ̸≡ tg for a constant t satisfying td = 1. We put
h = f

g . Then h
d ̸≡ 1, i.e., (h−v0)(h−v1) . . . (h−vd−1) ̸≡ 0, where vk = exp

(
2kπi
d

)
,

k = 0, 1, 2, . . . , d−1. First suppose that h is constant. Now from the given condition
we have

µgm( hn+m+1 − 1) ≡ −λ(hn+1 − 1).

Since gcd(n + 1,m) = d, it follows that gcd(n +m + 1, n + 1) = d. Eliminating d
common factors namely h− vk, k = 0, 1, . . . , d− 1 from both sides we are left with

agm(h− α1)(h− α2) . . . (h− αn+m+1−d) ≡ (h− β1)(h− β2) . . . (h− βn+1−d),

where αi and βj are those zeros of hn+m+1 − 1 and hn+1 − 1 which are not the
zeros of hd − 1, i = 1, 2, . . . , n+m+1− d and j = 1, 2, . . . , n+1− d. Also we note
that none of the αi’s coincides with βj ’s. So if h = αi or βj , then we have either
(h−β1)(h−β2) . . . (h−βn−d) ≡ 0 or g ≡ 0 and in both case we get contradictions.
So we assume neither hn+m+1 ≡ 1 nor hn+1 ≡ 1. Hence we may write

gm = − λ

µ

hn+1 − 1

hn+m+1 − 1
. (2.19)

It follows from above that g is a constant, which is impossible. So h is non-constant.
We observe that since a non-constant meromorphic function can not have more
than two Picard exceptional values h can take at least n+m− d− 1 values among

uj = exp
(

2jπi
n+m+1

)
, where j = 0, 1, 2, . . . , n+m. Since fm has no simple pole h−uj

has no simple zero for at least n+m− d− 1 values of uj , for j = 0, 1, 2, . . . , n+m
and for these values of j we have Θ(uj ;h) ≥ 1

2 , which leads to a contradiction.

Therefore hd ≡ 1. i.e., f ≡ tg for a constant t satisfying td = 1, where d =
gcd(n + 1,m). Subcase 2.2: Let λµ = 0 but |λ| + |µ| ̸= 0. Then from the given
condition we get fn+m∗+1 ≡ gn+m∗+1 and so f ≡ tg, where t is a constant satisfying
tn+m∗+1 = 1. �

3. Proofs of the Theorems

Proof of Theorem 1. Since

ψ(f) = [fn+1{ am
n+m+ 1

fm +
am−1

n+m
fm−1 + . . .+

a0
n+ 1

}] + α = fn+1P1(f) + α

and

ψ(g) = [gn+1{ am
n+m+ 1

gm +
am−1

n+m
gm−1 + . . .+

a0
n+ 1

}] + α = gn+1P1(g) + α.

We have

ψ
′
(f) = fn[amf

m + am−1f
m−1 + . . .+ a0]f

′
+ α

′
= fnP (f)f

′
+ α

′
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and

ψ
′
(g) = gn[amg

m + am−1g
m−1 + . . .+ a0]g

′
+ α

′
= gnP (g)g

′
+ α

′
.

Let

F1 = fn+1

{
am

n+m+ 1
fm +

am−1

n+m
fm−1 + . . .+

a0
n+ 1

}
= fn+1P1(f),

G1 = gn+1

{
am

n+m+ 1
gm +

am−1

n+m
gm−1 + . . .+

a0
n+ 1

}
= gn+1P1(g),

F =
fn[amf

m + am−1f
m−1 + . . .+ a0]f

′

−α′ =
fnP (f)f

′

−α′ =
(fn+1P1(f))

′

−α′

and

G =
gn[amg

m + am−1g
m−1 + . . .+ a0]g

′

−α′ =
gnP (g)g

′

−α′ =
(gn+1P1(g))

′

−α′ .

