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FURTHER RESULTS ON NON-LINEAR DIFFERENTIAL
POLYNOMIALS SHARING A SMALL FUNCTION WITH FINITE
WEIGHT

ABHIJIT BANERJEE* AND SANTANU DHAR

ABSTRACT. We investigate the uniqueness of meromorphic functions when cer-
tain types of non-linear differential polynomial as introduced in [19] sharing a
small function with finite weight. The results of the paper improve, extend,
unify and generalize a number of recent results.

1. INTRODUCTION, DEFINITIONS AND RESULTS

In this paper by meromorphic functions we will always mean meromorphic func-
tions in the complex plane.

Let f and g be two non-constant meromorphic functions and let a be a finite
complex number. We say that f and g share a CM, provided that f —a and g —a
have the same zeros with the same multiplicities. Similarly, we say that f and g
share a IM, provided that f —a and g—a have the same zeros ignoring multiplicities.
In addition we say that f and g share oo CM, if 1/f and 1/g share 0 CM, and we
say that f and g share oo IM, if 1/f and 1/g share 0 IM.

Let m be a positive integer or infinity and a € CU{oo}. We denote by E,,)(a; f)
the set of all a-points of f with multiplicities not exceeding m, where an a-point
is counted according to its multiplicity. Also we denote by Em)(a; f) the set of
distinct a-points of f(z) with multiplicities not greater than m. If « is a small
function we define that E,,)(a, f) = Euy(o,g) (Ep(o, f) = Epy(a,g)) which
means (0, f —a) = E£,,)(0,9 — a) (Enp)(0, f —a) = E,,)(0,9 — a)).

We adopt the standard notations of value distribution theory (see [6]). We
denote by T'(r) the maximum of T'(r, f) and T(r,g). The notation S(r) denotes
any quantity satisfying S(r) = o(T'(r)) as r — 00, outside of a possible exceptional
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166 A. BANERJEE AND S. DHAR

set of finite linear measure.
Throughout this paper, we need the following definition.

: N(r,a; f)
O(a, f) =1 lgn_flolop T )
where «a is a value in the extended complex plane.

In 1997, Yang and Hua [20] made some important breakthrough by obtaining
some relationship between two meromorphic functions related to value sharing of
some specific type of non-linear differential polynomials namely differential mono-
mials. Below we are stating their result.

Theorem A. [20] Let f and g be two non-constant meromorphic functions, n > 11
be a positive integer and a € C — {0}. If f"f' and g"g’ share a CM, then either
f(z) = c1e®®, g(z) = coe™ %%, where c¢1, ca and ¢ are three constants satisfying
(c1c0)"Tte? = —1 or f =tg for a constant t such that t" ™ = 1.

Further progresses in the direction of the above theorem are remarkable. Spe-
cially the introduction of the new notion of scaling between CM and IM, known as
weighted sharing of values by I. Lahiri {[7]-[8]} in 2001 influences the investigations
to a large extent. The veracity of the statement can easily be verified if one goes
through the references {see [1]-[4], [10]-[14], [16]}.

Below we are giving the definition of weighted sharing.

Definition 1. [7, 8] Let k be a nonnegative integer or infinity. For a € CU {oo}
we denote by Ey(a; f) the set of all a-points of f, where an a-point of multiplicity
m is counted m times if m < k and k + 1 times if m > k. If Ex(a; f) = Ex(a;g),
we say that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k£ then zg is an
a-point of f with multiplicity m (< k) if and only if it is an a-point of g with
multiplicity m (< k) and zg is an a-point of f with multiplicity m (> k) if and only
if it is an a-point of g with multiplicity n (> k), where m is not necessarily equal
to n.

We write f, g share (a, k) to mean that f, g share the value a with weight k.
Clearly if f, g share (a,k), then f, g share (a,p) for any integer p, 0 < p < k.
Also we note that f, g share a value a IM or CM if and only if f, g share (a,0)
or (a,00) respectively. If « is a small function we define that f and g share («, ()
which means f and g share o with weight [ if f — a and g — « share (0,1).

