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COMMON FIXED POINT THEOREMS IN MENGER
SPACE FOR SIX SELF MAPS USING AN IMPLICIT
RELATION

I.H.Nagaraja Rao !, S. Rajesh?, and G.Venkata Rao®

ABSTRACT. The aim of this paper is to prove, mainly, a common fixed point
theorem for six self mappings of a Menger space using two weakly compatible
pairs satisfying an implicit relation. This generalizes several known results
including those of Kohli et.al [2] and Sastry et.al [7].

1. Introduction

The pursuit of fixed point theorems in Menger space is an active area of re-
search in the present days. Menger [4] introduced the concept of probabilistic
Menger space. Singh et.al [10] introduced the notion of weakly commuting map-
pings on Menger spaces. Kohli et. al [2] established a common fixed point theorem
for six self mappings using pointwise R-weakly commuting mappings with a con-
tractive type implicit relation. This generalizes the results of Kumar and Pant [3].
Sastry et. al [7] made some modifications to the results of Kohli et. al [2].

In this paper, we further generalized the results of [2] and [7]. As usual R
stands for the set of all real numbers, RT stands for the set of all non-negative
real numbers, QQ stands for the set of rational numbers and N stands for the set of
natural numbers.

2. Preliminaries

We take the standard definitions given in Schweizer and Sklar [8].

2010 Mathematics Subject Classification. 47TH10; 54H25.
Key words and phrases. Menger space, weakly compatible mappings, pointwise R-weakly
commuting mappings, common fixed point.

89



90 I.HNAGARAJA RAO, S. RAJESH, AND G.VENKATA RAO

We hereunder give the following definitions and the result required in subse-
quence section.

DEFINITION 2.1. ([10]) Self mappings f and g of a probabilistic metric space
(X, F) are said to be weakly commuting if and only if (¢ f f) Frga,gfz(t) = Ftz,g2(t)
for each x € X and ¢t > 0.

DEFINITION 2.2. ([1]) Self mappings f and g of a probabilistic metric space
(X, F) are said to be pointwise R-weakly commuting if given z in X, there exists
R > 0(depending on x) such that Ffga g5o(t) = Ffega(f) for t > 0.

NoTE 2.1. Weakly commuting mappings are pointwise R-weakly commuting
with R = 1.

DEFINITION 2.3. ([3]) Self mappings f and g of a probabilistic metric space
(X, F) are said to be reciprocally continuous if fgx,, — fz and gfx, — gz, when-
ever {z,} is a sequence such that fz,, gz, — z for some z in X.

NOTE 2.2. Every pair of continuous mappings is reciprocally continuous.

DEFINITION 2.4. Self mappings f and g of a probabilistic metric space (X, F)
are said to be weakly compatible iff fx = gz for some x € X implies fgx = gfzx.

DEFINITION 2.5. ([5]) Self mappings f and g of a probabilistic metric space
(X, F) are said to be weakly compatible if Fygq, g7z, (t) = 1 for all t > 0 whenever
{z,} is a sequence in X such that fx,, gz, — z for some z € X.

NoTE 2.3. Compatible implies weakly compatible but the converse is not true.

We, hereunder give a pair of self mappings on a Menger space that are weakly
compatible but not compatible, R-weakly commuting and weakly commuting.

ExXAMPLE 2.1. Let X = [0,A] (A > 2), a*b=min{a,b} for all a,b € [0,1] and
Fpy(t) = m for all z,y € X and for all ¢t > 0. Then (X, F,*) is a complete
Menger space.

Define self mappings f and g on X by

[z ifoga<,
f(”){A if 2 <a <,

Claim 1: {f, g} is weakly compatible.

For x € [0, %), fx < % < gz. Hence, fz # gz, for every x € [0, %)
For every x € [%,)\],

fe=X=gzand fg(z) = f(A) = A =g(A) = gf(N).
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Therefore, {f, g} is weakly compatible.

Claim 2: {f, g} is not compatible.

Take z,, = {$ — 1},
frn={3-L1}>3asn—socandgz, ={A-3+1} =3 asn— .
fg(xn):f(%+%):/\andgf(;vn):g(%—%):%

Frge,.gfa, (t) = Fy 3 (1) = t_f% <1asn— oo.

Hence, {f, g} is not compatible.

Claim 3: {f, g} is not weakly commuting.
Take x = %.

— 3X — )\ — 3A _ 52
fr=% and gr = A — 5 = 2.

fo(x) = f(2) =X and gf(z) = g(3) = 2.
Since % > %, follows that Fygp gfe(t) < Ffa,ga(t).
Therefore, {f, g} is not weakly commuting.