Then it follows that F and G share (1, 2), except the zeros and poles of α
′
. Also

F
′

1 = −α′
F and G

′

1 = −α′
G. First suppose that case (i) of Lemma 6 holds. Then

from Lemmas 1 and 2 we get

(n+m∗ + 1)T (r, f) (3.1)

≤ T (r, F
′

1) +N3(r, 0;F1)−N2(r, 0;F
′

1) + S(r, f)

≤ T (r, F ) +N3(r, 0;F1)−N2(r, 0;F ) + S(r, f)

≤ 2N(r,∞, f) + 2N(r,∞; g) +N2(r, 0;G) +N3(r, 0;F1) + S(r, f) + S(r, g)

≤ 2N(r,∞; f) + 3N(r,∞; g) +N3(r, 0; f
n+1P1(f)) +N3(r, 0; g

n+1P1(g))

+S(r, f) + S(r, g)

≤ 2N(r,∞; f) + 3N(r,∞; g) + 3{N(r, 0; f) +N(r, 0; g)}+m∗{T (r, f) + T (r, g)}
+S(r, f) + S(r, g)

≤ (2m∗ + 11)T (r) + S(r).

In a similar way we can obtain

(n+m∗ + 1) T (r, g) ≤ (2m∗ + 11) T (r) + S(r). (3.2)

Combining (3.1) and (3.2) we see that

(n−m∗ − 10) T (r) ≤ S(r). (3.3)

Clearly (3.3) leads to a contradiction.

Again from Lemma 10 we see that when P (z) is a non-constant polynomial with
am ̸= 0 and a0 ̸= 0, case (iii) of Lemma 6 does not hold . If | am |+| a0 |≠ 0 but
| am |. | a0 |= 0 and all am−i, i = 1, 2, . . . ,m− 1 are zero from case (iii) of Lemma
6 we get

a2m∗(fn+m∗+1)
′
(gn+m∗+1)

′
≡ α2.

In particular, if α = d = constant, the conclusion of the theorem follows form
Lemma 5.

So we must have F ≡ G. i.e., (fn+1P1(f))
′ ≡ (gn+1P1(g))

′
. Integrating, we

obtain

fn+1P1(f) ≡ gn+1P1(g) + c.
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If possible suppose c ̸= 0.
Now using the second fundamental theorem we get

(n+m∗ + 1)T (r, f)

≤ N(r, 0; fn+1P1(f)) +N(r,∞; fn+1P1(f)) +N(r, c0; f
n+1P1(f))

≤ N(r, 0; f) +m∗T (r, f) +N(r,∞; f) +N(r, 0; gn+1P1(g))

≤ (m∗ + 2) T (r, f) +N(r, 0; g) +m∗T (r, g) + S(r, f)

≤ (m∗ + 2) T (r, f) + (m∗ + 1) T (r, g) + S(r, f) + S(r, g)

≤ {2m∗ + 3} T (r) + S(r).

Similarly we get

(n+m∗ + 1) T (r, g) ≤ {2m∗ + 3} T (r) + S(r).

Combining these we get

(n−m∗ − 2) T (r) ≤ S(r),

which is a contradiction since n > m∗ + 2.
Therefore c = 0 and so

fn+1P1(f) ≡ gn+1P1(g).

i.e.,

am
n+m+ 1

fn+m+1 +
am−1

n+m
fn+m + . . .+

a0
n+ 1

fn+1 ≡
am

n+m+ 1
gn+m+1 +

am−1

n+m
gn+m + . . .+

a0
n+ 1

gn+1.