In 2004, Lin and Yi [15] further improved the result of Fang and Hong [5] in the
following manner.

Theorem B. [15] Let f and g be two non-constant meromorphic functions satis-
fying O(co, f) > (n2T1)’ n(> 12) an integer. If f*(f — 1)f' and g"(g — 1)g/ share
(1,00), then f=g.

Theorem C. [15] Let f and g be two non-constant meromorphic functions and
n(>13) be an integer. If f*(f —1)2f and g"(g — 1)%g" share (1,00), then f = g.

In 2005, Xiong, Lin and Mori [19] considered the following slightly different type
of non-linear differential polynomial than that was considered earlier. Suppose h is
a non-constant meromorphic function and v (h) = h"*1(¢g™ + a) + a, where a is
a constant and « Z 0,00 is a small function. Xiong, Lin and Mori [19] proved the
following theorem.
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Theorem D. [19] Let f and g be two transcendental meromorphic functions. Let
m, n, k are positive integers such that (k — 1)n > 14 + 3m + k(10 + m) and
By (0,9, (f)) = Eyy(0,4(g)), then

(i) if m > 2, then f(2) = g(2);

(i1) if m = 1, then either f(z) == g(z), or f and g satisfy the algebraic equation
R(f,g) =0, where R(wy,ws) = (n + 1)(w]? —wi™?) — (n + 2) (] —wi ™).

In 2007, Shen-Li [18] improved and supplemented Theorem D. In 2008, C. Meng
[17], improved and supplemented Theorem D by the notion of weighted sharing.
Meng obtained the following results.

Theorem E. [17] Let f and g be two transcendental meromorphic functions. Let
1 (f) and 11 (g) share (0,1). If
(i) 1=2 and n > m+ 10; or if
(i) =1 and n > 22 +12; or if
(iii) 1 =0 and n > 4m + 22,

then the conclusion of Theorem D holds.

Throughout the paper we define two non-zero polynomials P;(z) and P(z) as
follows:

A= e B B
and

P(2) = am2™ + 12"+ .+ a1z + ag, (1.2)
where m > 1 is an integer and ag, aq,..., a,, are complex constants.

If P(z) is non-constant and a,, # 0, ag # 0, let ¢ be the number of distinct roots
of the equation P(z) = 0. We define s by
4m

§=— (m—1). (1.3)

Clearly t < m.
Next we recall the following result of Zhang-Chen-Lin [22] as it has some rele-
vance with the above discussion.

Theorem F. [22] Let f and g be two non-constant meromorphic functions. Let n
and m be two positive integers such that n > max{m+10,3m+3} and P(z) be such
that ag(#£ 0), a1, ... , am(# 0) are complex constants. If f”P(f)f/ and g”P(g)g/
share (1,00) then either f(z) = tg(z) for a constant t such that t = 1, where d =
ged(n+m—+1,..,n+m+1—4i,..,n+1), am—; # 0 for somei € {0,1,2,....m} or f
and g satisfy the algebraic equation R(f,g) =0, where R(w1,ws) = w?“(% +

am_lwlnfl AWy + am—lw;nil + + ao )
n+m n+m-+1 n+m n+1/"°

+...+n‘:‘_’1)7w£‘+1(

In 2011, Zhang-Xu [23] generalised Theorem F for small functions. In this paper
we will obtain a single result which will unify, improve, extend and generalize all
the results stated so far.

Let m* be a non non-negative integer defined as follows:

. m, if a, #0
me= 0, if ag #0 and a; =0,1<i<m
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For a non-constant meromorphic function h we define 1(h) as

w(h) = A"

Um___pm o Gm=l pmet 90

n+m+1 n+m ' n+1}]+a

Theorem 1. Let f and g be two non-constant meromorphic functions, and «(z)(Z
0,00) be a small function with respect to f and g. Also we suppose that wl(f) and
Y (g) share (0,2), where n > max{m* + 10,s}, is an integer. Then the following
conclusions hold.