Claim 4: {f, g} is not R-weakly commuting.
Take z € [32,3).
fr=xand gr =\ —z.
fo(x) = f(A—2)=Xand gf(z) = g(z) = A —=.
Let R > 0.

Frgegpa(t) = Faa—a(t) = 5 and

Ffr,gx(%) = Ff%)\*f(%) = %+(§721) = t+R(§\—2x)'

Now, Ffgzg52(t) = Froga(%) © @ < R(A—22) & R> eemE

Since, Sup{(A — 2z) : z € [}, )} = +o0, it follows that

such R does not exist.

Therefore, {f, g} is not R-weakly commuting.

(Observe that the pair {f, g} is pointwise R~-weakly commuting, since for any x €
[3)\ A

%, 5), we can select R, > (/\—3072@)

DEFINITION 2.6. ([6]) A function ¢ : (R*)* — R is said to be an implicit
relation if
(i.) ¢ is continuous,
(ii.) ¢ is Monotonic increasing in the first argument and
(iii.) ¢ satisfies the following conditions:
(a) for z,y 2 0, ¢(x,y,x,y) = 0 or ¢(z,y,y, ) > 0 implies z > y,
(b) ¢(z,z,1,1) > 0 implies = > 1.
EXAMPLE 2.2. Define ¢ : (RT)* — R by ¢(z1, 22, 3, 74) = ax1+bro+crz+dry
witha+b+c+d=0,a+b>0,a+c>0and a+d > 0.
Clearly, ¢ is an implicit relation.
In particular,
(i) ¢(z1, 22,23, 24) = 621 — 3x2 — 2203 — 24,
(ii.) ¢(z1, 2,73, 24) = By — 313 — 234



92 I.HNAGARAJA RAO, S. RAJESH, AND G.VENKATA RAO

are implicit relations.

Notation: Let ® be the class of all implicit relations.

LemMA 2.1. ([9]) Let {z,}(n = 0,1,2,...) be a sequence in a Menger space
(X, F,*). If there is a k € (0,1) such that

Fopwnin (k) 2 Foy 0, (1)
for allt >0 and n € N, then {x,} is a Cauchy sequence in X.

3. Main theorem
Kohli et.al [2] proved the following:

THEOREM 3.1. ([2]) Let (X, F,T) be a complete Menger space, where T denotes
a continuous t-norm. Let f, g, h, k, p and q be self maps of X. Further, let {p, hk}
and {q, fg} be pointwise R-weakly commuting mappings, satisfying:
(3.1.1) p(X) € fg(X), ¢(X) € hk(X);
(312) ¢(pr,qy(at)7 Fhkw,fgy(t)7 pr,hka:(t)a qu,fgy(at)) = O}
(313) d)(FpI,qy(at)a Fhkw,fgy (t)7 pr,hkx (Oét), qu,fgy (t)) P 0}
forallz,y € X & t > 0 and for some ¢ € ® & a € (0,1);
(3.1.4) k commutes with p & h and g commutes with q & f;
(3.1.5) one of the mappings in the compatible pair {p, hk} or {q, fg} is contin-
UOUS.

Then f, g, h, k, p and q have a unique common fixed point in X .

The concepts of compatibility and the reciprocal continuity are used in obtain-
ing this result.

Sastry et.al [7] made the modification of replacing ’pointwise R-weakly com-
muting’ by ’weakly compatible’ and deduced the result using the concepts ’com-
patibility’ and ’reciprocal continuity’.

Now, we modify and generalize their results and establish the following;:

THEOREM 3.2. Let (X, F,T) be a Menger space, where T denotes a continuous
t-norm and f, g, h, k, p and q be self maps of X. Further, let {p, hk} and {q, fg}
be weakly compatible mappings, satisfying:

(3.2.1) p(X) C fg(X), ¢(X) C hk(X);

(3.2.2) Qb(Fpm,qy(at)’ Fhkw,fgy(t)7 Fz,nka (1), qu,fgy(at)) 20,

(3.2.3) ¢(Fpa,qy(at), Frka, rgy (), Fpw,nka(at), Fay r4y(t)) 20,

forallz,y € X & t > 0 and for some ¢ € ® & a € (0,1);

(3.24) fg=gf and ’either qg = gq or q¢f = fq’;

(3.2.5) hk = kh and ’either pk = kp or hp = ph’;