If am−i = 0, for i = 1, 2, . . .m − 1, then since P (z) is a non-zero polynomial, it
follows that | am |+| a0 |≠ 0. If | am |. | a0 |≠ 0, the conclusion of the theorem
follows from Lemma 11 (i) otherwise it follows from Lemma 11 (ii). Let at least

one of am−i ̸= 0, for i = 1, 2, . . .m − 1. Suppose h = f
g . If h is a constant, by

putting f = hg in the above expression we get

am
n+m+ 1

gm(hn+m+1 − 1) +
am−1

n+m
gm−1(hn+m − 1)

+. . . +
a1

n+ 2
g(hn+2 − 1) +

a0
n+ 1

(hn+1 − 1) ≡ 0,

which implies that hd = 1, where d = gcd(n+m+ 1, . . . , n+m+ 1− i, . . . , n+ 1),
am−i ̸= 0 for some i ∈ {0, 1, . . . ,m}. Thus f ≡ tg for a constant t such that
td = 1,where d = gcd(n+m+ 1, . . . , n+m+ 1− i, . . . , n+ 1), am−i ̸= 0 for some
i ∈ {0, 1, . . . ,m}.
If h is not constant then f and g satisfy the algebraic equation R(f, g) ≡ 0, where

R(ω1, ω2) = ωn+1
1 (

amωm
1

n+m+1 +
am−1ω

m−1
1

n+m + . . . + a0

n+1 ) − ωn+1
2 (

amωm
2

n+m+1 +
am−1ω

m−1
2

n+m +

. . .+ a0

n+1 ). �

Proof of Theorem 2. In this case by the same argument as used in Theorem 1
we have F and G share (1, 1), except the zeros and poles of α

′
.

First suppose H ̸≡ 0. While l = 1, from Lemmas 7, 1 and 2 we get from second
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fundamental theorem that either FG ≡ α2 or F ≡ G. The rest of the proof follows
from Theorem 1. So we omit the details.

(n+m∗ + 1)T (r, f) (3.4)

≤ 5

2
N(r,∞, f) + 2N(r,∞; g) +N2(r, 0;G) +N3(r, 0;F1) +

1

2
N(r, 0;F )

+S(r, f) + S(r, g)

≤ 3N(r,∞; f) + 3N(r,∞; g) +N3(r, 0; f
n+1P1(f)) +

1

2
N2(r, 0; f

n+1P1(f))

+N3(r, 0; g
n+1P1(g)) + S(r, f) + S(r, g)

≤ 3N(r,∞; f) + 3N(r,∞; g) + 4N(r, 0; f) + 3N(r, 0; g) +
3m∗

2
T (r, f) +m∗T (r, g)

+S(r, f) + S(r, g)

≤ (
5m∗

2
+ 13)T (r) + S(r).

In a similar way we can obtain

(n+m∗ + 1)T (r, g) ≤ (
5m∗

2
+ 13)T (r) + S(r). (3.5)

Combining (3.4) and (3.5) we see that

(n+m∗ + 1) T (r) ≤
(
5m∗

2
+ 13

)
T (r) + S(r),

i.e (
n− 3m∗

2
− 12

)
T (r) ≤ S(r). (3.6)

Since n > 3m∗

2 + 12, (3.6) leads to a contradiction.
While l = 0, from Lemmas 8, 1 and 2 we get from second fundamental theorem
that

(n+m∗ + 1)T (r, f) (3.7)

≤ 4N(r,∞, f) + 3N(r,∞; g) + 2N(r, 0;F ) +N3(r, 0; f
n+1P1(f))

+N2(r, 0;G) +N(r, 0;G) + S(r, f) + S(r, g)

≤ 6N(r,∞; f) + 5N(r,∞; g) + 7N(r, 0; f) + 5N(r, 0; g) + 3m∗T (r, f)

+2m∗T (r, g)}+ S(r, f) + S(r, g)

≤ (5m∗ + 23) T (r) + S(r).

In a similar way we can obtain

(n+m∗ + 1) T (r, g) ≤ (5m∗ + 23) T (r) + S(r). (3.8)

Combining (3.7) and (3.8) we see that

(n+m∗ + 1) T (r) ≤ (5m∗ + 23) T (r) + S(r)),

i.e.,

(n− 4m∗ − 22) T (r) ≤ S(r). (3.9)

Since n > 4m∗ + 22, (3.9) leads to a contradiction. Next suppose H ≡ 0. Then by
Lemma 9 and following the same procedure as adopted in the proof of Theorem 1
we can easily deduce the conclusions of the theorem. So we omit the details. �
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