(I) When a,, # 0, ag # 0 and at least one of apm—i,i =1,2,....,m—1%#0 then

one of the following two conditions holds:
(I1) f(z) = tg(z) for a constant t such that t* = 1, where d = ged(n +
m+1ln+m,....n+m+1—14,...,n+1), am_; # 0 for some i =

0,1,2,...,m;

(12) f and g satisfy the algebraic equation R(f,g) =0, where R(wy,ws) =
Wl + 1w o+ ag) — W (a4 a W) T+
e —|— ao)

(I1) When an, #0, ag # 0 and all of apm—i’s, i =1,2,...,m — 1 are zero then
(1) if m =1, ©(co, f) + ©(00,9) > 4/(n +1); or
(I12) if m > 2
we have for some constant t, satisfying t* = 1, f = tg, where d =
ged(m,n +1).
(IIT) When | am | + | a0 |# 0, but | am | - | a0 |= 0 and all of am—;’s,
i=1,2,...,m—1 are zero then one of the following two conditions holds:

(IT11) f(2) = tg(z) where t is a constant satisfying t"+™ T1 = 1.

(I112) a2,.[frtm 1 (gt 1) = 2. In particular when a(z) = d =
constant, we get f(z) = c1e*, g(z) = cae™ %, where c1, ¢ and ¢ are
constants satisfying
a2, (crca)" ™ ((n 4+ m* +1)c)? = —d?.

Theorem 2. Let f and g be two non-constant meromorphic functions, and a(z)(Z
0,00) be a small function with respect to f and g. Also we suppose that ' (f) and
s (g) share (0,1), where n > max{m* + 10, s}, is an integer. Then the following
conclusions hold. If

(a) I=1and n > max{% +12,s};

(b) 1 =0 and n > max{4m* + 22, s},

then the conclusions of Theorem 1 holds.
We now explain following definitions and notations which are used in the paper.

Definition 2. [12] Let p be a positive integer and a € CU {oo}.

(i) N(r,a;f |> p) (N(r,a;f |> p))denotes the counting function (reduced
counting function) of those a-points of f whose multiplicities are not less
than p.

(i) N(r,a;f |< p) (N(r,a;f |< p))denotes the counting function (reduced
counting function) of those a-points of f whose multiplicities are not greater
than p.
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Definition 3. {11, ¢f.[21]} For a € CU {oco} and a positive integer p we denote
by Ny(r,a; f) the sum N(rya; f) + N(rya; f |> 2)+...N(r,a; f |> p). Clearly
Ni(r,a; f) = N(r,a; f).

2. LEMMAS

Let F' and G be two non-constant meromorphic functions defined in C. We
denote by H the function as follows:

FI/ 2F/ G// QG/
H(pm)(aa_1>' (2.1)
Lemma 1. [12] Let f be a non-constant meromorphic function and let a,(z)(Z 0),
an—1(2), ... , ao(z) be meromorphic functions such that T(r,a;(z)) = S(r, f) for

i=0,1,2,....,n. Then
T(ryanf™ + an—1f" "+ ...+ arf +ao) =nT(r, f) + S(r, f).

Lemma 2. [24] Let f be a non-constant meromorphic function, and p, k be positive
integers. Then

Ny (m0:70) T (r f®) = T )+ Npsar 05 /) + S0 f), - (2:2)

Ny (7.0: £0) < kN (1,001 £) 4+ Ny, 05 £) + S, ). (2:3)

Lemma 3. [9] If N(r,0; f(%) | f #0) denotes the counting function of those zeros
of f%) which are not the zeros of f, where a zero of f*) is counted according to its
multiplicity then

N(r,0; f®) | f #0) < kN(r,00; f) + N(r,0; f |< k) + kN(r,0; f |> k) + S(r, f).

Lemma 4. [20] Let f and g be two non-constant meromorphic functions, n > 6 be
an integer. If ff g"g = 1 then f(z) = c1e%®, g(z) = coe™* where ¢, ¢1 and co
are constants satisfying (c1co)"Tie? = —1.