(3.2.6) one of p(X), ¢(X), hk(X), fg(X) is a complete subspace of X.
Then f, g, h, k, p and q have a unique common fixed point in X say z. Also z is
the unique common fized point h, k & p as well as f, g & q.
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Proof:
Let xg € X. By (3.2.1) we construct sequences {x,} and {y,} in X such that
DPTon = fgx2n+1 = an(say)
and qropy1 = hkxonio = yont1(say), for n=0,1,2,...
By putting x = xan(n = 1) and y = Top41 in (3.2.2), we get that
¢(F;Dﬂc2n,q182n+1 (at)v Fhk$2n7f9$2n+1 (t)v Fp$2n7hkx2n (t)7 quzn+1 J9xant1 (at)) 20

i€, (Fysp yon i1 (1), Fyor 1 yon () Fia o1 (1), Fyoir yan (at)) = 0.
So, by the property of ¢,

Fys yonia (at) > Fyr v yon (t)-

By putting = Xant2 and y = Tapt1 in (3.2.3), we get that
¢(Fp$2n+27qz2n+l (at)v Fhkaﬂ,+2)fgz2n+l (t)v FPI2n+2,hkf€2n+2 (at)’ Fq12n+1,f912n+1 (t)) > 0I
i.e, ¢( Y2n42,Y2n+1 (at) Fy2n+1,y2n (t)> Fy2n+27y2n+1 (at)’ Fy2n+1,y2n (t)) =0
= F (at) 2 Fyzn,yzn+1 (t)

Y2n+1,Y2n+2

Thus for alln € N,

Fyn,ynﬂ (Olt) 2 Fyn—lyyn (t)

By Lemma(2.12), {yn} is a Cauchy sequence in X.
= {yon} and {y2n+1} are Cauchy sequences in X.

Case I: Suppose p(X) or fg(X) is a complete subspace of X.
Since {yn} C p(X)(C fg(X)), there is a z € X such that ya, = z as n — .

Since p(X) C fg(X), by our supposition, there is a v € X such that fgv = z.

By putting x = zop,(n = 1) andy = v in (3.2.2), we get that
O (Fpaan,qu(0t), Frkasn, rgv(t)s Fpaay hkaz, (1) Fau,fgv(at)) 20

i. €, ¢( Y2n, q’U(at)7 Fan—hZ(t)? Fy2myzn71 (t)7 qu’z(at)) 2 0.
Since ¢ is continuous, letting n — oo, we get that

¢(Fz,qv(at)7 Fz,z(t)a Fz,z(t)7 qu,z(at)) = 0.
By the property of ¢, follows that F, 4,(at) 2 F, ,(t) =1. = z = qu.
Thus fgv =qu = z.

Since {q, fg} is weakly compatible, q(fg)v = fg(q)v. i.e,qz = fgz.

By putting x = xop,(n = 1) and y = z in (3.2.2), we get that
o( pxzn,qz( t :Fhkxzn,fgz(t)vFp:czmhkxzn (t)anz,fQZ(O‘t)) =20
0.6, (Fyapq2(at), Fyy 12 (1), Fiyaryan o ()s Fz g2(at)) > 0.
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Letting n — oo, we get that

P(Fy gz (at), Fr g2 (8), I 2 (1), Fyzg2(at)) 2 0.
i.e,0(F, qz(at), Fy 42(t),1,1) > 0.
Since ¢ is non-deceasing in the first argument, we get that qz = z.
Thus z = qz = fgz = gfz (since fg = gf).

Suppose qg = gq, then qgz = gqz = gz.
Since fg = gf, we have fg(gz) = gf(g92) = g(fgz) = g=.
By putting x = xop,(n = 1) and y = gz in (3.2.2), we get that

(b(sz‘zn,gv(at)v Fhkrzn,ﬂZ (t)v prZnythZn (t)v ngvgz (at)) 20
> 0.

i.e, ¢(EJ2ng (O‘t)’ EJZW,—lng (t)7 Fyzn,qu (t)a ng,gz (at))
Letting n — oo, we get that

P(Fr,gz(at), Fr g2 (1), Fz (1), Fyz g2 (at)) = 0.

= O(F, (1), Frg:(t),1,1) 20 = F, g;(t) 2 1 = g2 = 2.
Since fgz = z, follows that fz = z. Thus z = fz = gz = qz.

Suppose qf = fq, so qfz = fqz = fz.
Since fg = gf, we have fgfz= f(gfz) = fz.
By putting © = xop(n > 1) and y = fz in (3.2.2) as above we get that z = fz.
Hence z = fz = gz = qz.