Lemma 5. Let f, g be two non-constant meromorphic functions and n be a positive
integer such that n > 6. If a2.(f*T™ 1) (g"t™ 1) = @2, then f = c1e®?,

g = coe™*, where c1, ¢y and ¢ are constants such that a2,. (clcg)”+m*+l((n+m* +
1)e)? = —d>.
Proof. From the given condition we can write
d 2
n+m* g1 _n+m* = — k2 24
f I'g g <am*(n+m*+1)2) ) (2.4)
where k = d/(am-(n +m* +1)?). We put f; = —L—, g = —%—. Then
kntm*+1 kntm*+1

(2.4) reduces to
n+m f19n+m 91 =1

Using Lemma 4 we have f = c1e®?, g = coe™ %, where c¢1, ¢o and c¢ are constants
such that a2 . (c1c2)"™™ H((n +m* + 1)c)? = —d>. O
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Lemma 6. [8] If F, G share (1,2) then one of the following cases holds.

(3) max{T(r,F),T(r,G)} < Na(r,0;F)+ Na(r,0; G) + Na(r,00; F') + Na(r,00; G)
+S(r, F)+ S(r,G)

(ii) F =G

(iii) FG = 1.

Lemma 7. [1] Let F, G be two non-constant meromorphic functions such that they

share (1,1) and H £ 0. Then

T(r,F) < Ny(r,0; F)+ Na(r,00; F) + Na(r,0; G) + Na(r,00; G)
1— 1—
+§N(T‘7O;F) + §N(r,oo;F) +S(r, F)+ S(r,G).

Lemma 8. [1] Let F, G be two non-constant meromorphic functions such that they
share (1,0) and H # 0. Then

T(r,F) < Ny(r,0;F)+ Na(r,00; F) + Na(r,0; G) + Na(r,00; G) + 2N (r,0; F)
+2N(r,00; F) + N(r,0;G) + N(r,00; G) + S(r, F) + S(r, G).

Lemma 9. Let f, g be two non-constant meromorphic functions and F' = Wﬂ%(m

_ " Pie)
G = g —(ig

n is a positive integer such that n > m* +5. If H = 0 then either [f"11 P (f)] =
9" Pi(g)] or [f™H PU(S)] 9" Pi(g)] = o
Proof. Since H = 0, on integration we get
1 bG+a-b
F-1— G-1 "~
where a, b are constants and a # 0. We now consider the following cases.

Case 1. Let b # 0 and a # b.
If b = —1, then from (2.5) we have

)

, where a(z)(Z£ 0,00) be a small function with respect to f and g,

—a
F=—F-—.
G—a-1

Therefore

N(r,a+1;G) = N(r,00; F) = N(r,00; f).
So in view of Lemma 2 and the second fundamental theorem we get
(n+m*+1)T(r,g)
T(r,G) + No(r,0; g" "' Pi(g)) — N(r,0; G)
N(r,00;G) 4+ N(r,0;G) + N(r,a + 1; G) + Na(r,0; g" "1 P(g))
N(r,0;G) + S(r,9)
N(r,00;g) + Na(r,0; g" 1 P(g)) + N(r,00; f) + S(r, g)
T(ryf)+ (m*+3) T(r,g)+ S(r, f) + S(r,9).
Without loss of generality, we suppose that there exists a set I with infinite measure

such that T'(r, f) < T(r,g) for r € I.
So for r € I we have

[VANVAY

IN A

(n - 3) T(Ta g) < S(Tv g)v
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which is a contradiction.
If b # —1, from (2.5) we obtain that

—a

V(G + 5]

P4 )

So — b-a) B B

N(r, 2 ;G) = N(r,00; F) = N(r,00; f).

Using Lemma 2 and by the same argument as used in the case when b = —1 we
can get a contradiction.

Case 2. Let b#0and a =b.

If b = —1, then from (2.5) we have

FG = o?,

that is , /
[P 9" Pu(g)] = o
If b # —1, from (2.5) we have

l: bG
F (1+b)G-1
Therefore )
Nr,—:GY=N cF).
(536 = N, 0:F)

So in view of Lemma 2 and the second fundamental theorem we get
(n+m”+1)T(r,g)
T(T, G) + NZ(T7 0; gn+1P1 (g)) - N(Ta 0; G) + S(T’, g)

G) + Na(r,0; 4" Pi(g))

IN

IN

N(r,o0;G) + N(r,0;G) + N(r,
N(r,0;G) + S(r,9)

(m* +3)T(r,g) + N(r,0; F) + S(r,g)

N(r,00; f) + 2N (r,0; f) + (m* + 3)T'(r, g)

(m* +3){T(r,g) +T(r, )} + S(r, f) +S(r, 9).

So for r € I we have

1 .
145’

IN N CIA

{TL —-m" - 5} T(Tv g) < S(r,g),
which is a contradiction since n > m* + 5.
Case 3. Let b = 0. From (2.5) we obtain
G+a-1
—

F=

If @ # 1 then from (2.6) we obtain
N(r,1—a;G) = N(r,0; F).

We can similarly deduce a contradiction as in Case 2. Therefore ¢ = 1 and from
(2.6) we obtain

F=aG.

ie.,
!

P = g Pug))]
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O

Lemma 10. Let f and g be two non-constant meromorphic functions and a(z)(Z
0,00) be a small function of f and g. Let n be a positive integer such that n > s,
where s be defined by (1.3). Suppose that P(z) # a;2*, for i = 1,2,...,m be a
non-constant polynomial. Then

f"P(N)f g"Plg)g # o”,
Proof. First suppose that

f"P(f)f g"Plg)g = o’ (2). (2.7)
Let d; be the distinct zeros of P(z) = 0 with multiplicity p;, where ¢ = 1,2,...,¢,
1<¢t<mand Zpl—m

Now by the second fundamental theorem for f and g we get respectively

toT(r, f) < N(7,0; f) + N(r,00; f) + ZW(T, di; ) = No(r,0; ') + S(r, ), (2.8)
i=1
and
t
tT(r,g) < N(r,0;g) + N(r,00;g) + Z (r,di;g) — N(r,0;9') + S(r,g), (2.9)

where N (r,0; f/) denotes the reduced counting function of those zeros of f* which
are not the zeros f and f—d;, i = 1,2,...,t and N(r,0; gl) can be similarly defined.
Let zp be a zero of f with multiplicity p but «a(zp) # 0,00. Clearly zp must be a
pole of g with multiplicity g. Then from (2.7) we get np+p—1=ng+mqg+q+ 1.
This gives

mg+2=(n+1)p—q). (2.10)

From (2.10) we get p — g > 1 and so ¢ > T’T—l Nownp+p—1=ng+mqg+q+1
gives
p > =L Thus we have

m m

N(r,0; f) < nrm—1 N(r,0;f) < P T(r, f). (2.11)

Let z1(a(z1) # 0,00) be a zero of f — d; with multiplicity ¢;, ¢ = 1,2,...,¢. Then
z1 must be a pole of g with multiplicity 7(> 1). So from (2.7) we get ¢;p; +¢; — 1 =
(n+m+1)r+1>n+m+ 2. This gives ¢; > ";ﬁﬁz for i =1,2,...,t and so we
get

~ pi+1 pi+1
N(ridi; f) < ———— N(rdi; f) < ——= T'(r, f)-
(ndi f) < 2 N di ) < P T )
Clearly
t
m+t
d;: TR 1 f). 2.12
Do) < L T ) (212)
Similarly we have
N(r,0;9) < I(r.g). (2.13)
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and
¢
— m+t
N(r,d;; —T . 2.14
z; (r,disg n+tm+3 (r,9) ( )
Also it is clear from (2.13) and (2.14) that
N(r,00; f) (2.15)

IN

N(r,0;9) + N(T di;9) + No(r,0,9) + S(r, f) + S(r,g)

HMH

m4t
n—l—m—l n+m+3

) T(r,g) + Nolr,0:9) + S(r. f) + 5(r,g).