Since q(X) C hk(X), there is a w € X such that z = hkw.
By putting x = w and y = xopt+1 in (3.2.2), we get that pw = z. Thus pw = z =
hkw.
Since {p, hk} is weakly compatible, phkw = hkpw. i.e,pz = hkz.
By putting x = z and y = Tapy1 in (8.2.2), we get that pz = z. Thus z = pz =
hkz = khz (since hk = kh).

Suppose pk = kp, then pkz = kpz = kz. Since hk = kh, we have hk(kz) =
kh(kz) = k(hkz) = kz.
By putting x = kz and y = Top41 in (3.2.2), we get that kz = z. Since hkz = z,
follows that hz = z.
Thus z = hz = kz = pz.
Suppose ph = hp, so phz = hpz = hz. Since hk = kh, we have hk(kz) = h(khz) =
hz.
By putting © = hz and y = xop4+1 in (3.2.2), we get that hz = z. Since hkz = z,
follows that kz = z.
Thus z = hz = kz = pz.
Hence z = fz=gz=hz=kz =pz = qz.

Case II: Suppose q(X) or hk(X) is a complete subspace of X.
On similar lines, first we get that z = hz = kz = pz and then z = fz = gz = q=z.
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Thus z = fz = gz = hz = kz = pz = qz. Hence z is a common fized point of f, g,
h, k, p and q.

Uniqueness: if z' is also a common fized point of f, g, h, k, p and q, then
2t = f2l = g2l = ha! = k2! = p2! = 2!,
By putting x = z and y = z' in (3.2.2), we get that 2* = z.
Hence z is the unique common fized point of f, g, h, k, p and q.

We now prove that z is the unique common fized point of h, k & p.
Suppose z' is also a common fized point of h, k & p.
By putting x = 2% and y = z in (3.2.2), we get that 2* = z.
Hence z is the unique common fized point of h, k & p.
So is the case with f, g & q.
This completes the proof of the theorem.

COROLLARY 3.1. ([7] Theorem 3.2) Let (X, F,T) be a complete Menger space,
where T denotes a continuous t-norm. Let f, h, p and q be self maps of X. Further,
let {p,h} and {q, f} be weakly compatible mappings, satisfying:

(3.3.1) p(X) € f(X), ¢(X) C h(X);
(3.32) ¢(pr,qy(at), th,fy(t)v Fpryhr(t)a qu-,fy(at)) >0,
(3.3.3) &(Fpa,qy(0), Fra,py(t), Fpona(at), Fay,py(t)) 20,
forallz,y € X & t >0 and for some ¢ € ® & « € (0,1);
(3.3.4) Suppose {p,h} and {q, f} are compatible pairs;
(3.3.5) one of the mappings in the compatible pairs {p,h} or{q, f} is continuous.

Then f, h, p and q have a common fixed point in X .
Proof: This can be deduced from our Theorem by taking f = r, h = s and
g = k = I(the identity map).

Now we give the following example in support of our Theorem (3.2).

EXAMPLE 3.1. Let X = Q, a *xb = min{a,b} for all a,b € [0,1] and F, ,(t) =

m for all z,y € X and for all ¢ > 0. Then (X, F, *) is a Menger space.

Define self mappings f, g, h, k, p and ¢ on X by px = gz = 1(> 1),

0 ifz<1,
W)_{ L ifr>1,

fz) =

kx =gx =z, for all z € X.
Define ¢ : (RT)* — R by ¢(z1, 22, 23,24) = 621 — 329 — 223 — 24 then ¢ is an
implicit relation.

2—x ifzx<l,
l ifx >1,

For x,y < 1,
(b(Fl,l(at), FO,(Q—y)(t)7E,O(t)7 Fl,(g,y)(at)) >6—-3—-2—-1=0.
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For z,y > 1,
o(Fra(at), Fia(t), Fia(t), Fiu(at)) =6 =3 -2 - 1=0.
Forx<landy>1,
o(Fi(at), Fou(t), Fio(t), Flu(at)) >6 -3 -2-1=0.
For x > 1 and y < 1,
o(Fri(at), Fi a—y) (1), Fri(t), Fi 2—y)(at)) 26 -3 -2-1=0.

The other conditions of the Theorem are trivially satisfied. Clearly ’l’ is the
unique common fixed point of f, g, h, k, p and ¢ in X as well as f, g & p and
h, k & gq. (Observe that X is not complete.)
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