Then by (2.8), (2.11), (2.12) and (2.15) we get
tT(r, f) (2.16)

<n+2— Tt nr;ig)) {T(r, )+ T(r.g)} + No(r,0;9)

_NO(Ta 0; f/) + S(T7 f) + S(ng)
Similarly we have

tT(r,g) (2.17)

<n—|—2—1 - nfntizs) {T(r, )+ T(r,g)} + No(r,0; /)

~No(r,0:9') + 8(r, f) + 5(r. 9).
So from (2.16) and (2.17) we get

<

HT(r, f)+T(r,9)}

<2 (Hz_ﬁnfﬂfi?)) {T(r, f) + T(r,9)} + S(r, f) + S(r, 9),

ie.,
(1= o - 2D ) (1) + 7)) £ SG:) + S(rg). (29
Since
<t _2m 2(m+1) )
n+m—-1 n+m+3

_ (n+m—1)%t4+2(n+m—1)(t —2m) — 8m

B (n+m—1)(n+m+3) ’
we note that when n+m —1> 4% je, whenn > # — (m — 1) = s, then clearly
t— n+27:1n71 — sgr:g > 0 and so (2.18) leads to a contradiction. This completes the

proof. g

Lemma 11. Let f and g be two non-constant meromorphic (entire) functions and
n(>2), m(> 1) be two distinct integers satisfyingn+m >d+6 (n+m >d+2).
Then for two constants X, u, with || + |p| # 0,

™+ A) = g™t (pg™ 4+ N)
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implies the following.

(i) if A\u#0 and

(a) m =1, O(oc0, f) + O(c0,9) >4/n+1;

or (b) m > 2 and for some constant t, satisfying t¢ =1,

we have f = tg, where d = (m,n+1).

(ii) if \w =0, then f = tg, where t is a constant satisfying t"+™ +1 =1,

Proof. Let m = 1. In this case noting that d = 1 = (n + 2,n + 1), proceeding in
the same way as done in Lemma 6 of [10] we can show when O(oo, f) + O(c0, g) >
4/(n+ 1), we have f = g.

Next suppose m > 2. Let f # tg for a constant t satisfying t* = 1. We put

= %. Then h? # 1, ice., (h—vo)(h—v1)...(h—v4—1) # 0, where v, = exp (2Er),
k=0,1,2,...,d—1. First suppose that h is constant. Now from the given condition
we have

/ng( hn+m+1 _ 1) = _)\(hn-i-l _ 1).

Since ged(n + 1,m) = d, it follows that ged(n +m + 1,n + 1) = d. Eliminating d
common factors namely h — v, k =0,1,...,d — 1 from both sides we are left with

agm(h - al)(h - O‘Z) cee (h - O1n+m+1—d) = (h - Bl)(h - 62) cee (h - ﬁn—i—l—d)v
where o; and $3; are those zeros of h"*™*+1 — 1 and A"*! — 1 which are not the
zerosof h* —1,i=1,2,...,n+m+1—dand j=1,2,...,n+1—d. Also we note
that none of the a;’s coincides with 5;’s. So if h = a; or 3;, then we have either
(h—PB1)(h—33)...(h—Bn—q) =0 or g =0 and in both case we get contradictions.
So we assume neither A1 =1 nor h"*! = 1. Hence we may write

by hn+1 -1
- E hn+m+1 _ 1

m

g" = (2.19)

It follows from above that g is a constant, which is impossible. So h is non-constant.
We observe that since a non-constant meromorphic function can not have more
than two Picard exceptional values h can take at least n +m — d — 1 values among

U; = exp (ni;ﬁl), where j = 0,1,2,...,n+m. Since f™ has no simple pole h—u;
has no simple zero for at least n +m —d — 1 values of u;, for j =0,1,2,...,n+m

and for these values of j we have ©(u;;h) > %, which leads to a contradiction.
Therefore h* = 1. i.e., f = tg for a constant t satisfying t = 1, where d =

ged(n + 1,m). Subcase 2.2: Let A\p = 0 but |A| + |p| # 0. Then from the given

condition we get f*tm 1 = gntm +1 and so f = tg, where t is a constant satisfying

nAm T+l — 1 O
3. PROOFS OF THE THEOREMS

Proof of Theorem 1. Since

G(f) = [fr—m g g S Loty D0 L = HP(f) 4 a

n+m+1 n+m n+1
and
— n+1 Am m Am—1 m—1 ag _ n+1P
Y(g) =g {n+m+lg A n+1}]+0¢ g " Pi(g) + o
We have

’

O (f) = fMlamf™ + am1f" A af +a = PP +a
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and
¥ (9) = g amg™ + am_19™ " ...+ aglg +a =g"Plg)g +a.
Let
F = n+1 am m Am—1 wm—1 L o _ n+1P
1= f {n+m+1f +n+mf + +n+1 f 1(f),
G — n+1 am m Am—1 m—1 ao — n+1P
1=9 {n+m+1g ottt g 1(9),
P amf™ e STt adlf PO IPIS))
F= - —
—a’ —a’ —a’
and
o O lang™ +an g™+t adg _g"Plo)g _ (g7 Pilg)

’ / ’

—a —a —a
Then it follows that F' and G share (1,2), except the zeros and poles of o'. Also

F, = —a'F and G} = —a'G. First suppose that case (i) of Lemma 6 holds. Then
from Lemmas 1 and 2 we get

(n+m*+1T(r, f) (3.1)
T(r, Fy) + Na(r,0; Fy) — Na(r,0; Fy) + S(r, f)

T(r, F) + N3(r,0; Fy) — No(r,0; F) + S(r, f)

2N (r, 00, f) + 2N (r,00; g) + Na(r,0; G) + N3(r,0; Fy) + S(r, f) + S(r, g)

2N (r, 00; f) + 3N (r,00; g) + Na(r,0; f" ' Py (f)) + Ns(r,0; g" T Py (g))

+S(r, f)+ S(r,g)

2N(r,00; f) + 3N (r,00;g) + 3{N(r,0; ) + N(r,0;9)} + m*{T(r, f) + T(r, 9)}
+S(r, f)+ S(r,g)

< (2m*+11)T(r) + S(r).

In a similar way we can obtain

IAN A CIA A

IN

(n+m*+1)T(r,g) < (2m* +11) T'(r) + S(r). (3.2)
Combining (3.1) and (3.2) we see that
(n—m*—10) T(r) < S(r). (3.3)

Clearly (3.3) leads to a contradiction.

Again from Lemma 10 we see that when P(z) is a non-constant polynomial with
am # 0 and ag # 0, case (iii) of Lemma 6 does not hold . If | ay, |+| ag |# 0 but
| am |. | ap |=0 and all ap,—;, i =1,2,...,m — 1 are zero from case (iii) of Lemma
6 we get

* ’ * ’
agn*(fn—&-m +1) (gn-i-m +1) = a2_

In particular, if & = d = constant, the conclusion of the theorem follows form
Lemma 5.

So we must have F' = G. ie., (f""'P(f)) = (¢"T'Pi(g)) . Integrating, we
obtain

frP(f) = g™ Pi(g) +c.
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If possible suppose ¢ # 0.
Now using the second fundamental theorem we get
(n+m* +1)T(r, f)
N(r,0; fPHHPL(f)) 4 N (00 fPU(f)) + N (7, cos [P PL(S))
N(r,0; f) +m*T(r, f) + N(r,00; f) + N(r,0;g" ' Pi(g))
(m*+2)T(r, f) + N(r,0;9) + m*T(r,g) + S(r, f)
(m*+2)T(r,f)+ (m"+1)T(r,g) + S(r, f) + S(r,g)
{2m* 4+ 3} T(r) + S(r).

INIANIN A TN

Similarly we get
(n+m*+1)T(r,g) <{2m* +3} T(r) + S(r).
Combining these we get
(n—m*=2)T(r) < 5(r),

which is a contradiction since n > m™ + 2.
Therefore ¢ = 0 and so

fPP(f) = g™ Pu(g).
ie.,

am fn+m+1+ am—1 fn+m+ + ao fn+l —

n+m+1 n+m T n+41
am n+m+1 am—1 n+m+ ot ao gn-i-l.
n+m+1 n+m n+1

If ap—y = 0, for ¢ = 1,2,...m — 1, then since P(z) is a non-zero polynomial, it
follows that | an, |4+ ao |# 0. If | am, |. | ao |# 0, the conclusion of the theorem
follows from Lemma 11 (i) otherwise it follows from Lemma 11 (ii). Let at least
one of apy—; # 0, for i = 1,2,...m — 1. Suppose h = 5. If h is a constant, by
putting f = hg in the above expression we get

a Am—1 —
m mhn+m+1_1 m m—1 hn+m_1
e A [ e A )
+.. 4
ay ao
——g(h"? -1 — ("t —1)=0
n+2g( )+n+l( ) ’

which implies that h? = 1, where d = ged(n+m +1,....n+m+1—i,...,n+1),
am—; # 0 for some i € {0,1,...,m}. Thus f = tg for a constant ¢ such that
td = 1,where d = ged(n+m+1,....,n+m+1—4,...,n+ 1), ap_; # 0 for some
i€40,1,...,m}.

If h is not constant then f and g satisfy the algebraic equation R(f,g) = 0, where

m m—1 m m—1
_ o n+l/ amwi” Am—1W] ag \ _ , ntl/ amwy Am —1Ws
R(wl’ w2) =W (n+m+1 + n+m +... n+1) W2 (n+m+1 + n+m +

L ), O

Proof of Theorem 2. In this case by the same argument as used in Theorem 1
we have F' and G share (1,1), except the zeros and poles of o
First suppose H # 0. While [ = 1, from Lemmas 7, 1 and 2 we get from second
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fundamental theorem that either FG = o2 or F = G. The rest of the proof follows
from Theorem 1. So we omit the details.

(n+m*+ 1D)T(r, f) (3.4)

< gﬁ(r, o0, f) 4+ 2N (r,00; g) + Na(r,0; G) + N3(r,0; Fy) + %N(r, 0; F)
S(r, f) + S(r, )
< BN (r,00: ) + 3N (r,0059) + Na(r, 0: /7 PL(f)) + 5 Vol 05 S Py ()
+N3(r,0: 9" Pi(g)) + S(r, f) + S(r, 9)
< 3N(r,00; f) + 3N(r,00;9) + 4N(r,0; f) + 3N (r,0; g) + 3’;‘* T(r, f) + m*T(r,g)
+S(r, f) + S(r, )
< (57;* +13)T(r) + S(r).
In a similar way we can obtain
(n+m* + DT(r,g) < (575* 13)T(r) + S(r). (3.5)
Combining (3.4) and (3.5) we see that
(n+m*+1)T(r) < (57;* + 13) T(r)+S(r),
i.e
(n - 37;"* - 12> T(r) < S(r). (3.6)

Since n > 3% + 12, (3.6) leads to a contradiction.

While I = 0, from Lemmas 8, 1 and 2 we get from second fundamental theorem
that

(n+m*+1)T(r, f) (3.7)
< 4N(r,00, f) + 3N(r,00;g) + 2N(r,0; F) 4+ N3(r,0; f* T Pi(f))
+No(r,0;G) + N(r,0;G) + S(r, f) + S(r, 9)
< 6N(r,00; f) +5N(r,00;9) + TN(r,0; f) + 5N (r,0; g) + 3m*T(r, f)
+2m* T (r,g)} + S(r, f) + S(r, g)
< (5Bm™ +23) T(r) + S(r).
In a similar way we can obtain
(n+m*+1)T(r,g9) < (5m* +23) T(r) + S(r). (3.8)
Combining (3.7) and (3.8) we see that
(n+m*+1)T(r) < (5m™ +23) T(r) + S(r)),
ie.,
(n—4m* —22) T(r) < S(r). (3.9)
Since n > 4m* + 22, (3.9) leads to a contradiction. Next suppose H = 0. Then by

Lemma 9 and following the same procedure as adopted in the proof of Theorem 1
we can easily deduce the conclusions of the theorem. So we omit the details. d
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